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Preface

Within a period of a few decades, the ¯eld of materials science and engi-

neering has emerged as a focal point for developments in virtually all areas

of engineering and applied science. The study of thin film materials has

been one of the unifying themes in the development of the ¯eld during this

period. As understood here, the area encompasses ¯lms bonded to rela-

tively thick substrates, multilayer materials, patterned ¯lms on substrates

and free-standing ¯lms. Signi¯cant advances in methods for synthesizing

and processing these materials for ever more speci¯c purposes, as well as in

instrumentation for characterizing materials at ever diminishing size scales,

have been key to modern engineering progress.

At the dawn of the 21st century, the United States National Academy

of Engineering reported the outcome of a project intended to identify the

twenty most signi¯cant engineering achievements of the preceding century.

It is evident from the list compiled that achievements of the second half

of the twentieth century { electronics, computers, health technologies, laser

and ¯ber optics, for example { were all based on the creative and e±cient

exploitation of materials; thin ¯lm materials represent a major component

of this advance in materials technology. In fact, the impact of advances

in the specialized uses of materials was so pervasive in the achievements

being recognized by the Academy that the development of high-performance

materials itself was included as one of the most signi¯cant achievements.

The goal of this book is to summarize developments in the area of thin

¯lm materials that have occurred over the past few decades, with emphasis

on the generation of internal stress and its consequences. Internal stress can

induce a variety of undesirable consequences including excessive deforma-

tion, fracture, delamination, permanent deformation and microstructural

alterations. In spite of these possibilities, thin ¯lms have been inserted

into engineering systems in order to accomplish a wide range of practical
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service functions. Among these are microelectronic devices and packages;

micro-electro-mechanical systems or MEMS; and surface coatings intended

to impart a thermal, mechanical, tribological, environmental, optical, elec-

trical, magnetic or biological function. To a large extent, the success of this

endeavor has been enabled by research leading to reliable means for esti-

mating stress in small material systems and by establishing frameworks in

which to assess the integrity or functionality of the systems. The prospect

for material failure due to stress continues to be a technology-limiting bar-

rier, even in situations in which load-carrying capacity of the material is not

among its primary functional characteristics. In some circumstances, stress

has desirable consequences, as in bandgap engineering for electronic appli-

cations and in the self-assembly of small structures driven by stored elastic

energy. It is our hope that the information included in this book will be

useful as an indicator of achievements in the ¯eld and as a guide for further

advances in a number of new and emerging directions.

The ¯rst chapter is devoted largely to a discussion of the origins of

residual stress in thin ¯lm materials and to identi¯cation of relationships

between processing methods and generation of stress. The consequences of

stress are discussed in subsequent chapters, with the presentation generally

organized according to the size scale of the dominant physical phenomena

involved. Overall deformation of ¯lm-substrate systems or multilayer struc-

tures are considered in Chapters 2 and 3. This is followed by examination

of the general failure modes of fracture, delamination and buckling of ¯lms

in Chapters 4 and 5. The focus then shifts to a smaller scale to discuss

conditions for dislocation formation in Chapter 6 and inelastic deformation

of ¯lms in Chapter 7. Finally, the issues of stability of material surfaces

and evolution of surface morphology or alloy composition are considered in

Chapters 8 and 9. The consequences of stress in thin ¯lms is linked to the

structure of the ¯lm materials wherever possible.

It is recognized that each of the principal topics covered in the book

could itself be developed into a substantial monograph, but the goal here

is not the exhaustive treatment of a topic of limited scope. The area is

inherently interdisciplinary, and the intention is a provide a comprehensive

coverage of issues relevant to stress and its consequences in thin ¯lm mate-

rials. Adoption of this approach meant that many choices had to be made

along the way about depth of coverage of speci¯c topics and balance among

di®erent topics; we hope that the readers will judge the choices made to be

reasonable. The main purpose of the book is the coherent presentation of

the sound scienti¯c basis for describing the origins of stress in ¯lms and for

anticipating the consequences of stress in defect formation, surface evolution
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and allied e®ects. Many references to original work are included as a guide

to the archival literature in the area. In addition, the fundamental concepts

developed are made more concrete through implementation in sample calcu-

lations and through discussion of case studies of practical signi¯cance. The

description of experimental methods, results and observations is included

as an integral part of developing the conceptual structure of the topics ex-

amined. Each chapter concludes with a set of exercises that further extend

the material discussed, and which can challenge newcomers to the area at

applying concepts. It is our hope that, with this structure, the book will

serve as a research reference for those pursuing the area at its frontiers, as a

useful compilation of readily applicable results for practicing engineers, and

as a textbook for graduate students or advanced undergraduate students

wishing to develop background in this area.

The idea for the book grew out of a course on thin ¯lms that has

been o®ered for students in solid mechanics and materials science at Brown

University since 1992, as a natural outgrowth of emerging research activity

in the area. We are grateful to the many students, postdoctoral research

associates and colleagues who attended these lectures and whose enthusiasm

gave this project its initial impetus.

We are also grateful to many colleagues who have contributed in var-

ious ways to the preparation of this book. We particularly thank John

Hutchinson who used a draft of parts of the book for a course for graduate

students at Harvard and MIT, and who provided valuable feedback on this

material. Both John Hutchinson and Bill Nix kindly shared with us their

own course materials on thin ¯lms. Several colleagues read drafts of vari-

ous sections of the book and o®ered helpful recommendations; they include

Ilan Blech, Eric Chason, Ares Rosakis, Vivek Shenoy and Carl Thompson.

Several graduate students who took courses based in part on draft chapters,

particularly Yoonjoon Choi and Nuwong Chollacoop, suggested a number of

clari¯cations and improvements in the presentation. Finally, we are grateful

to the many colleagues who provided ¯gures and micrographs from their

own work; in these cases, acknowledgments are noted along with the in-

cluded material. Tim Fishlock at Cambridge University Press o®ered us

considerable °exibility in the formulation of the scope of this book and in

the preparation of the document.

LBF is grateful to the Materials Research Science and Engineering

Center, funded by the National Science Foundation at Brown University,

for long-term support of research in the general area of thin ¯lms and for

the collaborations fostered through the Center. He is also thankful to the

Division of Engineering and Applied Sciences at Caltech for hosting a sab-
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batical leave; the kind hospitality and congenial environment a®orded an

opportunity for pursuing the book writing project at its early critical stage.

SS is grateful to the Defense University Research Initiative in NanoTechnol-

ogy, funded by the O±ce of Naval Research at MIT, and the Programme on

Advanced Materials for Micro and Nano Systems, funded by the Singapore-

MIT Alliance, for their ¯nancial support for research in the areas covered

by the book.

A project of this magnitude would not have been possible without

the support and encouragement of the members of our families. We are

extremely grateful for their enduring patience and understanding during

our long hours of immersion in this project over the past several years.

L. B. Freund and S. Suresh
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1

Introduction and Overview

Thin solid ¯lms have been used in many types of engineering systems and

have been adapted to ful¯ll a wide variety of functions. A few examples

follow.

¡ Great strides in thin ¯lm technology have been made in order to

advance the rapid development of miniature, highly integrated elec-

tronic circuits. In such devices, con¯nement of electric charge relies

largely on interfaces between materials with di®ering electronic prop-

erties. Furthermore, the need for thin materials of exceptionally high

quality, reproducible characteristics and reliability has driven ¯lm

growth technology through a rapid succession of signi¯cant achieve-

ments. More recently, progress in the physics of material structures

that rely on quantum con¯nement of charge carriers continues to

revolutionize the area. These systems present new challenges for ma-

terials synthesis, characterization and modeling.

¡ The use of surface coatings to protect structural materials in high

temperature environments is another thin ¯lm technology of enor-

mous commercial signi¯cance. In gas turbine engines, for example,

thin surface ¯lms of materials chosen for their chemical inertness,

stability at elevated temperatures and low thermal conductivity are

used to increase engine e±ciency and to extend signi¯cantly the useful

lifetimes of the structural materials that they protect. Multilayed or

continuously graded coatings o®er the potential for further progress

in this e®ort.

¡ The useful lifetimes of components subjected to friction and wear due

to contact can be extended substantially through the use of surface

1



2 Introduction and Overview

coatings or surface treatments. Among the technologies that rely on

the use of thin ¯lms in this way are internal combustion engines, ar-

ti¯cial hip and knee implants, and computer hard disks for magnetic

data storage.

¡ Thin ¯lms are integral parts of many micro-electro-mechanical sys-

tems designed to serve as sensors or actuators. For example, a piezo-

electric or piezoresistive thin ¯lm deposited on a silicon membrane

can be used to detect electronically a de°ection of the membrane in

response to a pressure applied on its surface or by an acceleration of

its supports. Devices based on thin ¯lm technology are used as mi-

crophones in hearing aids, monitors of blood pressure during exercise,

electronically positioned thin ¯lm mirrors on °exible supports in op-

tical display systems, and probes for detecting the degree of ripeness

of fruits.

Numerous other technologies rely on thin ¯lm behavior. An imme-

diate observation that follows from the foregoing list is that the principal

function of the thin ¯lm components in these applications is often not struc-

tural. Consequently, load carrying capacity may not be a principal consid-

eration for design or material selection. However, fabrication of thin ¯lm

con¯gurations typically results in internal stress in the ¯lm of a magnitude

su±cient to induce mechanical deformation, damage or failure. A tendency

for stress-driven failure of a thin ¯lm structure can be a disabling barrier to

incorporation of that ¯lm into a system, even when load carrying capacity

is of secondary importance as a functional characteristic. The presence of

an internal stress in a thin ¯lm structure may also in°uence the electrical

or magnetic properties in functional devices.

This chapter provides an overview of commonly used deposition and

processing methods for the synthesis and fabrication of thin ¯lm and such

structures. This is followed by a discussion of the fabrication of small vol-

ume structures, where examples of the basic steps involved in lithography,

surface micromachining, bulk micromachining, and molding processes are

considered in the context of the manufacture of microelectronic devices,

as well as small structures encountered in the development of micro-electro-

mechanical systems (MEMS) and nano-electro-mechanical systems (NEMS).

Attention is devoted to the e®ects of processing on the nucleation and growth

of monocrystalline and polycrystalline thin ¯lms on substrates, the evolution

of ¯lm microstructure in polycrystalline ¯lms, and the generation of inter-

nal stresses through processing. In the chapters that follow, consequences of
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stress in thin ¯lm and multilayer materials is studied, organized according

to the deformation or failure phenomena which can be induced by internal

stress.

1.1 A classification of thin film configurations

As a guide for the development and application of concepts that are useful

for describing mechanical behavior of solid thin ¯lm and multilayer ma-

terials, it is convenient to classify structures in terms of their geometrical

con¯gurations and the nature of constraint on their deformation imposed by

their surroundings. For this purpose, con¯gurations are classi¯ed in terms

of the relative extent of the solid bodies in three orthogonal directions, with

the orientation of the reference coordinate system being dictated by the con-

¯guration. The degree of constraint is determined by the interaction of the

thin ¯lm structure with other deformable solids to which it may be attached,

or with which it may otherwise be in contact. The former situation requires

compatibility of deformation, while the latter requires some restriction on

its motion. The categories of con¯guration are termed ¯lm (or layer), line

(or wire), and island (or dot); the categories of constraint are termed uncon-

¯ned, partially con¯ned and fully con¯ned. These classes are illustrated in

Figure 1.1. There is nothing fundamental about such a classi¯cation scheme,

but its adoption can facilitate understanding of the ranges of applicability

of the various ideas in the ¯eld.

With reference to Figure 1.1, a structure of an extent that is small in

one direction compared to its extent in the other two directions is termed

a thin ¯lm; in structural mechanics, such con¯gurations are identi¯ed as

plates or shells. The quali¯er `small' as used here means that the largest

dimensions are at least twenty times greater than the small dimension, and

more commonly are hundreds of times greater than the small dimension. A

structure that has small extent in two directions compared to its extent in

the third direction is termed a line or wire; such con¯gurations are usually

identi¯ed as rods or bars in structural mechanics. Lastly, a structure that

has small extent in all three directions, compared to the dimensions of its

surroundings in this case, is termed an island or a dot.

Concerning the degree of constraint on deformation, a small structure

is said to be uncon¯ned if the boundaries associated with its thin dimen-

sions are free to displace without restriction. On the other hand, it is said

to be fully con¯ned if all boundaries associated with its thin dimensions are

constrained against deformation. In virtually all cases, the constraint at a

boundary is due to another material which shares that boundary as a com-
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Fig. 1.1. A categorization of small volume structures in terms of their general shapes
and levels of constraints. A ¯lm is often called a two-dimensional structure, a line
is called a one-dimensional structure and a dot a zero-dimensional structure, but
this terminology is not standard and it varies signi¯cantly among di®erent technical
specialities.

mon interface. The structure is said to be partially con¯ned if displacement

of its boundaries associated with some, but not all, directions of thinness

are unconstrained.

The classi¯cation matrix in Figure 1.1 includes some illustrations of

varying degrees of con¯nement and thinness. As a speci¯c example, consider

a layer of a SiGe alloy 1¹m in thickness, which is deposited on a 1 cm by

1 cm area of a Si substrate that is 0:5mm thick. This con¯guration results

in a partially con¯ned thin ¯lm structure. A stripe of copper with a square

cross-section that is 0:5¹m on a side and a length of 5mm deposited on

a relatively thick Si substrate is a partially con¯ned line. If the surfaces

of the Si substrate and the wire are then completely covered over with a

1¹m thick coating of SiO2 to electronically isolate the wire, the structure

becomes a fully con¯ned line. An InAs quantum dot being formed by stress

driven surface di®usion is a partially con¯ned island. If this con¯guration is

then covered over by a blanket deposit of AlAs, the ¯nal structure is a fully

con¯ned island or quantum dot con¯guration.

The idea of the classi¯cation scheme is intended only as a conceptual

guide. There are many situations in which the structure exhibits behavior

represented by more than one entry in the categorization matrix in Fig-
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ure 1.1. For example, suppose that a thin ¯lm bonded to a relatively thick

substrate supports a compressive stress. This is a partially con¯ned thin ¯lm

con¯guration. If the stress becomes large enough in magnitude, the ¯lm will

tend to buckle by debonding from the substrate over some portion of the

interface and then de°ecting away from the substrate over this portion. The

region of the buckle becomes an uncon¯ned ¯lm but the remainder of the

¯lm is partially con¯ned.

The categorization of thin ¯lm systems as summarized in Figure 1.1 is

based on relative physical dimensions and makes no reference to any length

scale re°ecting the underlying structure of the material. There is usually a

heirarchy of such length scales associated with a material of given chemical

composition, and the scales can depend on the processing methods used to

form the material structure. For example, for a polycrystalline ¯lm, intrinsic

length scales include the size of the atomic unit cell, the spacing of crystalline

defects, and the size of the crystal grains, at the very least. Thus, a further

subcategorization of ¯lm con¯gurations based on a comparison of the small

dimension of the thin structure to the absolute length scale characteristic of

the constituent material must be considered.

When the thickness of the ¯lm is small compared to that of the sub-

strate (typically by a factor of 50 or more), it represents a mechanically thin

film. In this case, the ¯lm material either has no intrinsic structural length

scales, as in the case of an amorphous ¯lm, or the ¯lm thickness is much

larger than all the characteristic microstructural length scales such as the

grain size, dislocation cell size, precipitate or particle spacing, diameter of

the dislocation loops, mean free path for dislocation motion, or the magnetic

domain wall size. Such structures, typically tens or hundreds of microme-

ters in thickness, are deposited onto substrates by plasma spray or physical

vapor deposition, or layers bonded to substrates through welding, di®usion

bonding, explosion cladding, sintering or self-propagating high temperature

combustion synthesis. This de¯nition, of course, holds only when the size

scale of the microstructure is small compared to the ¯lm thickness. The

continuum mechanics approach to be presented for the analysis of stress,

substrate curvature and fracture in such mechanically thin ¯lms applies to

a broad range of practical situations.

When the small dimension of the material structure is comparable to

the characteristic microstructural size scale, the ¯lm is considered to be a

microstructurally thin film. Most metallic thin ¯lms used in microelectronic

devices and magnetic storage media are examples of microstructurally thin

¯lms, where the ¯lm thickness is substantially greater than atomic or mole-

cular dimensions. Although the ¯lm thickness normally includes only a few



6 Introduction and Overview

microstructural units in these cases, the plane of the ¯lm has dimensions sig-

ni¯cantly larger than the characteristic microstructural size scale. The me-

chanical properties of these ¯lms are much more strongly in°uenced by such

factors as average grain size, grain shape, grain size distribution, and crystal-

lographic texture than in the case of mechanically thin ¯lms. Grain to grain

variations in crystallographic orientation as well as crystalline anisotropy of

thermal, electrical, magnetic and mechanical properties also have a more

pronounced e®ect on the overall mechanical response of microstructurally

thin ¯lms. The mechanisms and mechanics of microstructurally thin ¯lms

are considered extensively throughout this book. A microstructurally thin

¯lm can be patterned into lines or stripes on the substrate surface, in which

case the cross-sectional dimensions of each line are comparable to the mi-

crostructural unit dimension. For single crystal ¯lms epitaxially bonded to

relatively thick substrates, the only microstructurally signi¯cant dimension

is the lattice spacing. Consequently, such ¯lms can usually be treated as

microstructurally thin ¯lms even though the ¯lm thickness may be as small

as several times the atomic unit cell dimension. Such structures are studied

in Chapter 6.

Atomically thin films constitute layers whose thicknesses are compara-

ble to one or a few atomic layers. An adsorbed monolayer of gas or impurity

atoms on a surface is an example of an atomically thin layer. Here the

mechanical response of the thin layer is likely to be more in°uenced by in-

teratomic potentials and surface energy than by macroscopic mechanical

properties or by micromechanisms of deformation.

1.2 Film deposition methods

Physical vapor deposition (PVD) and chemical vapor deposition (CVD) are

the most common methods for transferring material atom by atom from

one or more sources to the growth surface of a ¯lm being deposited onto

a substrate. Vapor deposition describes any process in which a solid im-

mersed in a vapor becomes larger in mass due to transference of material

from the vapor onto the solid surface. The deposition is normally carried

out in a vacuum chamber to enable control of the vapor composition. If the

vapor is created by physical means without a chemical reaction, the process

is classi¯ed as PVD; if the material deposited is the product of a chemical

reaction, the process is classi¯ed as CVD. Many variations of these basic

vapor deposition methods have been developed in e®orts to balance advan-

tages and disadvantages of various strategies based on the requirements of

¯lm purity, structural quality, the rate of growth, temperature constraints
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Fig. 1.2. Schematic showing the basic features of evaporative deposition system.

and other factors. In this section, the salient features of these processing

methods are brie°y described. This is of general interest because the state

of stress in a ¯lm can be strongly in°uenced by its deposition history, as

described in the later sections of this chapter.

1.2.1 Physical vapor deposition

Physical vapor deposition is a technique whereby physical processes, such

as evaporation, sublimation or ionic impingement on a target, facilitate the

transfer of atoms from a solid or molten source onto a substrate. Evaporation

and sputtering are the two most widely used PVD methods for depositing

¯lms.

Figure 1.2 schematically illustrates the basic features of evaporative

deposition. In this process, thermal energy is supplied to a source from which

atoms are evaporated for deposition onto a substrate. The vapor source con-

¯guration is intended to concentrate heat near the source material and to

avoid heeding the surroundings. Heating of the source material can be ac-

complished by any of several methods. The simplest is resistance heating of

a wire or stripe of refractory metal to which the material to be evaporated

is attached. Larger volumes of source material can be heated in crucibles

of refractory metals, oxides or carbon by resistance heating, high frequency

induction heating, or electron beam evaporation. The evaporated atoms

travel through reduced background pressure p in the evaporation chamber

and condense on the growth surface. The deposition rate _R of the ¯lm is

commonly denoted by the number of atoms arriving at the substrate per
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unit area of the substrate per unit time, by the time required to deposit

a full atomic layer of ¯lm material, or by the average normal speed of the

growth surface of the ¯lm. The deposition rate or °ux is a function of the

travel distance from the source to the substrate, the angle of impingement

onto the substrate surface, the substrate temperature Ts, and the base pres-

sure p. If the source material (such as Cr, Fe, Mo, Si and Ti) undergoes

sublimation, su±ciently large vapor pressures may be obtained below its

melting temperature so that a solid source could be employed for evapora-

tive deposition. On the other hand, for most metals in which a su±ciently

large vapor pressure (» 10−3 torr, or 0.13 Pa) cannot be achieved at or

below the melting temperature, the source is heated to a liquid state so as

to achieve proper deposition conditions.

Metal alloys, such as Al{Cu, Co{Cr or Ni{Cr, can generally be evap-

orated directly from a single heated source. If two constituents of the alloy

evaporate at di®erent rates causing the composition to change in the melt,

two di®erent sources held at di®erent temperatures may be employed to

ensure uniform deposition. Unlike metals and alloys, inorganic compounds

evaporate in such a way that the vapor composition is usually di®erent from

that of the source. The resulting molecular structure causes the ¯lm sto-

ichiometry to be di®erent from that of the source. High purity ¯lms of

virtually all materials can be deposited in vacuum by means of electron

beam evaporation.

Molecular beam epitaxy (MBE) is an example of an evaporative method.

This growth technique can provide ¯lm materials of extraordinarily good

quality which are ideal for research purposes. However, the rate of growth

is very low compared to other methods, which makes it of limited use for

production of devices. In MBE, the deposition of a thin ¯lm can be accu-

rately controlled at the atomic level in an ultra-high vacuum (10−10 torr, or
1.33£10−8 Pa). A substrate wafer is placed in the ultra-high vacuum cham-

ber. It is sputtered brie°y with a low energy ion beam to remove surface

contamination. This step is followed by a high temperature anneal to relax

any damage done to the growth surface during preparation. The substrate

is then cooled to the growth temperature, typically between 400 and 700 ◦C,
and growth commences by directing atomic beams of the ¯lm material, as

well as a beam of dopant material if necessary, toward the growth surface of

the substrate. The beams are emitted from crucibles of the growth materials

which have been heated to temperatures well above the substrate tempera-

ture to induce evaporation and condensation. The ¯lms may be examined

by transmission electron microscopy or x-ray di®raction after cooling. The

complete history of evolution of internal stress in the ¯lm during deposi-
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tion can be obtained in situ by monitoring the changes in curvature of the

substrate on which the ¯lm is deposited as described in detail in Chapter 2.

vacuum Ar

Sput t er

gas

t arget

(cat hode)

subst rat e

(anode)

glow discharge (Ar+)

DC

volt age

source (or)

Fig. 1.3. Schematic showing the basic features of a dc sputter deposition system.

In sputter deposition, ions of a sputtering gas, typically Ar, are accel-

erated toward the target at high speed by an imposed electric ¯eld. The ini-

tial concentration of charge carriers in the system is signi¯cantly increased

with an increase in the dc voltage, as the ions collide with the cathode,

thereby releasing secondary electrons, and with the neutral gas atoms. As

critical numbers of electrons and ions are created through such avalanches,

the gas begins to glow and the discharge becomes self-sustaining. Gaseous

ions striking the target or the source material from which the ¯lm is made

dislodge surface atoms which form the vapor in the chamber. The target is

referred to as the cathode since it is connected to the negative side of the

direct current power supply. Figure 1.3 schematically shows the basic ele-

ments of a sputter deposition system. The chamber is evacuated and then

Ar gas, at a pressure of approximately 13.3 Pa (10−1 torr), is introduced for

the purpose of maintaining a visible glow discharge. The Ar+ ions bombard

the target or cathode, and the ensuing momentum transfer causes the neu-



10 Introduction and Overview

tral atoms of the target source to be dislodged. These atoms transit through

the discharge and condense onto the substrate, thus providing ¯lm growth.

Several di®erent sputtering methods are widely used for the deposi-

tion of thin ¯lms in di®erent practical applications: (i) dc sputtering (also

commonly referred to as cathodic or diode sputtering), (ii) radio frequency

(rf) sputtering with frequencies typically in the 5{30 MHz range, (iii) mag-

netron sputtering, where a magnetic ¯eld is applied in superposition with a

parallel or perpendicularly oriented electric ¯eld between the substrate and

the target source, and (iv) bias sputtering, where either a negative dc or rf

bias voltage is applied to the substrate so as to vary the energy and °ux of

the incident charged species.

There are many distinctions between the sputtering process and the

evaporative process for ¯lm deposition, as described by Ohring (1992) for

example. Evaporation is a thermal process where the atoms of the material

to be deposited arrive at the growth surface with a low kinetic energy. In

sputtering, on the other hand, the bombardment of the target source by Ar+

ions imparts a high kinetic energy to the expelled source atoms. Although

sputter deposition promotes high surface di®usivity of arriving atoms, it

also leads to greater defect nucleation and damage at the deposition surface

because of the high energy of the atoms. While evaporation occurs in a

high vacuum (10−6 to 10−10 torr, or 1.33£10−4 to 1.33£10−8 Pa), sput-

tered atoms transit through a high pressure discharge zone with a pressure

of approximately 0.1 torr (13.33 Pa). Sputter-deposited ¯lms generally con-

tain a higher concentration of impurity atoms than do ¯lms deposited by

evaporation, and are prone to contamination by the sputtering gas. As a

result, sputter deposition is not well suited for epitaxial growth of ¯lms.

For polycrystalline ¯lms, the ¯lm grain structure resulting from sput-

ter deposition typically has many crystallographic orientations without pre-

ferred texture. However, evaporative deposition leads to highly textured

¯lms for which the grain size is typically greater than that of the sputtered

¯lms. Sputter deposition o®ers better control in maintaining stoichiometry

and ¯lm thickness uniformity than evaporative deposition, and has the °exi-

bility to deposit essentially any crystalline and amorphous materials. These

issues are discussed in more detail in Section 1.8.

1.2.2 Chemical vapor deposition

Chemical vapor deposition is a versatile deposition technique that provides

a means of growing thin ¯lms of elemental and compound semiconductors,

metal alloys and amorphous or crystalline compounds of di®erent stoichiom-
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Fig. 1.4. Schematic showing the basic features of an open reactor system for chem-
ical vapor deposition.

etry. The basic principle underlying this method is a chemical reaction be-

tween a volatile compound of the material from which the ¯lm is to be made

with other suitable gases so as to facilitate the atomic deposition of a non-

volatile solid ¯lm on a substrate, as indicated schematically in Figure 1.4.

The chemical reaction in a CVD process may involve pyrolysis or reduction.

Consider the production of amorphous or polycrystalline Si ¯lms on

Si substrates, where pyrolysis at 650 ◦C leads to the decomposition of silane

gas according to the reaction

SiH4(g) ! Si(s) + 2H2(g).

High-temperature reduction reactions where hydrogen gas is used as a re-

ducing agent are also employed to produce epitaxial growth of Si ¯lms on

monocrystalline Si substrates at 1200 ◦C according to the reaction

SiCl4(g) + 2H2(g) ! Si(s) + 4HCl(g).

The nature of epitaxy is described in detail later in this chapter.

In CVD, as in PVD, vapor supersaturation a®ects the nucleation rate

of the ¯lm whereas substrate temperature in°uences the rate of ¯lm growth.

These two factors together in°uence the extent of epitaxy, grain size, grain

shape and texture. Low gas supersaturation and high substrate tempera-

tures promote the growth of single crystal ¯lms on substrates. High gas

supersaturation and low substrate temperatures result in the growth of less

coherent, and possibly amorphous, ¯lms. Low-pressure CVD (LPCVD),

plasma-enhanced CVD (PECVD), laser-enhanced CVD (LECVD) and met-

alorganic CVD (MOCVD) are variants of the CVD process used in many

situations to achieve particular objectives.
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1.2.3 Thermal spray deposition

powder injection
internal external

water 
cooling

spray 
torch

plasma gases

particles in flight in
molten, semimolten,
or solid state

substrate

air or vacuum chamber

Fig. 1.5. Schematic illustration of the thermal spray process.

The thermal spray process of thin ¯lm fabrication refers broadly to a

range of deposition conditions wherein a stream of molten particles impinges

onto a growth surface. In this process, which is illustrated schematically in

Figure 1.5, a thermal plasma arc or a combustion °ame is used to melt and

accelerate particles of metals, ceramics, polymers or their composites to high

velocities in a directed stream toward the substrate. The sudden deceleration

of a particle upon impact at the growth surface leads to lateral spreading and

rapid solidi¯cation of the particle forming a `splat' in a very short time. The

characteristics of the splat are determined by the size, chemistry, velocity,

degree of melting and angle of impact of the impinging droplets, and by the

temperature, composition and roughness of the substrate surface. Successive

impingement of the droplets leads to the formation of a lamellar structure

in the deposit. The oxidation of particles during thermal spray of metals

also results in pores and contaminants along the splat boundaries. Quench

stresses and thermal mismatch stresses in the deposit are partially relieved

by the formation of microcracks or pores along the inter-splat boundaries

and by plastic yielding or creep of the deposited material. There are several

di®erent types of thermal spray processes, a review of which can be found

in Herman et al. (2000).

Continuous or step-wise gradients in composition through the thick-

ness of the layer can be achieved by use of multiple nozzles whereby the
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Fig. 1.6. Scanning electron micrographs showing the microstructures of plasma-
spray coating of NiCrAlY on a 1020 steel substrate. (a) Air plasma spray coated
layer with inter-splat cracks whose origin can be traced to the oxidation of Al in
the coated material during deposition. (b) Vacuum plasma sprayed coating of the
same material without inter-splat microcracks. Reproduced with permission from
Alcala et al. (2001).)

°ow rate of the constituent phases of the deposited composite can be mod-

ulated during spray, as demonstrated by Kesler et al. (1997). Alternatively,

the feed rate of the powders of the di®erent constituent phases can also

be controlled appropriately during thermal spray so as to deposit a graded

layer onto a substrate. Gradients in porosity can be introduced through the

thickness of the deposited layer by manipulating the processing parameters

and deposition conditions.

The plasma spray technique o®ers a straightforward and cost-e®ective

means to spray deposits of metals and ceramics that are tens to hundreds of

micrometers in thickness onto a variety of substrates in applications involv-

ing thermal-barrier or insulator coatings. Typical plasma-spray deposits are

porous, with only 85{90% of theoretical density.
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For applications requiring higher density coatings with a strong adhe-

sion to the substrate, low-pressure plasma spray is employed where spraying

is done in an inert-gas container operating at a reduced pressure. Vacuum

plasma spray is another thermal spray process which is used to improve

purity of the deposited material and to reduce porosity and defect content,

albeit at a higher cost than air plasma spray.

Figure 1.6(a) is a representative micrograph of the cross-section of an

air-plasma-sprayed NiCrAlY coating, commonly used as a bondcoat between

a ceramic thermal barrier coating and a nickel-base superalloy substrate in

gas turbine engines, as described in the example in the next subsection. This

coating was deposited onto a 1020 steel substrate. The dark streaks are

the inter-splat boundaries along which microcracks and voids have formed.

The origins of these defects could be traced to the formation of Al2O3 dur-

ing deposition (Alcala et al. 2001). On the other hand, vacuum plasma

spray deposition of the same material onto the steel substrate results in the

suppression of such oxidation and the attendant cracking of the inter-splat

boundaries, as shown in Figure 1.6(b). The resulting coating has a more

uniform microstructure with a signi¯cantly reduced pore density.

1.2.4 Example: Thermal barrier coatings

The thermal barrier coating (TBC) system is a multilayer arrangement introduced
to thermally insulate metallic structural components from the combustion gases in
gas turbine engines. The design of TBCs along with appropriate internal cooling
of the high-temperature metallic components has facilitated the operation of gas
turbine engines at gas temperatures well in excess of the melting temperature of
the turbine blade alloy. This thermal protection system, which reduces the surface
temperature of the alloy by as much as 300 ±C, leads to better engine e±ciency,
performance, durability and environmental characteristics.

The performance requirements for TBCs are stringent. The selection of
materials for TBCs and the design of the layered coating structure inevitably re-
quires consideration of highly complicated interactions among such phenomena and
processes as phase transformation, microstructural stability, thermal conduction,
di®usion, oxidation, thermal expansion mismatch between adjoining materials, ra-
diation, as well as damage and failure arising from interface delamination, ¯lm
buckling, subcritical fracture, foreign-object impact, erosion, thermal and mechan-
ical fatigue, inelastic deformation and creep. Summaries and reviews of such issues
for TBCs have been reported by Evans et al. (2001) and Padture et al. (2002).

A representative TBC system for a gas turbine engine comprises four layers:
(a) a metallic substrate, that is, the turbine blade itself, (b) a metallic interlayer or
bondcoat, (c) a thermally grown oxide (TGO), and (d) a ceramic outerlayer or top-
coat. A schematic of the turbine blade along with a scanning electron micrograph
of the cross-section of a layered TBC coating is shown in Figure 1.7.

The turbine blade is commonly made of a nickel-base or cobalt-base super-
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Fig. 1.7. Illustration of the thermal-barrier coated turbine blade which is air-cooled
internally along hollow channels. The outer surface of the blade is coated for
thermal protection from the hot gases so that there exists a temperature gradient
through the cross-section of the TBC. Also shown is a scanning electron micrograph
of the cross-sectional view of the coating layers which comprise a ceramic topcoat
deposited by electron-beam PVD, an alumina TGO layer, and a NiCrAlY bondcoat
on a nickel-base superalloy substrate. Reprinted with permission from Padture et
al. (2002).)

alloy which is investment-cast as a single crystal or polycrystal. The bondcoat,
typically 75 to 150 ¹m in thickness and made of an oxidation-resistant alloy of
NiCrAlY or NiCoCrAlY, is deposited onto the substrate using plasma spray or
electron-beam PVD. In some cases, the bondcoats are deposited by electroplating
along with either di®usion-aluminizing or CVD with layers of Ni and Pt aluminides.
Occasionally, the bondcoats consist of sublayers of di®erent phases or compositions.
The bondcoat is a critical component of the TBC system that determines the spal-
lation resistance of the TBC.

The oxidation of the bondcoat at an operating temperature as high as 700 ±C
results in a 1 to 10 ¹m thick TGO layer between the bondcoat and the topcoat.
This oxidation process is aided by the transport of oxygen from the surrounding hot
gases in the engine environment through the porous TBC top layer. The TGO layer
is also commonly engineered to serve as a di®usion barrier so as to suppress further
oxidation of the bondcoat; for this purpose, the in-situ formation of a uniform,
defect-free ®-Al2O3 TGO interlayer is facilitated by controlling the composition of
the bondcoat.

Y2O3-stabilized Zr2O3 (YSZ), typically with a Y2O3 concentration of 7 to 8
wt%, is the common material of choice for the ceramic topcoat in light of its many
desirable properties as a TBC (Padture et al. 2002):

¡ the thermal expansion coe±cient of YSZ has a high value of approximately
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11 £10¡6=±C, which is closer to that of the metallic layer beneath it (»
14 £ 10¡6=±C) than to that of most ceramic materials. Consequently, the
stresses generated by thermal expansion mismatch with the underlying layers
during the thermal cycles generated by the operation of the turbine engine
would be minimized;

¡ YSZ has a very low thermal conductivity of approximately 2.3 W/m¢K at
1000 ±C when fully dense;

¡ the low density of YSZ, typically about 6:4£ 103 kg/m3, improves the per-
formance of the rotating engine component in which it is used as a coating;

¡ the high melting temperature of approximately 2700 ±C makes YSZ a desir-
able thermal barrier material;

¡ with a myriad of available processing methods, the YSZ topcoat can be
deposited with controlled pore content and distribution in a such a way that
it can be made compliant with an elastic modulus of approximately 50 GPa;
and

¡ YSZ has a hardness of roughly 14 GPa which renders it resistant to damage
from foreign object impact and erosion.

The two most common methods of producing the TBC topcoat entail air

plasma spray (see Section 1.2.3) and electron-beam physical vapor deposition, EB-

PVD (see Section 1.2.1). The former deposition method produces 15 to 25% poros-

ity whereby low values of thermal conductivity and elastic modulus result. The

spray coating, typically 300 to 600 ¹m thick, contains pancake-shaped splats with

a diameter of 200{400 ¹m and thickness of 1{5 ¹m. The pores and cracks along

the inter-splat boundaries are generally oriented parallel to the interface with the

bondcoat and normal to the direction of heat °ow, a consequence of which is the low

thermal conductivity of 0.8{1.7 W/m¢K. The air plasma spray method provides an

economical means for the large-scale production of TBCs. However, the structural

defects inherent in this process and the rough interface between the sprayed coat-

ing and the material beneath it make this deposition technique more suitable for

less critical parts. The EB-PVD deposited TBCs, on the other hand, are typically

125 ¹m thick and are more durable and costly compared to the plasma-sprayed

coatings. They are engineered to comprise the following microstructural features:

(a) an equiaxed structure of YSZ grains with a diameter of 0.5{1.0 ¹m near the in-

terface with the bondcoat, (b) columnar grains of YSZ, 2{10 ¹m in diameter which

extend from the equiaxed grains to the top surface of the coating, with the bound-

aries between the columnar grains amenable to easy separation to accommodate

thermal stresses that develop during service, and (c) nanometer-size pores inside

the columnar grains.
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1.3 Modes of film growth by vapor deposition

There is enormous variation in the microstructures of ¯lms formed by de-

position of atoms on the surfaces of substrates from vapors. Final struc-

tures can range from single crystal ¯lms, through polycrystalline ¯lms with

columnar or equiaxed grains, to largely amorphous ¯lms. Some materials

can be deposited in ways that yield any of these structures, with the ¯nal

microstructure depending on the materials involved, the deposition method

used and the environmental constraints imposed. The purpose in this sec-

tion is to discuss some general ideas in ¯lm growth by vapor deposition that

transcend issues of ¯nal microstructure. The discussion is largely descrip-

tive, and it is couched in the terminology of thermodynamics. The principles

of thermodynamics provide powerful tools for deciding whether or not some

particular change in a material system can occur. On the other hand, in

those cases in which the change considered can indeed take place, thermo-

dynamics is silent on whether or not it does take place and, if it does occur,

on how it proceeds. Nonetheless, the thermodynamic framework provides

a basis for establishing connections between deposition circumstances and

¯lm formation. Progress toward understanding physical processes of ¯lm

growth are discussed in depth by Tsao (1993), Pimpinelli and Villain (1998)

and Venables (2000).

1.3.1 From vapor to adatoms

In this section, the factors that control the very early stages of growth of a

thin ¯lm on a substrate are described in atomistic terms. The process begins

with a clean surface of the substrate material, which is at temperature Ts,

exposed to a vapor of a chemically compatible ¯lm material, which is at the

temperature Tv. To form a single crystal ¯lm, atoms of the ¯lm material in

the vapor must arrive at the substrate surface, adhere to it, and settle into

possible equilibrium positions before structural defects are left behind the

growth front. To form an amorphous ¯lm, on the other hand, atoms must

be prevented from seeking stable equilibrium positions once they arrive at

the growth surface. In either case, this must happen in more or less the

same way over a very large area of the substrate surface for the structure

to develop. At ¯rst sight, this outcome might seem unlikely, but such ¯lms

are produced routinely.

Atoms in the vapor come into contact with the substrate surface where
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Fig. 1.8. Schematic showing the atomistics of ¯lm formation on substrates.

they form chemical bonds with atoms in the substrate. The temperature of

the substrate must be low enough so that the vapor phase is supersaturated

in some sense with respect to the substrate, an idea that will be made more

concrete below. There is a reduction in energy due to formation of the bonds

during attachment. Some fraction of the attached atoms, which are called

adatoms, may return to the vapor by evaporation if their energies due to

thermal °uctuations are su±cient to occasionally overcome the energy of

attachment, as suggested in the schematic diagram in Figure 1.8. To make

the discussion a bit more speci¯c, a simple hexagonal close-packed crystal

structure is assumed for convenience in counting bonds.

It has already been recognized that, for ¯lm growth to be possible, it is

necessary that the vapor in contact with the growth surface is supersaturated

with respect to the substrate at its temperature Ts. For a homogeneous

crystal at some temperature that is in contact with its own vapor at the

same temperature, the equilibrium vapor pressure pe of the system is de¯ned

as the pressure at which condensation of vapor atoms onto the solid surface

and evaporation of atoms from the surface proceed at the same rate. At

equilibrium, the entropic free energy per atom in the vapor equals the free

energy per atom in the interior of the crystal. The lower internal energy of

atoms in the interior of the crystal compared to those in the vapor, due to

chemical bonding, is o®set by the lower entropic energy within the crystal.

For net deposition on the substrate surface, it is essential that the pressure

p in the vapor exceeds the equilibrium vapor pressure pe at the substrate

temperature, that is, the vapor must be supersaturated. For the pressure

p, the entropic free energy per atom of the vapor, over and above the free

energy at pressure pe, is estimated as the work needed per atom to increase

the vapor pressure from pe to p at constant temperature. According to the

ideal gas law, the result is kTv ln(p=pe) where k = 1:38£10−23 J/K= 8:617£
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10−5 eV/K is the Boltzmann constant and Tv is the absolute temperature

of the vapor. If the vapor becomes supersaturated, a free energy di®erence

between the vapor and the interior of the crystal exists, providing a chemical

potential for driving the advance of the interface toward the vapor. As the

interface advances in a self-similar way, a remote layer of vapor of some mass

is converted into an interior layer of crystal of the same mass. The interface

does not advance or retreat when these energies are identical.

In ¯lm deposition, the situation is often complicated by the fact that

the vapor and the substrate are not phases of the same material, and by

the fact that the temperature of the substrate is usually lower than that of

the vapor. The de¯nition of equilibrium vapor pressure is not so clear in

this case. However, in most cases there will be some level of vapor pressure

below which deposition of ¯lm material onto the growth surface will not

occur; this serves as an operational de¯nition of pe for ¯lm growth.

Once adatoms become attached to the substrate, their entropic free

energy is reduced from that of the vapor. The adatoms form a distribution

on the substrate surface having the character of a two-dimensional vapor.

The deposited material it is believed to thermalize quickly and to take on the

temperature Ts. On a crystal surface, there is some density ½ad of adatoms

that is in equilibrium with a straight surface step or ledge bordering a partial

monolayer of ¯lm atoms, that is, for which the step neither advances nor

recedes. The step is a boundary between two phases in a homogeneous

material system. Consequently, the notion of equilibrium vapor pressure

or equilibrium vapor density ½ead can be invoked in an analogous way. For

¯lm growth to occur by condensation, the free energy per atom of the two-

dimensional gas must exceed the free energy of a fully entrained surface

atom by the amount Eph = kTs ln(½ad=½
e
ad).

1.3.2 From adatoms to film growth

Each adatom presumably resides within an equilibrium energy well on the

surface most of the time, and this well is separated from adjacent energy

wells by a barrier of height Ed > 0 with respect to the equilibrium po-

sition. The atoms oscillate in their wells due to thermal activation and,

occasionally, they acquire su±cient energy to hop into adjacent equilibrium

wells. Surface di®usion results from such jumps. If the surface is spatially

uniform, di®usion occurs randomly with no net mass transport on a macro-

scopic scale. The hopping rate of any given atom increases with increasing

substrate temperature. Occasionally, attached atoms may also change po-

sitions with substrate atoms, but this possibility is not pursued further in
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this discussion. If the surface is not uniform, perhaps as a result of a strain

gradient or a structural gradient, then surface di®usion can be directionally

biased, resulting in a net mass transport along the surface on a macroscopic

scale. Consequences of such transport are considered in Chapters 8 and 9. If

the temperature is very low or if the di®usion barrier is very high, adatoms

stick on the growth surface where they arrive, and the ¯lm tends to grow

with an amorphous or very ¯ne-grained polycrystalline structure.

The growth surface invariably has some distribution of surface defects

{ crystallographic steps, grain boundary traces and dislocation line termi-

nations, for example { which provide sites of relatively easy attachment for

adatoms. The spacing between defects represents a length scale for compar-

ison to the extent of random walk di®usion paths. If the di®usion distance is

large compared to the defect spacing, then adatoms tend to encounter these

defects and become attached to them, giving up some free energy in the

process. This is the case of heterogeneous nucleation and growth of ¯lms.

General statements about such processes are also di±cult to make. In some

cases, surface steps are relatively transparent to migrating adatoms, that is,

adatoms often pass over the step in either the up direction or the down direc-

tion without attachment. For other materials, virtually every encounter of

an adatom with the step results in attachment. In yet other cases, adatoms

easily bypass steps in the up direction but not in the down direction, a mani-

festation of the so-called Schwoebel barrier (Schwoebel 1969). If the spacing

of defects is large compared to the di®usion distance, on the other hand,

then migrating adatoms have the potential for lowering the energy of the

system by binding together upon mutual encounters to form clusters. The

case of formation of such stable clusters is called homogeneous nucleation

of ¯lm growth. That there is some minimum cluster size necessary for for-

mation of a stable nucleus can be demonstrated by appeal to the following

argument based on classical nucleation theory.

It was noted in Section 1.3.1 that the free energy of an adatom in the

supersaturated distribution on the surface is Eph with respect to its state

once entrained within the surface layer. In other words, this is the amount

of energy reduction per atom associated with the phase change from a two

dimensional gas of adatoms on the surface to a completely condensed surface

layer. Suppose that a planar cluster of n atoms is formed on the surface.

Will it tend to grow into a larger cluster, and eventually into a ¯lm, or will

the cluster tend to disperse? If all n atoms are fully entrained within the

cluster then the free energy reduction due to cluster formation would be

¡nEph. However, those atoms on the periphery of the cluster are not fully

incorporated. They possess an excess free energy compared to those that
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are fully entrained; this energy can be estimated to be roughly 4
p
¼nEf for

an equiaxed cluster, if n is fairly large compared to unity. This quantity has

the character of a surface step energy. The free energy change associated

with cluster formation is then

¢F = ¡nEph + 4
p
¼nEf : (1.1)

A graph of F versus n for ¯xed ¢Eph and Ef shows a maximum value for

a cluster size of n∗ = 4¼(Ef=Eph)2. The value of ¢F at n∗, which is the

activation energy for cluster formation, is ¢F∗ = 4¼E2f =Eph. The implication

is that clusters smaller than the size n∗ are unstable and that they tend to

disperse, whereas clusters larger than this size tend to grow, driven by a

corresponding reduction in free energy. It is likely that many clusters form

and disperse for each one that evolves into an island. In fact, the classical

nucleation theory says nothing about such processes, other than that they

are possible. In any case, for a ¯lm to form on the substrate surface, it is

necessary that either nuclei formed by such homogeneous processes are able

to grow or that a su±cient number of surface defects are available to serve

as sites of heterogeneous nucleation.

The mode of ¯lm formation is determined by the relative values of the

various energies involved in the process, and this mode largely determines

the eventual structure of the ¯lm. There are two main comparisons to be

considered. One of these contrasts the height of the di®usion barrier Ed to

the background thermal energy. If Ed is large compared to the background

thermal energy then surface mobility of adatoms is very low. Under such

conditions, adatoms more or less stick where they arrive on the substrate

surface.

For growth of crystalline ¯lms, it is important that Ed be less than

the background thermal energy so that adatoms are able to seek out and

occupy virtually all available equilibrium sites in the ¯lm crystal lattice

as it grows. This requires the substrate temperature and/or the degree of

supersaturation of the vapor to be high enough to insure such mobility.

Suppose that this is indeed so and that the adatoms are able to migrate

over the surface.

The other important energy comparison concerns the propensity for

atoms of ¯lm material to bond to the substrate. This is represented by the

magnitude of Efs, relative to their tendency to bond to other, less well-bound,

atoms of ¯lm material, as represented by Ef . Two kinds of growth processes

can be distinguished, one with Efs larger in magnitude than Ef , and a second

with the relative magnitudes reversed. If Efs is the larger of the two energy

changes in magnitude, then ¯lm growth tends to proceed in a layer by layer
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mode, as indicated in the schematic diagram in Figure 1.8. Adatoms are

more likely to attach to the substrate surface than to other ¯lm material

surfaces. Once small stable clusters of adatoms form on the surface, other

adatoms tend to attach to the cluster at its periphery where they can bond

with both substrate and ¯lm atoms, thereby continuing the planar growth,

as indicated in Figure 1.8. This layer-by-layer ¯lm growth mode is often

called the Frank—van der Merwe growth mode or FM mode, according to a

categorization of growth modes proposed by Bauer (1958) on the basis of

more macroscopic considerations of surface energy. This alternate point of

view will be considered in Section 1.3.5.

On the other hand, if Ef is larger in magnitude than Efs, then it is

energetically favorable for adatoms to form three-dimensional clusters or

islands on the surface of the substrate. Film growth proceeds by the growth

of islands until they coalescence; this type of growth is commonly called the

Volmer—Weber growth mode or the VW mode; see Figure 1.8.

A third type of growth, which combines features of both the Frank{van

der Merwe and the Volmer{Weber modes, is called the Stranski—Krastanov

growth mode or SK mode. In this mode, the ¯lm material tends to prefer

attachment to the growth surface rather than the formation of clusters on

the growth surface; that is, Efs is greater in magnitude than Ef . However,

after a few monolayers of ¯lm material are formed and after the structure of

the ¯lm becomes better de¯ned as a crystal in conformity with the substrate,

the tendency is reversed. In other words, once the planar growth surface

becomes established as ¯lm material, subsequent adatoms tend more to

gather into clusters than to continue planar growth. The magnitude of Efs
appears to depend on the thickness of the ¯lm in the early stages of growth,

decreasing from values larger than the magnitude of Ef to values that are

smaller. The occurrence of this mode is most likely when the ¯rst few layers

of ¯lm material are heavily strained due to the constraint of the substrate.

This issue is revisited in Section 1.3.5.

1.3.3 Energy density of a free surface or an interface

In the preceding discussion, the early stages in the growth of a ¯lm from a

vapor were considered in a qualitative way in terms of the behavior of atoms.

Many of the inferences drawn can also be made in terms of surface energy

and interface energy of solid materials. These quantities are macroscopic

measures attributable to the discreteness of the material. However, they

represent only ensemble averages of behavior at the atomistic level and do

not incorporate discreteness of the material in any direct way. In many



1.3 Modes of film growth by vapor deposition 23

cases of microstructure evolution, knowledge of these quantities provides an

adequate basis for understanding the ¯lm growth process. In this section,

these quantities are discussed in general terms, and implications for ¯lm

growth are considered.

Surface energy is an important concept in considering the evolution

of microstructure in small-scale material systems. The free energy of the

bounding surface of a crystal is a macroscopic quantity representing, in some

sense, the net work that had to be done to create that surface. This energy

is distributed over a speci¯c mathematical surface, which has no thickness,

and which approximates the physical boundary between the crystal and its

surroundings. From this de¯nition of surface energy it is clear that the

reference level for energy of a free surface is the state of the material on that

same crystallographic surface when it is embedded deep within a perfect

crystal. Presumably, creation of the surface was accomplished by dividing

a larger crystal into two parts by separating these parts along a common

bounding surface. The total work done per unit area is assumed to be

evenly divided between the two bounding surfaces created. The concept of

speci¯c surface energy, or energy of cohesion, appears to have its origins in

a theory of °uid surfaces due to Young (1805) and Rayleigh (1890). The

concept was subsequently extended to crystal surfaces, where it was given a

central role in the work of Gibbs (1878). A useful geometrical interpretation

was provided subsequently by Wul® (1901). Later important contributions

to the equilibrium theory of crystal surfaces and to the description of the

energetics of surface evolution were provided by Herring (1953).

In general, there is a free energy reduction (increase) associated with

forming (breaking) a chemical bond. It follows that there is an increase in

free energy associated with creating a free surface that is more or less pro-

portional to the area of surface created or the number of chemical bonds per

unit area that are directly involved. Once the surface is created, the corre-

sponding free energy is, ¯rst and foremost, in the form of chemical bonding

potential, but other physical factors can contribute to surface energy as

well. At the surface of a coherent crystal, the atoms retain the general

arrangement that de¯nes the crystal structure. However, the spacings in

this arrangement are altered once bonds are broken; this is necessary to

restore equilibrium following the `disappearance' of interactions across the

surface. Through this change in spacing, atoms at or very near the surface

are able to relax to energy states somewhat lower than those in the natural

lattice sites in the interior of the crystal; this change in positional energy

may reduce the surface energy from the level predicted by bond counting

alone. The e®ect is due primarily to the longer range interactions between
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atoms in the crystal. If only nearest neighbor interactions are taken into

account, then interactions forces are typically zero at equilibrium. However,

if next nearest neighbor interactions are also taken into account, then near-

est neighbor interaction forces are compressive and next nearest neighbor

forces are tensile at equilibrium. Consequently, if some of the interactions

are eliminated to form a surface, unbalanced forces remain in the con¯gu-

ration unless rearrangements occur.

There is yet another factor that comes into play in considering the

energies of surfaces, namely, surface reconstruction or rebonding. Chemi-

cal bonds that are broken in creating a free surface are free or `dangling'

in the process described up to this point. Atoms in surfaces with bonding

potential may seek out other atoms within the surface with the potential

to form bonds. Bond formation is likely to occur in such cases if it re-

sults in a net lowering of the energy of the system. Usually, more than one

such reconstruction is possible for a given crystallographic surface. Each

reconstructed con¯guration represents a local minimum of free energy with

respect to that con¯guration. Presumably, the system seeks out the absolute

minimum from among these as the actual reconstructed con¯guration; the

choice might depend on temperature, lattice strain or other factors. Recon-

structed surfaces are typically periodic, but with lattice vectors that are very

di®erent from the those of the underlying crystal. Reconstruction may also

result in surface anisotropy that is not representative of the lattice itself.

In summary, surface free energy represents the net energy increase of

the system due to work that must be done to overcome chemical bonds in

creating the surface, reduced by any relaxation of atomic positions of lattice

sites adjacent to the surface, and further reduced by surface reconstructions

which take place to match up available bonds in the surface. It is a macro-

scopic quantity represented mathematically by a scalar function of position

over a material surface. The value of surface energy per unit area of a given

crystallographic surface orientation is determined by the ¯ne scale struc-

ture of that surface. The ¯ne scale structure of the 'perfect' crystal may

include steps only one atom spacing in height separating terraces, combina-

tions of facets, various rebounding con¯gurations and other features unique

to surface structure.

Consider an isolated small crystal of some particular initial shape.

Knowledge of the dependence of surface energy on surface orientation is

su±cient to predict a minimum energy shape for the small crystal when

surface energy is the only free energy contribution that changes when shape

changes. This shape is most readily determined by means of the Wul®

construction, as illustrated schematically in two dimensions in Figure 1.9.
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Fig. 1.9. Representative polar plot of surface free energy in a symmetry plane of a
crystal; the free energy of a surface at a certain orientation is the radial distance
from the origin to the lobed curve in the direction of the surface normal. The Wul®
construction is illustrated by the family of lighter weight lines, with one member
of the family and its corresponding perpendicular radial line shown in a heavier
weight. The constructed equilibrium shape of the crystal is shown by the dashed
line.

In this diagram, the solid lobed curve represents the variation of surface

free energy with orientation; the radial distance in some direction from the

origin of the polar plot to the solid curve is the free energy per unit area

of a planar surface with normal vector in the direction of the radial line. A

representative radial line is shown in the ¯gure. To form the surface shape,

a line perpendicular to the radial line is drawn through the point where the

radial line intersects the curve of surface energy. Several examples of such

lines are shown in the ¯gure, with the particular line perpendicular to the

radial line shown in heavier weight. The low temperature equilibrium shape

of the small crystal is then geometrically similar to the region completely

enclosed by the totality of these perpendicular lines as the angle of the radial

line varies continuously over its full range. This equilibrium shape is shown

as the heavy dashed line in the ¯gure. A proof that this construction leads

to the shape with minimum surface energy is outlined by Herring (1953).

The construction is readily generalized to three space dimensions.

Many additional observations can be made on the basis of the same

construction (Herring 1951). Among the most useful of these concerns the

possibility of a macroscopically °at surface assuming a corrugated or peak-
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and-valley shape in order to reduce its free energy. For example, if a macro-

scopically °at surface has the orientation of one of the °at surfaces in the

equilibrium shape, then no corrugated surface composed microscopically of

other orientations can be more stable. Conversely, if a given macroscopically

°at surface of a crystal does not coincide in orientation with some portion

of the boundary of the equilibrium shape, then there will always be a corru-

gated structure, with the same average orientation as the initial °at surface,

which has a lower free energy than the °at surface; this corrugated structure

will be made up of segments of surface coinciding in orientation with the

°at faces of the equilibrium shape. The scale of the surface corrugations

is indeterminate unless an energy is associated with the edges where the

di®erent facets of the con¯guration intersect.

Like free surfaces, interface surfaces at which materials are joined can

also be represented macroscopically as discrete surfaces and can be char-

acterized by an interface surface energy per unit area. The physical origin

of this energy is essentially the same as that of a free surface. The energy

density of an interface is presumably less than the sum of the free surface

energies of the two materials joined at that interface, and greater than the

energy densities within either of the materials at interior points remote from

the interface.

Suppose that a small cluster or island of ¯lm material of volume V is

deposited onto the surface of the substrate. With this deposition, there is

a decrease in the area of substrate free surface, a change in the area of free

surface of the ¯lm material, and an increase in the area of a shared interface.

There is a surface free energy density associated with both the substrate

and ¯lm materials, say °s and °f , respectively. Likewise, there is also a

characteristic interface free energy per unit area, say °fs, associated with

the interface. What e®ect does the change in free energy associated with

these surfaces have on the equilibrium shape of the island, assuming that

the substrate surface remains °at? The equilibrium shape is that particular

shape that minimizes the free energy for given island volume.

To illustrate the idea, assume that °f is independent of orientation of

the island surface. Furthermore, assume that the shape of the island is a

spherical cap of constant volume. Two geometrical parameters are needed

to specify the shape of the island. Denote the radius of the circular contact

line where the island surface meets the substrate surface by R, and denote

the angle between the substrate surface and the tangent plane to the island

surface at the contact line by µ. These parameters are indicated in the

sketch in Figure 1.10. In terms of R and µ, the island volume V and the
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Fig. 1.10. Schematic diargram of a spherical cap island on a substrate. The radius
of the circular contact line is R and the angle between the substrate surface and
the tangent plane to the island surface at the contact line is µ.

island surface area A are

V =
¼R3

3

µ
2 + cos µ

1 + cos µ

¶µ
1¡ cos µ

sin µ

¶
; A =

2¼R2

1 + cos µ
: (1.2)

Up to an additive of constant, the free energy change associated with island

formation is

F(V; µ) = A°f + ¼R2(°fs ¡ °s) (1.3)

where R is understood to depend on V and µ according to (1.2)1. The

requirement that µ must take on a value that minimizes the free energy F ,

subject to the constraint that V is constant, leads to the condition that

°f cos µ + °fs ¡ °s = 0 ) cos µ =
°s ¡ °fs

°f
: (1.4)

This result is frequently said to follow from a `force balance' among sur-

face energies at the contact line, but the correctness of the result in only

fortuitous; the basis for the result is constrained energy minimization. The

expression in (1.4) is known commonly as Young's equation for the wetting

angle of a °uid droplet on a rigid solid surface (Young 1805); the dependence

of the wetting angle on the surface energies does not hinge on the assump-

tion of a spherical shape. If additional forms of energy depend on island

shape, the argument must be altered accordingly and the form of the edge

condition may be a®ected. An example arises in the next section through

the in°uence of elastic energy.

1.3.4 Surface stress

In the foregoing discussion, the values of free surface energy of a solid are as-

sumed to be independent of the deformation. In fact, the value of free surface
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energy density at a particular material point as introduced in Section 1.3.3

depends on the elastic strain of the material at that point, in general. As

a matter of convention throughout this discussion, surface energy density

is interpreted as energy per unit area in the unstrained reference con¯gura-

tion, unless explicitly stated otherwise. The unconstrained con¯guration is

determined by the equilibrium lattice dimensions in the interior of a large

unconstrained crystal. The elastic strain implies relatively small changes in

positions of atoms of the material making up the surface, but there is no

rearrangement of the surface atoms as a result of elastic deformation. In

other words, the same material particles make up the surface at all levels

of elastic strain imagined here; this is the feature that distinguishes a solid

from a °uid. If the surface energy density depends on surface strain, then

the change in surface energy per unit amount of strain represents a con-

¯gurational force, commonly called the surface stress. This tensor-valued

con¯gurational force is work-conjugate to surface strain with respect to sur-

face energy. It is a macroscopic quantity representing aspects of the discrete

nature of the material in the vicinity of a surface. From the de¯nition of

surface stress, the work done by it during an in¯nitesimal change in surface

strain is the change in surface energy density associated with that change

in strain. At a point on the surface, surface strain can be represented by a

second rank symmetric tensor, say ²Sij, the components of which are the ex-

tensional and shear strains with respect to a locally rectangular coordinate

system de¯ned in the tangent plane of the surface at the material point of

interest. For a given level of strain with corresponding surface stress fSij, an

additional increment d²Sij in strain results in a change dUS in surface energy

per unit area, so that

dUS = fSijd²
S
ij : (1.5)

In the context of the discussion in Section 1.3.3, US might represent °s or °f .

It follows that surface stress is derivable from the strain dependent surface

energy density according to

fSij =
@US
@²Sij

: (1.6)

Development of the ideas underlying the concept of a surface stress in solids

was pioneered by Shuttleworth (1950), Herring (1951) and Cahn (1980).

An interpretation of surface stress is suggested in Figure 1.11. Con-

sider the plane that is tangent to the smooth surface at the point of interest.

A rectangular x1x2¡coordinate system is introduced in the tangent plane.
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Fig. 1.11. A schematic diagram showing the components of surface stress fS
ij acting

on an in¯nitesimal element of a material surface. Surface stress is interpreted
as a second rank tensor, and the components are referred to a local rectangular
coordinate system in a plane tangent to the surface at the point of interest.

Then, the state of surface stress in the surface at the point of tangency can

be expressed in terms of the components of membrane force acting on the

boundary of an in¯nitesimal surface element with edges aligned with the

coordinate directions. The physical dimensions of the components of sur-

face stress are force/length. In the case of the cut through the surface at

the point to tangency with orientation de¯ned by the unit vector ¿Sj in the

tangent plane, the components of surface stress in the coordinate directions

are fSij¿
S
j . This physical quantity has the same relationship to surface stress

that traction as to the bulk stress tensor.

The local change in area from the undeformed con¯guration to the

strained con¯guration represented by ²Sij is the trace of the surface strain

tensor ²Skk. It follows that the surface energy per unit area in the deformed

con¯guration is US(1+²Skk) = ÛS. In terms of this measure of surface energy

density, (1.6) becomes

fSij = (1 + ²Skk)
@ÛS
@²Sij

+ ±ijÛS ¼ @ÛS
@²Sij

+ ±ijÛS : (1.7)

If the surface energy density per unit deformed surface area remains con-

stant, then the surface stress is an isotropic second rank tensor with com-

ponents numerically equal to ÛS. On the other hand, if the surface energy

density per unit undeformed surface area remains constant, the surface stress

vanishes.

If the surface of interest is a bonded interface between two materials,

rather than a free surface, surface stress analogous to fSij arises. This in-

terface surface stress f Iij is related to the interface surface energy density

according to

f Iij =
@UI
@²Iij

(1.8)
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where UI is the interface energy density in a reference con¯guration and ²Iij is

the surface strain with respect to that reference con¯guration. In the context

of Section 1.3.3, UI might represent °fs. One aspect of interface surface

stress that requires special attention is the identi¯cation of the reference

con¯guration. If two materials are joined without mismatch strain then

the con¯guration with both bulk materials being unstrained is a natural

choice. On the other hand, if there is a mismatch strain of one material

forming the interface with respect to the other material, then the surface

stress will depend on this mismatch strain. In describing mismatch strain, it

is customary to interpret it as the elastic strain in one of the materials when

the elastic strain in the other material is zero. The con¯guration in which

this is the case provides a convenient and reasonable choice of a reference

con¯guration for identi¯cation of UI. Aside from this particular feature, the

character of interface surface stress is no di®erent from that of free surface

stress.

1.3.5 Growth modes based on surface energies

With the notions of free surface energy and interface surface energy in place,

a more macroscopic description of the di®erence among the modes of ¯lm

growth that were identi¯ed in Section 1.3.2 can be pursued. Once again,

consider a small island or cluster of ¯lm material on the surface of the

substrate as depicted in Figure 1.10. The volume of the cluster is again

denoted by V but, in this instance, the volume is not held constant; instead,

the possibility of growth of the cluster is considered. This growth is achieved

by incorporating adatoms drawn from the surrounding substrate surface, as

described in atomistic terms in Section 1.3.1. In that discussion, the free

energy per adatom relative to the state of an atom entrained in the surface

layer was denoted by Eph, and this notation is retained here. As a free

energy change, the quantity Eph has the character of a chemical potential

that acts as a driving force for entrainment of adatoms into clusters. In this

discussion, which is based on continuum concepts, it is more convenient to

represent this tendency in terms of a material volume density rather than

on a per atom basis. If the atomic volume of the ¯lm material is denoted by

−, then the reduction in free energy per unit volume of the island or cluster

is Eph=−.
As before, it will be assumed that the shape of the cluster is a spherical

cap. Following the development in Section 1.3.3, the free energy change
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Fig. 1.12. Illustration of level curves of though normalized free energy function
de¯ned in (1.10) for c° = 0:5 (left), showing a saddle point activation barrier, and
for c° = 2 (right), showing a path of steepest descent for small values of µ.

associated with its formation is

F(V; µ) = A°f ¡ ¼R2(°s ¡ °fs)¡ V Eph=−; (1.9)

where the geometrical parameters A, V and R are again related as in (1.2).

The appearance of both volume and surface energies in the free energy im-

plies a natural length scale for the system, which is taken to be ³ = °f−=Eph.
In terms of this length parameter, the normalized free energy change (1.9)

can be expressed as

F(v; µ)

³2°f
=

∙
2

1 + cos µ
¡ °s ¡ °fs

°f

¸
¼r(µ)2v2/3 ¡ v; (1.10)

where v = V=³3 and r(µ) = R=V 1/3. When written in this way, it is clear

that the free energy change can be viewed as a function of the two variables

v and µ, and the nature of the behavior is determined by the nondimensional

system parameter cγ = (°s ¡ °fs)=°f .

Qualitative implications for the behavior of the system are evident

from the form of (1.10). If the quantity enclosed within brackets is positive,

then there is an activation barrier to formation of the cluster. The height of

the energy activation barrier is F∗ = F(v∗; µ∗) where v∗ = 8¼(2¡3cγ+c3γ)=3

and µ∗ = cos−1(cγ) are the roots of @F=@v = 0, @F=@µ = 0. The point

v = v∗, µ = µ∗ is a saddle point of the function F(v; µ), with paths of

descent away from the saddle point in directions of constant µ and paths of

ascent in directions of constant v; this behavior is illustrated on the left in

Figure 1.12.

The ratio 2=(1 + cos µ) varies between one and two for 0 ∙ µ ∙ ¼=2.
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Consequently, an activation barrier exists for cγ < 1 or °s < °f + °fs. This

implies that clusters nucleate with a nonzero contact angle µ∗. Consequently,
the ¯lm nuclei form on the substrate as islands and the ensuing ¯lm growth

mode is the Volmer{Weber island growth mode, as was noted in Section 1.3.

This mode is preferred when the atoms or molecules deposited onto the

substrate are more strongly bound to one another than to the underlying

substrate, as in the case of many metals on insulator substrates.

If the quantity in brackets in (1.10) is negative, on the other hand,

there is no activation barrier to cluster formation. This is the case for cγ > 1

or °s > °f + °fs. Examination of the free energy function in this case reveals

that there is no stationary point and that the cluster size increases most

readily with µ essentially equal to zero or, in other words, that cluster growth

is planar; this behavior is illustrated on the right in Figure ref¯g:1cases. The

layer simply `wets' the surface of the substrate forming a planar sheet layer.

This mode of ¯lm growth on the substrate is the Frank{van der Merwe

growth mode, as was noted in Section 1.3. This growth mode is favored

when the atoms arriving at the substrate surface are more tightly bound to

the substrate surface than to one another. Examples of this mode include

epitaxial growth of monocrystalline semiconductor ¯lms.

If ¯lm growth begins in the layer-by-layer mode, the situation may

change once the ¯lm material becomes established as the growth surface

material. With reference to (1.10), parameter values reduce to °s = °f and

°fs = 0, or cγ = 1, once the ¯lm material comprises the growth surface and

if growth continues with the crystal structure of the substrate. In this case,

there is an energy activation barrier to growth of a cluster with µ > 0, but no

barrier at µ = 0. On the other hand, neither is there a strong driving force

for planar growth with µ = 0, as there is for cγ > 1. In a sense, the situation

is neutral or indeterminate, and other physical factors that have not yet been

incorporated dictate the particular growth mode adopted by the material.

For example, suppose that the ¯lm material must grow with a residual elastic

strain in order to retain atomic registry with the substrate, a phenomenon

discussed in detail in Section 1.4.1. In this case, the free energy expression

(1.10) would include an additional term proportional to v. The coe±cient

of this term would be positive (because elastic strain energy is positive)

but would be decreasing in value with increasing µ (because the amount

of the elastic energy released increases with increasing µ; see Section 8.9).

Then, once planar growth of the ¯lm material was established, nonplanar

growth with cluster formation would become more likely. A growth mode

with these characteristics is identi¯ed as the Stranski{Krastanov mode, as

was noted in Section 1.3. It occurs through a combination of the Frank{van
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der Merwe and Volmer{Weber modes, as shown schematically in Figure 1.8,

when one or more of the surface energy terms in the balance given in (1.4)

varies with ¯lm thickness, in e®ect. This mode is exhibited in the growth of

many metal-metal and semiconductor-semiconductor systems, especially in

the presence of lattice mismatch and strained layer growth.

1.4 Film microstructures

The preceding section was concerned primarily with the onset of ¯lm growth

on the substrate surface by condensation from a vapor of ¯lm material. From

the perspective of thermodynamics, it was seen that several di®erent growth

modes are possible; under ideal growth conditions, the growth mode that

dominates in a given situation depends primarily on the materials involved,

the temperature of the substrate and the degree of supersaturation of the va-

por. In general, the evolution of ¯lm structure depends on kinetic processes

which are still not completely understood. In this section, some observations

are made on the ¯nal structure of ¯lms grown by vapor deposition.

Fig. 1.13. The dependence of growth °ux Rgr on vapor pressure p is illustrated
schematically on the left, where pe is the equilibrium pressure of the for vapor,
mv is the atomic mass of the vapor, Tv is the temperature of the vapor, and k is
the Boltzmann constant. The diagram on the right is a schematic microstructure
map suggesting the in°uence of substrate temperature Ts and growth °ux on ¯lm
structure.

Perhaps the two most important parameters that in°uence the ¯nal

grain structure of a vapor-deposited ¯lm for a given material system are

substrate temperature Ts and growth °ux Rgr. The growth °ux is a quan-

tity that represents the mass or volume °ow rate onto the growth surface,

and it is closely related to the degree of supersaturation of the vapor. The

°ux of ¯lm material onto the growth surface can be estimated by appeal to
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statistical mechanics (Venables 2000), and its qualitative behavior is illus-

trated on the left in Figure 1.13. The diagram on the right in the ¯gure is a

schematic illustration of the way in which ¯nal ¯lm microstructure depends

on the growth °ux Rgr and the substrate temperature Ts. In general, in-

creasing the rate of deposition tends to promote formation of a ¯ner scale

microstructure, while increasing the substrate temperature tends to promote

a coarser microstructure or single crystal growth. The di®erent structures

represented on the right in Figure 1.13 are discussed in the remainder of this

section, again in a qualitative way.

1.4.1 Epitaxial films

The word epitaxy derives from the Greek words epi , meaning `located on',

and taxis, meaning `arrangement'. Epitaxial growth refers to continuation

of the registry or alignment of crystallographic atom positions in the single

crystal substrate into the single crystal ¯lm. More precisely, an interface

between ¯lm and substrate crystals is epitaxial if atoms of the substrate

material at the interface occupy natural lattice positions of the ¯lm material

and vice versa. The two materials need not be of the same crystal class for

this to be the case, but they commonly are so. When the ¯lm material is the

same as the substrate material, crystallographic registry between the ¯lm

and the substrate is commonly referred to as homoepitaxy. The epitaxial

deposition of a ¯lm material that is di®erent from the substrate material is

known as heteroepitaxy.

Epitaxial growth technology o®ers major advantages in material fab-

rication for microelectronic and optoelectronic applications. It enables the

preparation of thin ¯lms of extremely good crystalline quality. It also makes

possible the fabrication of thin ¯lms of compound materials that have desir-

able electronic or optical properties but that do not exist naturally. There

are many factors that drive selection of materials and choice of processing

methods in epitaxial growth. These include: chemical compatibility of the

¯lm material and substrate material; the magnitude of the energy band

gap of the ¯lm material and its relationship to the band gap and the band

edge energies of the substrate material; whether or not the conduction band

energy minimum is aligned with respect to carrier wave number with the

valence band energy maximum in the active material, an important factor

in optical applications; and chemical compatibility of the dopants required

to produce desired functional behavior.

In heteroepitaxial ¯lm growth, the substrate crystal structure provides

a template for positioning the ¯rst arriving atoms of ¯lm material, and each
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atomic layer of ¯lm material serves the same function for the next layer to

be formed by FM growth, as described in the previous section. This is a

common growth mode if the substrate is a single crystal of good quality, if

the degree of vapor supersaturation is moderate and if adatoms have fairly

high mobility on the growth surface. If the mismatch in lattice parameter

is not large, say below 0.5% or so, then growth tends to be planar. If the

mismatch is large, the material tends to gather into islands on the surface

but to remain epitaxial; island growth is described in detail in Chapters 8

and 9.

Planar growth proceeds by attachment of adatoms at the edges of

steps, causing the steps to migrate over the growth surface. In general, the

stress-free lattice dimension of the ¯lm material in a direction parallel to

the interface, say af , will be di®erent from that of the substrate, say as; this

di®erence may be as large as several percent. Nonetheless, the atoms of the

¯lm material position themselves in alignment with those of the substrate,

continuing its atomic structure, with the ¯lm material taking on whatever

strain is necessary along the interface to make this possible. In terms of

lattice parameters, this mismatch strain is

²m =
as ¡ af

af
: (1.11)

The de¯nition of mismatch strain in (1.11) is consistent with the standard

de¯nition of extensional elastic strain of materials with respect to the stress-

free con¯guration. Sometimes a measure of lattice mismatch is adopted with

a denominator of as rather than af , in which case the value of mismatch

strain is slightly di®erent. The de¯nition (1.11), which is consistent with the

notion of extensional strain as the change in length of a material element

with respect to initial length, will be used in all cases here. The process of

epitaxial ¯lm growth is illustrated schematically in Figure 1.14. While the

process leads to potentially large elastic strain in the ¯lm, the energy cost of

adding material with strain is easily o®set for very thin ¯lms by the energy

gain associated with the underlying chemical bonding e®ect in the process.

That this is so can be made plausible by means of a simple argument which

relies only on the values of familiar bulk parameters.

Consider an elementary cubic lattice with elastic modulus E and free

surface energy °. The elastic strain energy per atom due to biaxial strain

of magnitude ²m is on the order of E²2ma
3
f . On the other hand, the in-plane

chemical bonding energy per atom is on the order of 2°a2f . For a choice of

parameters of E = 1011N/m2, ° = 1J/m2, ²m = 0:02, and af = 0:3 nm, the
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Fig. 1.14. Schematic illustration of heteroepitaxial ¯lm growth with lattice mis-
match. The substrate thickness is presumed to be large compared to ¯lm thickness,
and the structure extends laterally very far compared to any thicknesses. Under
these circumstances, the lattice mismatch is accommodated by elastic strain an the
deposited ¯lm.

ratio of the elastic energy per atom to bonding energy per atom is roughly

E²2ma
3
f

2°a2f
¼ 0:5£ 10−2: (1.12)

Thus, the elastic e®ect is very small compared to the chemical e®ect on an

atom-by-atom basis. The elastic e®ect can come into play only when the

chemical e®ect is su±ciently diluted by symmetry or scale so that it is no

longer the dominant e®ect.

Carrying this simple comparison one step further, both elastic energy

and bonding energy might be compared to kTs, the Boltzmann constant

times the absolute temperature of the substrate. This quantity is an indica-

tor of the mean energy per adatom in the substrate. At the temperature of

800 K, a typical deposition temperature, the value of kTs is on the order of
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10−20 J or 0:1 eV. Interestingly, this value is an order of magnitude smaller

than the bonding energy estimate but an order of magnitude larger than the

elastic energy estimate. Although these are crude estimates, the calculation

is instructive.

Fig. 1.15. A HRTEM image showing the [110] cross-sectional view of a coherent
interface that develops with no interface defects during the epitaxial growth of an Al
¯lm on a MgAl2O4(001) substrate. (Photograph courtesy of M. RÄuhle, Max-Planck
Institut fÄur Metallforschung, Stuttgart, Germany. Reproduced with permission.)

As long as the crystallographic registry between the ¯lm and substrate

crystals is maintained, the interface is said to be fully coherent and the

macroscopic interface energy density is relatively low compared to the free

surface energy density of either the ¯lm or the substrate materials. An ex-

ample of a fully coherent interface shared by two cubic crystals with aligned

axes is shown in Figure 1.15. The ¯gure shows a high-resolution trans-

mission electron microscope (HRTEM) image of a coherent (001) interface

between Al and MgAl2O4, a crystal known commonly as spinel. The lattice

constant of face-centered cubic (fcc) Al is aAl = 0.405 nm. The arrangement

of the O ions in MgAl2O4 is nearly a face-centered cubic structure with a

lattice constant of 0.404 nm. The Mg and Al ions occupy tetrahedral and

octahedral sites, respectively, within this structure. In light of the struc-

ture produced by the occupation of interstices in the O substructure by the

cations, the lattice constant of spinel is aSp = 0.808 nm, or nearly twice the

lattice parameter of the O substructure. The epitaxial mis¯t strain at the
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Fig. 1.16. A plan-view, bright-¯eld transmission the electron microscopy (TEM)
image of mis¯t dislocations within the interface between a 200-nm thick Si0:9Ge0:1
¯lm and a much thicker (001) Si substrate. The dislocations form a crossed-grid
pattern which is oriented along two h110i directions on the (001) interface plane.
Reproduced with permission from Fukuda et al. (1988).

coherent interface between Al and the O substructure of spinel is

²m =
1
2aSp ¡ aAl

aAl
= ¡0:0025 (1.13)

where Al is interpreted as the ¯lm material according to (1.11). The small

magnitude of this mis¯t strain facilitates the development of a coherent in-

terface between the Al ¯lm and the underlying spinel substrate. Schweinfest

et al. (1999) report such coherent interfaces without defects for Al ¯lms with

thicknesses of up to 100 nm.

As the coherent ¯lm becomes thicker, it grows with essentially uni-

form elastic strain over most of the growth area. The strain energy per unit

volume is constant; consequently, over most of the growth area, the stored

strain energy per unit area of interface increases linearly with ¯lm thick-

ness beyond thicknesses of a few atomic dimensions. This increasing energy

reservoir is available to drive various physical mechanisms for relaxation of

elastic strain.

Among the most common mechanisms of relaxation of the elastic mis-

match strain in epitaxial ¯lms is the formation of glide dislocations at the

¯lm substrate interface, the so-called misfit dislocations. An illustration of
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a semi-coherent interface populated with mis¯t dislocations is shown in the

micrograph in Figure 1.16. Once such dislocations are formed, the interface

is no longer completely coherent; it is said to be semi-coherent. Conditions

necessary for the formation and growth of strain-relieving dislocations are

discussed in detail in Chapter 6. Some circumstances favor the formation

of partial dislocations, in which case the stacking fault energy of the ma-

terial is brought into consideration. Another common mechanism of strain

relaxation is surface morphology change, that is, the initially °at surface

of a highly strained crystal will tend to become wavy in order to reduce

the stored elastic energy in the system. Conditions for this phenomenon to

occur are discussed in Chapters 8 and 9. Other strain-relieving mechanisms

can be driven by the elastic energy stored in an epitaxial ¯lm, depending on

material, temperature and fabrication conditions.

Perhaps the most studied of the strained heteroepitaxial systems is

the SiGe system. The two elements Si and Ge are adjacent to each other in

column IV of the periodic table. They share the diamond cubic crystal struc-

ture, have the same chemical bonding characteristics, and have similar in-

direct bandgap electronic characteristics. Furthermore, they are chemically

compatible, which means that the two elements can be intermixed freely in

order to form a substitutional solid solution of any composition. They are

completely miscible so there is no signi¯cant chemical driving force tending

to cause segregation of the elements in the alloy. The in°uence of a nonzero

energy of mixing is considered in Chapter 9. A single crystal SiGe alloy is

usually denoted by Si1−xGex where x represents the fraction of sites in the

lattice occupied by Ge atoms over a sample su±ciently large to be repre-

sentative of the crystal; the value of x is in the range 0 ∙ x ∙ 1. If aSi and

aGe are the lattice parameters of the stress-free Si and Ge crystals, then the

stress-free average lattice parameter of the Si1−xGex alloy is approximated

commonly by a linear rule of mixtures as

aSiGe = (1¡ x) aSi + x aGe: (1.14)

If a ¯lm of Si1−xGex is grown epitaxially onto a (100) surface of a

relatively thick single crystal Si substrate, then the mismatch in lattice pa-

rameter is accommodated entirely within the ¯lm, as discussed in Chapter 3.

The ¯lm grows with the elastic strain

²m =
aSi ¡ aSiGe

aSiGe
= x

aSi ¡ aGe
aSiGe

: (1.15)

Values of the elemental lattice parameters are aSi = 0:54306 nm and aGe =
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0:56574 nm at room temperature, so that the elastic strain due to lattice

mismatch is ²m = ¡0:0418 x=(1+ 0:0418x) for any Ge fractional concentra-

tion. The mismatch of Ge with respect to Si is then ¡0:040 according to the

consistent strain de¯nition of (1.11). Finally, it is noted that the same SiGe

alloy discussed above could be represented as SiyGe1−y where y represents

the fraction of lattice sites occupied by Si atoms in a representative sample

of the material. The alternative representation is identical to the former

with the substitution x ! 1¡ y.

Semiconductor materials are commonly grouped into families accord-

ing to the column or columns of the periodic table in which the constituent

elements are located. Those in column IV, such as Si, Ge and C, are called

elemental semiconductors. Those compound semiconductors formed from

one material from column III and one material from column V, such as

GaAs, AlAs, InP and GaN, are called III-V semiconductors, while those

formed from elements from column II and column VI, such as CdTe and

ZnSe, are called II-VI semiconductors. For other purposes, grouping ac-

cording to crystal structure is advantageous. The most common structures

are diamond cubic, such as Si and C; zinc blende cubic, such as GaAs and

ZnSe; and wurtzite hexagonal, such as CdSe and GaN. Some compounds

can exist in more than one crystal structure, depending on temperature and

processing conditions.

A graphical representation of lattice dimensions and bandgap ener-

gies for a range of semiconductor crystals is shown in Figure 1.17, where

the energy gap is represented in electron volts and the lattice dimensions

in nanometers. The points represent elemental semiconductors and binary

compound semiconductors that can be formed and grown as bulk substrates.

Non-stoichiometric binary and ternary alloys are represented as lines con-

necting elementary and binary compounds that are solid solutions with vary-

ing degrees of miscibility. For example, InPxAs1−x ternary solid solution

alloys are represented by the line that connects InP and InAs. The solid

lines denote direct bandgap ternary compounds whereas the dashed lines

indicate indirect bandgap materials. The immiscible alloys cannot be easily

grown as bulk crystals due to divergence of the compositions of the liquid

and the solid during cooling, but they can be grown as ¯lms in some cases.

The III-V compound semiconductors AlAs and GaAs both have the

zinc blende structure and are chemically compatible. Furthermore, as can be

seen from Figure 1.17, the stress-free lattice dimensions of the two materials

are nearly identical. Another pair of III-V materials having nearly identical

lattice dimensions is AlP and GaP. In either of these cases, a thin ¯lm of
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Fig. 1.17. Variation of bandgap with lattice constant for III{V, II{VI and IV semi-
conductors. Adapted from V. Keramidas and R. Nahory. Lucent Technologies,
Murray Hill, New Jersey, 2001.

one material can be deposited onto a substrate of the other material without

inducing signi¯cant elastic strain due to mismatch.

Epitaxial growth of thin ¯lms becomes increasingly di±cult as the lat-

tice mismatch between the ¯lm material and the substrate material increases

in magnitude. For example, the di®erence between the lattice constants of

GaAs and InAs is large enough so that it is di±cult to create high quality

epitaxial layers of any consequential thickness. However, by using interven-

ing layers with gradual transitions in mismatched constituents as a means

of stress management, a wide range of semiconductor material compositions

between the pure compositions becomes accessible. Graded layer systems

are discussed in Chaptesr 2 and 6.

There are many practical microelectronic device con¯gurations that

are based on epitaxial semiconductor thin ¯lms. Heteroepitaxial thin ¯lms

are also used in magnetic recording media, such as computer hard disks; an

example is described in Section 1.4.4. Epitaxially grown multilayer struc-

tures are also used in planar array laser diodes, which serve as optical inter-

connnects for short- and medium-range information transfer, and which o®er

potential for the development of new devices for such applications as solid
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state lighting, optical storage, optical scanning, lithography, and projection-

based display.

Fig. 1.18. Atomic resolution transmission electron micrograph of an interface be-
tween CdTe and GaAs where the mis¯t strain is relaxed by the introduction of
edge dislocations. The letters `S' and `F' refer to `start' and `¯nish' for the Burgers
circuit around the dislocation. The bright white spots correspond to atomic posi-
tions and the fuzzy white clusters at the interface correspond to the cores of the
dislocations. Reproduced with permission from Schwartzman and Sinclair (1991).

A semi-coherent interface with relatively large lattice mismatch be-

tween the ¯lm and substrate is shown in cross sectional view in Figure 1.18.

This atomic resolution transmission electron microscopy image shows a

CdTe ¯lm on a GaAs substrate, both with zinc blende structure. The mis-

match strain in this case is approximately ¡0:13. However, nearly all of the

elastic strain due to lattice mismatch in the ¯lm has been relaxed through

the formation of a remarkably regular array of interface mis¯t dislocations,

each having its Burgers vector in the plane of the interface. For this to be

so, the dislocations would have to be spaced at intervals of approximately

eight lattice spacings along the interface, which is indeed the case.

For epitaxial growth to occur, a thin ¯lm need not necessarily have

the same crystal structure as the underlying substrate. Crystallographic ori-

entation relationships in which the two-dimensional interface most closely

approaches the three-dimensional ¯lm substrate lattices are commonly pre-

ferred in epilayer growth involving di®erent crystal structures. For example,

a f111g face-centered cubic (fcc) ¯lm on a f110g body-centered cubic (bcc)

substrate can exhibit epitaxial growth at the Nishiyama{Wasserman orienta-

tions with [211]fcc k [110]bcc or [011]fcc k [001]bcc (Nishiyama, 1934; Wasser-
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Fig. 1.19. (a) Schematic of the vertical cavity surface emitting laser. (After Cho-
quette (2002).) (b) TEM image of the optical cavity and the surrounding DBR
mirror region which comprises alternating layers of high- and low-refractive index
material. The thickness of the optical cavity is 250 nm. (Photograph courtesy of
D. Mathes and R. Hull. Reproduced with permission.)

man, 1933), or the Kurdjumov{Sachs orientations with [110]fcc k [111]bcc
for which there exist minima in the interface free energies (Kurdjumov and

Sachs, 1930).

1.4.2 Example: Vertical-cavity surface-emitting lasers

A periodic arrangement of many epitaxially grown thin layers with lattice mis-
match constitutes a strained-layer superlattice. An example of such a superlattice
structure can be found in the vertical-cavity surface-emitting laser (VCSEL). As
discussed by Choquette (2002) and Nurmikko and Han (2002), the control of layer
thickness, elastic strain due to LAN to us mismatch, stress-driven crack formation
and processing induced defects in the superlattice presents major scienti¯c and
technological challenges in the development of these devices.

The VCSEL strained superlattice structure comprises as many as one hun-
dred epitaxially grown layers of compound semiconductors surrounding an optical
cavity. The VCSEL device, schematically shown in Figure 1.19(a), is composed
of two so-called distributed Bragg re°ector (DBR) mirrors which are made up of
alternating thin ¯lm layers of high- and low-refractive index materials; the optical
cavity separates the DBRs. These components collectively constitute an optical
resonator that transmits a spectrally narrow emission of a circular beam of light.
For example, pairs of lattice-matched Al0:2Ga0:8As and AlAs ¯lms with a relatively
high mismatch in refractive index are used in the DBR layers of VCSELs emitting
light at 850 nm wavelength. Similarly, VCSELs intended to operate in the blue,
violet and near-ultraviolet wavelength ranges employ layered AlGaN and GaN ¯lms.

A VCSEL emits light in the direction normal to the surface of the layers.
Proper VCSEL operation requires precise alignment of (a) the composition and
thickness of the DBR layers for achieving necessary re°ectance wavelengths, (b) the
composition and thickness of the optical cavity and the DBR layers for achieving
necessary cavity wavelength, and (c) the composition and thickness of the quan-
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tum wells for achieving necessary laser gain spectrum. These stringent requirements
dictate the reliance on precise ¯lm growth methods such as molecular beam epi-
taxy and metal-organic vapor-phase epitaxy, along with in-situ monitoring of ¯lm
geometry and stress during the growth of the ¯lm. The DBR mirror is designed
in such a way that it exhibits maximum re°ectance at a particular wavelength ¸d.
The thickness of each pair of ¯lms with high- and low-refractive index nH and nL,
respectively, in the DBR structure is designed to equal ¸d=4nH and ¸d=4nL, respec-
tively, so that the ¯lm thickness constitutes a quarter-wavelength distance of the
optical path inside that ¯lm. With the interfaces of high- and low-index ¯lm pairs
thus separated by one-half of the wavelength of light in the device, mirrors with
a re°ectance in excess of 99% are produced, as the re°ectivities of these interfaces
add constructively. Figure 1.19(b) is a TEM image showing a section of the DBR
mirror that surrounds the active cavity. An AlAs ¯lm constitutes the low-index
layer, and an Al0:2Ga0:8As ¯lm is used for the high index layer.

Longitudinal con¯nement of light is facilitated in the VCSEL structure shown
in Figure 1.19. In addition, transverse con¯nement of photons and carriers is re-
quired for optimal device performance. This is commonly achieved through ion
implantation, whereby protons are implanted into the top DBR mirror rendering
the material surrounding the laser cavity nonconductive and channeling the injec-
tion current into the active region.

The VCSEL semiconductor laser diode is distinctly di®erent from the earlier
edge-emitting laser designs, particularly the so-called Fabry{P¶erot lasers in which
an elliptical beam of light is transmitted in the plane of the epitaxial ¯lms parallel
to the wafer surface and re°ected from mirrors which are produced through the
cleavage of a crystal facet across the active layers. While the edge-emitting laser
diode has the advantage of small output aperture and high power density, the
VCSEL device o®ers high beam quality, single-mode coupling to optical ¯bers, and
batch-processing fabrication; these advantages, along with low drive currents and
less demanding temperature control requirements, facilitate high-volume, low-cost
manufacture of VCSEL components for optoelectronic applications at low-power.

1.4.3 Polycrystalline films

Polycrystalline ¯lms are commonly described in terms of their grain struc-

ture, which is usually understood to include some measure of grain size, grain

boundary morphology (typical grain shape), and ¯lm texture (distribution of

crystallographic orientations). The connection between these characteristics

{ size, morphology and texture { and processing conditions is understood

qualitatively for common low-energy vapor deposition processes involving

relatively pure ¯lm materials and substrates for which epitaxial interface

formation is not likely. The onset of epitaxial growth is not possible if the

substrate is amorphous, of course, and it is unlikely if the substrate surface

is covered with an adsorbed contaminant layer or if the mismatch strain is

very large. In such cases, adatoms have a greater propensity for bonding

together than for bonding to the substrate.
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Important factors in controlling the structure of a growing ¯lm are

the growth °ux or deposition rate and the substrate temperature. Suppose

that the growth °ux is represented by the time required to deposit a single

monolayer of ¯lm material. A second material-speci¯c characteristic time

that is important in determining the outcome of a growth process is the

representative time interval between encounters of an adatom with other

adatoms di®using randomly on the growth surface. It is the ratio of these

times that is important in determining ¯lm structure. The ratio of the

substrate temperature to the melting temperature of the ¯lm material is

a second important factor in determining the structure of a polycrystalline

¯lm. These factors determine the degree to which adatoms are able to

seek out minimum energy positions and grain boundaries are able to adopt

minimum energy morphologies.

When the growth °ux Rgr is very large and the substrate temperature

Ts is moderate, the common mode of ¯lm growth initiation is the Volmer{

Weber mode. Deposited material aglomerates into clusters on the substrate

surface; the clusters increase in size until they impinge on each other to form

a continuous ¯lm. If the crystallite clusters do not have su±cient mobility

to align crystallographically at this point, or if the thermodynamic driving

force for elimination of the grain boundary is too low, then the clusters join

with an intervening grain boundary. This is invariably the case for growth

of metal ¯lms on insulating substrates when lattice mismatch is far too large

for epitaxial growth to occur. Even in cases for which epitaxial growth might

be achieved, say for Al ¯lms grown on Si, the substrate temperature may be

too low to permit the atomic migration necessary to establish an epitaxial

¯lm{substrate interface. For semiconductor ¯lms, the epitaxial structure is

essential to the electronic performance of the material. For metal ¯lms, on

the other hand, the electrical conductivity of a polycrystalline ¯lm is nearly

as large as that of a single crystal ¯lm, so that the extra e®ort required to

grow an epitaxial structure is not worthwhile from this point of view. A

phenomenon for which grain boundary structure is potentially important,

however, is mass transport by electromigration, as described in Section 9.7.

In magnetic materials, on the other hand, a uniform and well-controlled

grain structure is essential for proper functional performance; an illustration

is given in Section 1.4.4.

Growth of polycrystalline ¯lms generally begins with the thermally

activated nucleation of islands or clusters of ¯lm material on the growth

surface; this was described in atomistic terms in Section 1.3.2 and in terms

of more macroscopic quantities in Section 1.3.5. The activation energy F∗
and critical cluster size, represented in terms of number n∗ of ¯lm atoms
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or volume v∗ of ¯lm material, were estimated in both cases. The number

Nc of clusters nucleated per unit area of the growth surface per unit time

is customarily assumed to follow an Arrhenius rule. While the Arrhenius

relationship provides a useful basis for correlation of data, fundamental un-

derstanding of the processes involved remains elusive.

Some additional qualitative observations on cluster formation and

growth can be made. Initial crystallographic orientations of the nascent ¯lm

which minimize surface and interface energies are favored over others, and

the nucleation rates for clusters with lower energy orientations are greater

than those for others. This can lead to a strong texture in the microstructure

of the ¯lm; this point is pursued in greater detail in Section 1.8.6.

Another potentially signi¯cant feature of distributions of surface clus-

ters follows from the observation in Section 1.3 that the free energy per

atom or per unit volume decreases as the island size increases following nu-

cleation. This implies that larger islands provide a stronger driving force for

incorporation of nearby surface adatoms than do smaller islands. Further-

more, this free energy di®erence implies the existence of a chemical potential

for transfer of material from the smaller islands to larger islands. The re-

sult of such transfer is that larger islands grow at the expense of smaller

islands, a type of process commonly identi¯ed as Ostwald ripening after the

discoverer of such processes in colloidal dispersions (Ostwald (1887),Zinke-

Allmang et al. (1992)). The process of ripening is discussed in Section 8.9.

When coalescence occurs between two islands of di®erent sizes and very dif-

ferent crystallographic orientations, the texture of the ¯nal cluster is often

determined by the initial orientation of the larger island.

Numerous experimental studies such as those reported by ?, Wilcock

and Campbell (1969), Wilcock et al. (1969), ?, Abermann and Koch (1986),

Abermann (1990) and Koch (1994), for example, have contributed to under-

standing some general trends in the evolution of structure during the growth

of polycrystalline thin ¯lms. This information is represented schematically

in Figure 1.20, which illustrates the various stages of growth of a thick poly-

crystalline ¯lm on a substrate. The processes discussed in the preceding

section in connection with the formation of adatom clusters, island nucle-

ation and growth, and initial ¯lm structure also apply to the case of poly-

crystalline ¯lms. However, as is implied by Figure 1.20, the formation of a

grain structure and continued structure evolution during the thickening of

the polycrystalline ¯lm are also strongly in°uenced by the surface di®usiv-

ity of the ¯lm material which is strongly dependent on the ratio of Ts to its

melting temperature, as was noted above.

For many materials of practical interest, the density of nucleation sites
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Fig. 1.20. A schematic representation of several stages in the formation of a thick
polycrystalline ¯lm on a substrate. Cluster formation and growth leads to impinge-
ment of cluster to form grain boundaries. The development of grain structure and
subsequent ¯lm growth is determined largely by surface mobility of adatoms rela-
tive to the deposition rate and by the substrate temperature relative to the melting
temperature of the ¯lm material. Adapted from Thompson (2000).

on the growth surface can be quite high. As a result, the average spacing

between nuclei and the average grain size upon the impingement of nuclei

can be as small as 10 nm. Since the thicknesses of the polycrystalline ¯lms

required in most practical applications are greater than 10 nm, substantial

further growth of the ¯lm is needed.

Experimental studies of evaporative deposition of a variety of poly-

crystalline thin ¯lms on substrates, such as those reported by Abermann

(1990), indicate that there are two distinctly di®erent types of grain struc-

ture evolution. A class of materials with low di®usivity, such as refractory

metals and elements with a diamond cubic crystal structure, exhibit a poly-

crystalline grain structure which resembles the type 1 structure depicted in

Figure 1.20. For these materials, the surface di®usivity is relatively low even

at high substrate temperatures Ts. Because di®usivity generally scales with

the melting temperature Tm, the homologous temperature Ts=Tm is a better

indicator of di®usivity than the absolute temperature. As a result, in materi-

als such as Si, W, Cr, Fe and Ta, the grain boundaries that form due to island

coalescence are essentially immobile even at Ts=Tm ¼ 0.5. The structure
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that originally develops during island nucleation, growth and impingement

is essentially `frozen in'; any further growth of the polycrystalline ¯lm oc-

curs predominantly as epitaxial growth on this initial structure leading to

the formation of columnar grains. The ensuing average grain size parallel

to the plane of the interface with the substrate is signi¯cantly smaller than

the average grain size measured through the ¯lm thickness. Post-deposition

annealing or increases in relative substrate temperatures Ts=Tm approaching

values of 0.8{0.9, however, could lead to a transition from a columnar grain

structure to an equiaxed (Thompson 2000).

In face-centered-cubic (fcc) metals, such as Al, Ag, Au and Cu, the

higher surface mobility of the adatoms facilitates continued structure evo-

lution during ¯lm thickening. The resulting equiaxed grain structure is

termed type 2 and is represented schematically in Figure 1.20. These poly-

crystalline fcc metals tend to grow on substrates in such a way that most

of the grains in the ¯lm develop a f111g texture, that is, most grains are

oriented so that the crystallographic direction in each that is normal to the

¯lm-substrate interface is a h111i direction. Otherwise, the in-plane orien-

tations of the grains are random with respect to the h111i axis normal to

the ¯lm{substrate interface. The ¯nal in-plane grain size is typically on the

order of the ¯lm thickness.

As a rule, higher substrate temperatures and lower deposition rates

lead to a larger initial grain size as the islands impinge to form a polycrys-

talline ¯lm. For a ¯xed substrate temperature, materials with high melting

temperatures and low surface di®usivities develop smaller initial grain sizes

during island impingement. The driving force for grain growth is the reduc-

tion in the total grain boundary surface area and the attendant reduction in

the total energy associated with grain boundary surfaces; this issue is dis-

cussed further in Section 1.8.6. Another mechanism for the development of

structure in polycrystalline ¯lms involves recrystallization, the driving force

for which is the minimization of energy associated with defects, such as pre-

existing dislocations, in addition to grain boundary energy. Minimization

of stored elastic energy arising from intrinsic and mismatch strains in the

¯lm can also serve as an additional factor contributing to grain growth and

recrystallization.

Although the foregoing discussion of structure evolution in polycrys-

talline ¯lms has focused on di®usive processes at the surface, it is gener-

ally recognized that the ¯nal structure is sensitive to the speci¯c deposition

method employed and to the various parameters that in°uence deposition

conditions. As noted earlier, the di®usive processes, which include surface

mobility, bulk di®usion and desorption of adatoms, scale with the ratio of
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the substrate temperature to the melting temperature of the ¯lm material.

In addition to these factors, it is known that a low homologous substrate

temperature Ts=Tm promotes structures that are strongly in°uenced by the

geometric constraint of the roughness of the ¯lm surface on which new de-

posits are made and by the `line of °ight' of the incoming atoms at the

growth surface. This so-called `shadowing e®ect' in°uences the structure

development in both amorphous and crystalline ¯lms at low substrate tem-

peratures where the di®usivity of atoms at the surface is limited.

Ts
Tm

p (µm)

0.2
0.4

0.6
0.8

1.0

transition zone

zone 1

zone 2

1
10

20
30

zone 3

Fig. 1.21. Structure evolution in polycrystalline ¯lms as a function of substrate
temperature and argon gas pressure, following the four-zone model of Thornton
(1977).

Categorization of grain morphology evolution was ¯rst proposed by

Movchan and Demchishin (1969). Using experimental observations of struc-

tural evolution in magnetron-sputtered metal ¯lms 20 to 250 ¹m in thick-

ness, Thornton (1977) proposed a four-zone model which is illustrated in

Figure 1.21. The Thornton model is similar to that of Movchan and Dem-

schishin, but it includes an additional transition zone to account for the

in°uence of the inert gas pressure and surface di®usion. In zone 1, tapered

or ¯brous grains and voided boundaries form where the structure is in°u-

enced by the shadowing e®ect and by the roughness of the substrate surface

on which deposition is made. The transition zone is marked by dense grain

boundary arrays and a ¯lm with a high dislocation density. Columnar grains

evolve in zone 2, where the evolution of the structure is aided by surface dif-

fusion processes. The transition from surface di®usion to bulk di®usion,

as well as recrystallization and grain growth, lead to the formation of an

equiaxed grain structure in zone 3. As a general trend, similar structures

evolve at higher temperatures in sputtered ¯lms as compared to evaporated

¯lms (Thornton (1977),Thompson (2000)).
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1.4.4 Example: Films for magnetic storage media

The concept of epitaxial ¯lm growth on a substrate was introduced in Section 1.4.1,
and some consequences of epitaxial mismatch on the evolution of ¯lm stress and
substrate curvature will be considered in the next chapter. The main reason for
growing epitaxial ¯lms is to exploit the unique In this section, some materials
issues involving grain structure and epitaxial ¯lm growth for magnetic thin ¯lm
multilayers are presented. Magnetic materials have long been used in data recording
and storage media. Early magnetic tape media made use of °-Fe2O3 particles. Thin
magnetic ¯lms have gradually replaced magnetic particles for data storage on disks,
and this trend applies to the case of magnetic tapes as well.

Thin ¯lm magnetic storage media can be broadly classi¯ed into two groups:
those in which the magnetization lies primarily within the plane of the ¯lm (so-
called longitudinal recording) and those in which it lies out of the plane of the
¯lm (so-called perpendicular recording). The vast majority of thin ¯lm media of
current practical interest involve longitudinal recording. Major developments in the
evolution of longitudinal thin ¯lm magnetic materials respond to a primary need,
namely, to increase the storage density signi¯cantly while maintaining or improving
upon the signal to noise ratio.

An increase in the density of longitudinal recording in thin ¯lm media re-
quires an increase in the in-plane coercivityy for smaller transition lengths and for
smaller bit size, and a decrease in the grain size for enhancing the signal to noise
ratio. A widely used magnetic thin ¯lm is a CoCrTaPt alloy with a hexagonal
close-packed (hcp) crystal structure. When Cr is added to the alloy, it segregates
to the grain boundaries. This segregation reduces the exchange coupling between
the grains which, in turn, increases the signal to noise ratio. The addition of Ta aids
in the segregation of Cr to the grain boundary, and Pt raises the magneto-crystalline
anisotropy of the alloy (McHenry and Laughlin 2000).

Structure of a longitudinal thin ¯lm recording medium consists of a substrate,
typically a borosilicate glass or an Al{Mg alloy about 1-2 mm in thickness, coated
with an amorphous non-magnetic layer of NiP that is 5{10 ¹m in thickness, a Cr
underlayer approximately 100{150 nm in thickness, a CoCrTaPt magnetic layer
approximately 20{30 nm in thickness and a carbon overcoat approximately 10{20
nm thick. Such a structure is depicted schematically in Figure 1.22 which represents
a typical cross-sectional view of the layered structure of a hard disk medium.

An important consideration for the function of the magnetic layer is its crys-
tallographic texture. When a Co alloy with an hcp structure is sputter-deposited
on an amorphous layer such as NiP or borosilicate glass, its crystallographic texture
develops such that the c-axis of the ¯lm being perpendicular to the plane of the
¯lm, as the closest-packed basal plane of the hcp alloy aligns with the substrate
surface so as to minimize the total surface free energy. This is undesirable if the c-
axis is required to lie in the plane of the ¯lm, although such texture evolution could
be optimal for perpendicular recording media. In order to force the c-axis of the
magnetic layer to be along the plane of the ¯lm, the Cr layer is ¯rst deposited on a
NiP or glass substrate. If the Cr deposition takes place at room temperature, the
f110g planes of the bcc Cr underlayer, which are the closest-packed planes, align

† Coercivity of a magnetic material is a measure of the degree of stability of the magnetized state,
that is, it provides a measure of the magnetic field required to ‘demagnetize’ the material.
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lubricant (0.5-4 nm)

overlayer (10-20 nm)

Cr underlayer (100-150 nm)

Co magnetic layer (20-30 nm)

substrate (1.3-1.9 mm)

Fig. 1.22. Schematic diagram showing the layered ¯lm structure of longitudinal
recording magnetic media.

with the substrate surface and minimize the surface energy. As a result, the Cr
layer forms on the substrate with a [110] texture. If the CoCrTaPt is then deposited
on the Cr underlayer, it grows epitaxially such that its f1011g plane is parallel to
a (110) plane of Cr. However, this epitaxial relationship places the c-axis of the
magnetic ¯lm at an angle of 28± out of the plane of the ¯lm, that is, with respect
to the f1011g plane, which is not desirable for longitudinal recording media.

On the other hand, if the Cr underlayer is deposited on a heated amorphous
substrate, it grows with a [200] crystallographic texture. When the CoCrTaPt
alloy is next deposited on the Cr underlayer, its texture evolves epitaxially in such
a way that a f200g plane of the Cr is parallel to a f1120g plane of CoCrTaPt. This
forces the c-axis of the Co alloy to be in-plane, which is the magnetic easy axis. This
example serves to illustrate how epitaxial growth and the attendant crystallographic
texture can be engineered through the appropriate choice of processing conditions
in order to achieve the desired magnetic property in a layered structure.

Another important microstructural feature that determines functionality is

the grain size of the magnetic thin ¯lm (McHenry and Laughlin 2000). In order

to ensure that a su±ciently good signal-to-noise ratio is obtained, written bits

of information should encompass at least about 50 grains. For a given amount

of noise, more information could be stored in the magnetic thin ¯lm if the grain

size is reduced and the same number of grains are involved per written bit. It
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should be noted that there is a limit to the use of grain re¯nement since smaller

thermal excursions become more signi¯cant with smaller grain sizes. As discussed in

Section 1.4.3, evolution of grain size in a sputter-deposited ¯lm is strongly in°uenced

by factors such as substrate temperature, atomic mobility and thermal di®usivity.

When a thin ¯lm is sputtered onto a crystalline underlayer, the grain size of the

underlayer in°uences the grain size evolution of the sputter-deposited ¯lm. As

noted earlier, Cr underlayers are commonly used for CoCrTaPt alloys because of the

favorable epitaxial conditions promoted by them. It has been found that thin ¯lms

with NiAl underlayers inherently develop grain sizes smaller by a factor of two than

Cr. The NiAl underlayer develops a [112] texture when sputter-deposited on a glass

substrate. When the Co alloy is deposited on NiAl, epitaxial growth occurs with the

orientation relationship f10110gCo k f112gNiAl. This epitaxial relationship is also

considered more favorable than f1120gCo k f002gCr because only one orientation

variant per NiAl underlayer grain is obtained. In addition to the smaller grain

size, the narrower distribution of grain sizes facilitated by NiAl can be desirable for

magnetic performance because grains of the same size would switch at the same

time causing square-shaped hysteresis loops to evolve. These results indicate it

away in which the deposition conditions, grain size, crystallographic texture and

choice of materials can be exploited to tailor the functionality of magnetic thin

¯lms.

1.5 Processing of microelectronic structures

The discussion up to this point has focused on the deposition of continu-

ous thin ¯lms onto substrates and on the relationships between deposition

conditions and the evolution of structure within the ¯lm. Attention is now

turned to processes by means of which ¯ne features and patterns can be in-

troduced in the thin ¯lm. The most widespread examples of such patterning

arise in the use of lithography and the damascene process, both of which are

practiced in the manufacture of microelectronic devices.

The creation of planar patterns in thin ¯lms with highly integrated

mechanical and electrical functions is a well developed technology which is

employed in the production of silicon-based microelectronic devices using

the complementary metal-oxide-semiconductor (CMOS) processes. These

devices comprise doped single-crystal silicon substrates on which multiple

levels of metal interconnects, insulators and passivating layers are deposited

and patterned. Several examples of the con¯gurations of integrated circuits

used in computer microchips are presented in subsequent chapters; in these
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circuits, very large scale integration (VLSI) involving sub-micron feature

dimensions is achieved through deposition, patterning and etching processes.

Si

SiO2

photoresist

mask

ultraviolet radiation

positive resist negative resist

Si

SiO2

Si

SiO2

Fig. 1.23. Illustration of the steps involved in developing patterns of oxide on a
substrate using lithography by recourse to either a positive or negative photoresist.

1.5.1 Lithography

Microelectronics device fabrication entails lithography in order to transfer

a layout pattern onto the surface of a substrate, such as a silicon wafer. In

this technique, the surface of a Si wafer is oxidized, typically at 800{1200 ◦C
in steam or dry oxygen, to form a thin layer of silicon oxide as shown in

the upper left portion of Figure 1.23. Then, a thin ¯lm of a polymer known

as a photoresist is deposited on the oxide layer. This material is sensitive

to ultraviolet radiation but resistant to chemical attack by etchants and, in

some cases, to electrons and x-rays. A photomask, which comprises a glass
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plate with a metal pattern, is then placed above the photoresist, and the top

surface is subjected to ultraviolet radiation, as indicated in the upper right

portion of Figure 1.23. The glass in the mask is transparent to ultraviolet

light, whereas the metal blocks the radiation from being transmitted to the

photoresist. In the case of a positive photoresist, the polymer is weakened

by the chemical reaction induced by ultraviolet light in regions of the surface

not protected by the metal pattern, and it is washed away in a developing

solution, as depicted in the left central portion of Figure 1.23. The exposed

silicon oxide layer, that is, the region covered by the photoresist, is etched

away by an acid such as hydro°uoric acid which attacks the oxide but not the

photoresist. Once the oxide is removed, the remnant photoresist is stripped

o®, leaving the bare Si substrate with patterns of oxide on it which reproduce

the metal pattern in the photomask, as illustrated in the right central portion

of Figure 1.23. Similarly, a negative photoresist deposited on the oxide

layer strengthens when exposed to ultraviolet radiation, and the developing

solution in this case removes those areas of the photoresist unexposed to

ultraviolet light. In this case, the photoresist develops a negative image

of the metal pattern on the mask, as shown in the lower left portion of

Figure 1.23.

Such CMOS-compatible processes and materials facilitate the fabrica-

tion of devices with highly integrated mechanical and electronic functions.

In the case of microelectronic devices, the oxide pattern serves as a mask

that modulates the spatial distribution of dopants such as boron (for p-

doping) and phosphorous (for n-doping) which di®use into the substrate

through the openings in the oxide layer to create regions of conductance or

resistance. Electrical contacts, gates and metal interconnect lines are then

added within the level of the oxide layer, after which the entire surface is

polished and again covered by a blanket deposit of an oxide layer, repeating

the process at this level. Circuits may comprise numerous levels of patterns

aligned one over the other to dimensional tolerances as small as 0.1 ¹m in

large scale fabrication involving millions of microelectronic devices on large

Si wafers. In such a case, the second insulating layer would be patterned in

preparation for laying down the second level of metallization, and so on.

1.5.2 The damascene process for copper interconnects

Metal wiring is necessary to electrically connect the many individual ele-

ments of an integrated circuit. Metallization technology has evolved along

with other advances in integrated circuit fabrication. Aluminum and its

alloys were the standard choice for metallization in integrated circuits for
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Fig. 1.24. A schematic of the damascene process involving (a) dry-etching of
trenches in the silicon oxide insulator and the deposition of an adhesion layer of
TiN which also serves as an oxidation and di®usion barrier for Cu, (b) plugging the
trenches with CVD-Cu, and (c) chemical{mechanical polishing of Cu.

many years for a variety of reasons. The thin layer of native oxide, typically

5{10 nm in thickness, which forms on Al is capable of protecting the metal

during thermal processes used in the manufacture of the chip. Aluminum

is also a low cost material with a relatively low electrical resistivity. Fur-

thermore, the volatile halide compounds which it forms are amenable to

interconnect patterning through the process of reactive ion etching (RIE).

There are, however, limitations in the use of Al as the interconnect metal.

The relatively low melting temperature of aluminum, in conjunction with

its susceptibility to failure processes such as stress-voiding and electromigra-

tion, pose uncertainties about the mechanical integrity of aluminum lines,

especially as the ultra-large-scale integration (ULSI) processing of sophis-

ticated integrated circuits has forced the minimum interconnect dimension

well into the sub-micron range. With the attendant increase in current den-

sity in the metal lines, degradation by electromigration, which is aggravated

by stress e®ects, also assumes a more prominent role in circuit failure.

Copper has a lower electrical resistivity and higher melting point than

does aluminum and, for the same electrical design, it is expected to function

as e®ectively as an aluminum interconnect with roughly half the cross sec-

tional dimensions. Such reduced dimensions favor further miniaturization

of integrated circuits and facilitate total planarization of interconnects in

the multilayers of the integrated circuit. Research into copper interconnect

wiring indicates superior performance and reliability of copper, particularly

in the context of failure against stress-voiding and electromigration. Despite

these advantages, copper interconnect technology has drawbacks: copper

does not adhere well to silicon oxide and di®uses rapidly into silicon; the na-

tive oxide on copper is not as protective as that on aluminum; and reactive

ion etching technology for copper lines less than 0.5 ¹m is size, involving



56 Introduction and Overview

200 nm

Fig. 1.25. A scanning electron micrograph of the as-polished damascene copper
interconnections, approximately 0.25 ¹m in cross section. The copper lines appear
as the white regions in the ¯gure. Reproduced with permission from Misawa et al.
(1994).

high-temperature etching and inorganic masking materials, remains elusive

(Mizawa et al. 1994).

In view of the these considerations, the damascene process has been

developed as an alternative to reactive ion etching for the introduction of

copper interconnects in integrated circuit multilayers. This process is shown

schematically in Figure 1.24. Here, trenches with dimensions that conform

to the geometry of the copper interconnect wires in the circuit are dry-

etched into an insulator such as silicon oxide grown on the silicon substrate,

as sketched in Figure 1.24(a). The side and bottom surfaces of the trenches

are then coated with a TiN adhesion layer that serves to prevent both copper

oxidation and di®usion into the adjacent insulator. These trenches are then

¯lled with copper, by means of chemical vapor deposition or electroplating,

to form wires. The material microstructure and the state of stress in the

metal lines following fabrication depend on the entire processing history,

and are in°uenced by the elastic sti®nesses of the surrounding materials.

The excess copper is removed by chemical{mechanical planarization, as de-

scribed by Singh and Bajaj (2002), leaving the surface ready for beginning

deposition of the next layer of features with the necessary interconnect met-

allization.

In ULSI devices, multilevel metallization is required. As a result, the

¯rst-formed interconnect lines may undergo several thermal cycles between

room temperature and about 400 ◦C as subsequent layers of metallization are

formed. This temperature range is dictated by the fact that the deposition

of the passivation layer is commonly done at about 400 ◦C.
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1.6 Processing of MEMS structures

Micro-electro-mechanical systems, which are miniature devices with inte-

grated mechanical and electrical functions, are designed to ful¯ll an array of

applications as optical switches, sensors, actuators, biomedical components,

chemical reactors, powering devices and consumer products. Speci¯c exam-

ples of MEMS devices include: array of tilting metal mirrors used to mod-

ulate light beams in portable digital projectors (illustrated in Figure 1.27),

nozzles used in inkjet printers, accelerometers used for the rapid deployment

of airbags in automobiles, fuel atomizers, micromotors and micro-turbine

engines. These devices, typically a few micrometers to hundreds of microm-

eters in dimensions, fabricated by means of planar processing technologies

similar to those used in microelectronic devices. In the case of MEMS, a

greater emphasis is placed on the simultaneous machining of large numbers

of integrated devices with mechanical and non-mechanical functions with

low production costs per unit rather than on the precise control of micro-

scale dimensions themselves, as in microelectronics. The processing methods

for MEMS structures can be broadly classi¯ed into one or a combination of

three basic groups: (a) bulk micromachining, (b) surface micromachining,

and (c) molding processes. A brief description of each of these processes is

given the following subsections.

1.6.1 Bulk micromachining

The process of fabricating very small mechanical parts by etching a wafer

of Si, or perhaps some other material, is called bulk micromachining. Gen-

erally, etching refers to any process by which material is removed from a

workpiece literally by being dissolved or eroded from its surface. The most

common etching processes are those in which a wet chemical etchant is used.

An isotropic etchant removes material from a surface at the same rate in all

directions, whereas an anisotropic etchant dissolves material much faster in

particular crystallographic directions than in others.

In the bulk micromachining of a Si wafer, a thin ¯lm of SiO2 is blanket

deposited onto the wafer surface, after which the oxide is partially removed

by lithographic techniques as discussed in Section 1.5.1, leaving a prescribed

pattern of exposed Si surface. The wafer is then exposed to the etchant

which acts through the openings in the SiO2 ¯lm which serves as a mask.

The action of the etchant creates a rounded depression in the Si if it is

isotropic with respect to that material and an angular pattern with nearly

°at surfaces if it is anisotropic.

A common device for limiting the range of an etchant is a so-called
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Fig. 1.26. A schematic illustration of the use of a surface mask, an anisotropic
etchant, and an etch stop in the fabrication of a supportive membrane by means of
bulk micromachining.

etch stop. For example, suppose that a wafer is to be etched until the re-

maining thickness over a certain area is a predetermined value. This can be

accomplished by di®using a suitable dopant into the wafer to the predeter-

mined depth from the face opposite to the face to be etched and then using

an etchant having the corresponding selectivity, that is, the capacity to dis-

solve the undoped material but not the doped material. Thus, the etchant

becomes ine®ective once the surface being etched reaches the doped region.

An etch stop can also be induced by means of an applied electric potential

in some cases. A schematic of anisotropic etching of Si (001) through an

SiO2 mask to an etch stop as a means of creating a very thin membrane

of large area is shown in Figure 1.26. Such membrane structures are im-

portant for mechanical testing of membrane ¯lms, and for application in

pressure transducers, miniature condenser microphones, and other sensing

devices.

The structure of a MEMS device typically involves a part that has

been micromachined from a wafer integrated with other components to re-

sult in a three-dimensional con¯guration. A technique for integration of

components with basic planar geometry is wafer bonding, usually achieved

by pretreatment of the wafer to assure planarity and cleanliness, followed by

a high temperature anneal with the surfaces to be bonded in ¯rm contact.
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1.6.2 Surface micromachining

Whereas bulk micromachining of MEMS structures involves the removal

of material from a workpiece until the desired shape is achieved, surface

micromachining involves the addition of planar thin ¯lm features onto a

substrate surface to build up the structure. The processing methods are

essentially those of microelectronics as described in Section 1.5, and devices

that are an order of magnitude smaller than bulk micromachined devices are

achievable. A signi¯cant advantage of surface micromachined structures is

that they are readily integrated with microelectronic circuit elements. The

small size, on the other hand, implies very small mass which diminishes their

potential for motion sensing. Small size also limits the range of accessible

force or displacement in capacitively driven actuators to extremely small

magnitudes.

An aspect distinguishing processing of surface machined MEMS de-

vices from microelectronic structures is the use of sacri¯cial layers in the

structure, that is, layers that are removed (usually by etching) after subse-

quent layers have been added. Removal is necessary so that some portion of

the structure is su±ciently unrestrained or compliant to ful¯ll the mechani-

cal function of the device. A persistent problem in surface machined MEMS

structures is stiction, or the tendency for nearby surfaces to stick together

due to capillary forces, electrostatic forces or other causes.

A particular surface micromachined structure for which neither low

inertia nor small actuator force is a drawback is the digital micromirror array

shown in Figure 1.27. Each 4¹m£4¹m aluminum mirror in the array pivots

on a diagonal torsion bar and can be positioned at an angle up to ten degrees

in either direction from the position parallel to the base, independently of the

orientations of other mirrors. An array might include up to 106 mirrors, and

the microelectronic control elements are embedded in the CMOS substrate.

The structure is basically a °at plate attached to a torsion bar ¯xed at both

ends. A de°ecting torque is applied capacitively by means of electrodes

on the base which are positioned on either side of the torsion bar, and a

restoring torque arises from elastic resistance to deformation of the torsion

bar. In order to achieve angular de°ections of signi¯cant magnitude, the

plate is actually separated from the torsion bar by means of a hollow post;

the square indent near the center of each mirror seen in Figure 1.27 is the

inside of that hollow post. Sacri¯cial layers are required in the fabrication

process to separate the torsion bar from the base and to separate the mirror

from the torsion bar. Both the mirror and torsion bar are aluminum in this
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Fig. 1.27. An array of surface-micromachined mirrors used in a portable digital
projector. The center mirror has been removed to expose the remaining segments
of the rectangular torsion bar and the electrodes used for angular positioning. (Pho-
tograph courtesy of Texas Instruments, Attleborough, Massachusetts. Reproduced
with permission.)

case, and the sacri¯cial material is customarily a hardened photoresist that

can be removed by a dry etching processes.

1.6.3 Molding processes

Another approach to forming small mechanical components of a device is to

deposit the material into a suitable micro-fabricated mold. The procedure

involves the creation of a polymer mold by recourse to lithography, follow-

ing which a metal is electroplated to ¯ll the mold cavities. High aspect

ratio features are created through x-ray lithography. The most commonly

practiced mold process is referred to by the acronym LIGA which stems

from the German phrase lithography, galvanoformung (electroforming) and

abformung (molding). Figure 1.28 shows an example of the basic steps in-

volved in a LIGA process.

The versatility of the molding process rests in its °exibility to de-

posit materials other than through electrodeposition as, for example, by

employing chemical vapor deposition (CVD) and slurry processing, thereby

including a wider array of materials. Polycrystalline silicon and silicon car-

bide (of interest as a MEMS material for harsh environments involving high

temperature, shock, vibration, erosion and corrosion) can be deposited using
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Fig. 1.28. An example of a °owchart illustrating the fabrication steps involved in
the LIGA process. Adapted from Spearing (2000).

CVD, whereas refractory ceramics can be molded through slurry processing

methods.

Hybrid methods which combine features of the above basic processes

have also been employed to fabricate MEMS devices. For example, SiC

MEMS structures can be fabricated through a combination of micromolding

and surface micromachining methods. Wafer bonding provides another hy-

brid method for fabricating MEMS structures where multi-level integration

can be achieved.
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1.6.4 NEMS structures

Mechanical devices, with dimensions on the order of tens of nm, with in-

tegrated electronic, chemical, °uidic, medical, biological, data storage, and

optical functions, can be fabricated with capabilities for sensing or imposing

motion on the nanometer scale. Figure 1.29(a) shows an array of cantilever

beams, each approximately 10 nm by 100 nm in cross-sectional dimensions

and 500 nm in length. The diagram in part (b) of the ¯gure suggests that a

coating a DNA on one side of such a beam will result in a detectable change

in curvature, our response that could serve as a signal for drug release con-

trol or other e®ect. For example, the top surface of these cantilevers can

be coated with DNA chains of oligonucleotides. These coated cantilevers

in solution can then be exposed to olegonucleotides with a complimentary

sequence of base pairs. The intermolecular forces exerted by the matched

pairs tend to make the coating expand, much like a thermal expansion, which

results in a curvature in the cantilever beam; see Section 2.1. The amount

of bending, which can be measured with a scanning laser, serves as a highly

sensitive probe for particular DNA sequences.

Nanoscale devices are also being fabricated with the objective of elec-

tronically observing biological systems in their natural environments, with

dimensional precision of a nanometer size range. Since the diameter of a

DNA molecule is approximately 2 nm, nanoscale devices o®er the prospect

for manipulating or monitoring biological molecules.

�� ���

Fig. 1.29. (a) Image of a nanosized structure comprising a series of cantilever beams,
and (b) a schematic showing the bending of a DNA-coated cantilever in response to
the binding of strands with their complements. (After Hellemans (2000) reprinted
with permission.)

With some modi¯cations, surface micromachining, as discussed in Sec-

tion 1.6.2 in the context of MEMS fabrication, can also be used to produce

NEMS devices. Motion at the nanometer scale is commonly induced through

the application of an electric ¯eld. Lorentz forces generated by passing an
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alternating current in a wire placed transversely to a strong magnetic ¯eld

or resonance induced by piezoelectric elements which oscillate the supports

of NEMS devices are other examples of methods used to accomplish motion

at the nanoscale. The detection of nanoscale motion is generally achieved

by recourse to optical interference methods, by de°ecting a laser beam, by

measuring the motion-induced electromotive force or voltage, or by electron

tunneling. Nanoscale actuation can also be induced using the scanning tun-

neling microscope (STM) where motion is induced in the mechanical system

by the application of an alternating current voltage to the axial piezoelectric

drive of the STM probe tip. The surface can also be imaged using the STM

so that the surface features are correlated with the mechanical response.

Fig. 1.30. Electron micrographs of silicon NEMS structures made by surface micro-
machining and e-beam lithography. (a) A compound torsional oscillator tilting mir-
ror. (b) Silicon nanowire resonant structures. (After Craighead (2000); Reprinted
with permission.)

The very small feature sizes of NEMS structures also give rise to me-

chanical devices with reduced mass, lowered force constants and signi¯cantly

enhanced resonant frequencies. Figure 1.30(a) shows components of a com-

pound torsional oscillator made of single crystal silicon, where the mirror

width is approximately 2 ¹m and the width of the supporting wires is as

small as 50 nm. Figure 1.30(b) shows nanowires of varying lengths, made of

silicon single crystal using e-beam lithography and surface micromachining.

For a wire approximately 2 ¹m in length, the resonant frequency is on the

order of 400 MHz.

Changes in absorbed mass as small as 1 pg on a nanomechanical os-

cillator, such as a nanocantilever beam, can be used for biological studies.

Figure 1.31 is an electron micrograph showing a single E-coli bacterium on

an antibody-coated silicon nitride cantilever oscillator. When the cantilever

vibrates in air, the change in the resonance frequency can be detected with

su±cient accuracy to identify the presence of this single bacterium.
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Fig. 1.31. An electron micrograph showing the presence of a single E. coli bacterium
on the surface of a silicon nitride cantilever oscillator which is coated with antibodies
for this bacterium. Placeholder. (After Ilic et al. (2000).)

1.6.5 Example: Vibrating beam bacterium detector

Suppose that a microfabricated cantilever beam is to be used as a sensor for de-
tecting the presence of a certain bacterium in a liquid solution; see Figure 1.31.
Following its fabrication, the beam is ¯rst coated with an antibody that is spe-
ci¯c to the particular bacterium of interest and its free vibration characteristics
are determined. The beam is then dipped into the solution to be tested. If the
bacteria of interest are present, they will attach themselves to the surface of the
beam, attracted by the antibody. The beam is then removed from the solution
and its free vibration characteristics are re-examined. Estimate the in°uence of an
added mass due to the attached bacterium cells, say nb cells each of mass mb, on
the fundamental natural frequency of the beam. (The e®ectiveness of this approach
for detection of bacteria has been demonstrated by Ilic et al. (2000).)

Solution:
For a uniform, slender cantilever beam of length L, total mass m and elas-

tic bending sti®ness EI, the small amplitude transverse de°ection wb(x; t) of the
midplane is governed by the partial di®erential equation

EI
@4wb

@x4
+

m

L

@2wb

@t2
= 0 (1.16)

according to Bernoulli-Euler beam theory. The elastic bending sti®ness is the elastic
modulus E times I, the cross-sectional area moment of inertia; the latter geometri-
cal property of the cross-section is height3£width=12 for a rectangular cross-section.
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This equation, along with the boundary conditions that the midplane slope and de-
°ection vanish at the cantilevered end of the beam and that the internal shear
force and bending moment vanish at the free end, lead to an eigenvalue problem
for free transverse vibration in which the eigenvalues are the squares of the natural
frequencies of vibration. The fundamental natural frequency is

! =
1:8752

L2

r
EI L

m
: (1.17)

Assume that the attached bacterium cells are distributed uniformly over the surface
of the beam so that the total mass increases by ¢m = nbmb. Furthermore, assume
that the presence of the cells does not a®ect the bending sti®ness of the beam.
To lowest order in the change in mass due to the bacteria, the perturbed natural
frequency of the beam is

! +¢! = !

µ
1¡ 1

2

¢m

m

¶
(1.18)

where ! is the value given in (1.17). This implies a reduction in natural frequency
that is proportional to the mass added. Suppose that the properties of the beam are
such that L = 200¹m, m = 6pg and EI = 5500¹N¢¹m2. The fundamental natural
frequency of vibration is then 3:763£104 radians per second. If 100 bacterium cells,
each of mass mb = 3£10¡4 pg, become attached to the beam as a result of dipping
it into the solution, then the resulting shift in frequency is approximately ¡94
radians per second.

The sensitivity of the instrument is de¯ned to be ¢!=mb. Mass added to

the beam near the cantilevered end has very little in°uence on the frequency shift,

which is dominated by the mass added near to the free and. If the antibody coating

were applied to the beam only near the free end, the total mass change would be

lower than for uniform coverage but the sensitivity of the sensor would be higher.

1.7 Origins of film stress

In general, residual stress refers to the internal stress distribution present

in a material system when all external boundaries of the system are free

of applied traction. Virtually any thin ¯lm bonded to a substrate or any

individual lamina within a multilayer material supports some state of resid-

ual stress over a size scale on the order of its thickness. The presence of

residual stress implies that, if the ¯lm would be relieved of the constraint of

the substrate or an individual lamina would be relieved of the constraint of

its neighboring layers, it would change its in-plane dimensions and/or would

become curved. If the internal distribution of mismatch strain is incompati-

ble with a stress-free state, then some residual stress distribution will remain

even under these conditions.
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1.7.1 Classification of film stress

Film stresses are usually divided into two broad categories. One category

is growth stresses, which are those stress distributions present in ¯lms fol-

lowing growth on substrates or on adjacent layers. Growth stresses are

strongly dependent on the materials involved, as well as on the substrate

temperature during deposition, the growth °ux and growth chamber con-

ditions. Advances in nonintrusive observational methods for in-situ stress

measurement and growth surface monitoring have made it possible to follow

the evolution of growth surface features and the corresponding evolution

of average stress levels in the course of ¯lm formation. These capabilities

have provided new insights into the origins of ¯lm stress and have led to a

subdivision of the category of growth stresses into those stresses which arise

during various phases of the growth process and those which are present at

the end of the growth process. Usually, growth stresses are reproducible for

a given process and the values at the end of growth persist at room temper-

ature for a long time following growth. Growth stresses are also commonly

called intrinsic stresses, a term of limited use as a descriptor of what is

represented.

A second category of ¯lm stress represents those stress conditions aris-

ing from changes in the physical environment of the ¯lm material following

its growth. Such externally induced stresses are commonly called extrinsic

stresses. In many cases, these stresses arise only when the ¯lm is bonded

to a substrate, and the distinction between growth stresses and induced

stresses becomes hazy at times. The classi¯cation scheme has no funda-

mental signi¯cance, and the lack of a clear distinction between categories is

largely immaterial. The purpose in this section is to identify examples of

both types of stress.

The development of growth or intrinsic stresses for a particular mater-

ial system, substrate temperature and growth °ux depends on many factors.

Perhaps the most important among these are the bonding of the deposit to

the substrate (epitaxial or not, for example), the mobility of adatoms on

the ¯lm material itself, and the mobility of grain boundaries formed dur-

ing growth. Except for the case of ideal epitaxy, the ¯nal growth structure

is inevitably metastable. Because of the huge number of degrees of free-

dom involved in establishing this metastable structure, the degree of de-

parture from a completely stable equilibrium structure can be signi¯cant.

Many mechanisms for stress generation during ¯lm material deposition have

been proposed, and the more common among days have been reviewed by

(Doerner and Nix 1988). These mechanisms include:
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¡ surface and/or interface stress,

¡ cluster coalescence to reduce surface area,

¡ grain growth, or grain boundary area reduction,

¡ vacancy annihilation,

¡ grain boundary relaxation,

¡ shrinkage of grain boundary voids,

¡ incorporation of impurities,

¡ phase transformations and precipitation,

¡ moisture adsorption or desorption,

¡ epitaxy,

¡ structural damage as a result of sputtering or other energetic depo-

sition process.

Stresses induced in ¯lms arising from external in°uences following

growth, or extrinsic stresses, can arise from a multitude of physical e®ects.

Among these are:

¡ temperature change with a di®erence in coe±cients of thermal ex-

pansion between bonded elements,

¡ piezoelectric or electrostrictive response to an electric ¯eld,

¡ electrostatic forces,

¡ gravitational or inertial forces,

¡ compositional segregation by bulk di®usion,

¡ electromigration,

¡ chemical reactions,

¡ stress induced phase transformations,

¡ plastic or creep deformation.

Reasonably complete models leading to quantitative estimates of ¯lm

stress arising from external in°uences are available, and many examples of

phenomena included in the list above are discussed in the chapters that

follow. The understanding of growth stresses and their origins is not nearly

as well developed. All of the e®ects listed above surely give rise to growth

stresses of some magnitude, but robust models for comparative estimates

of magnitudes have remained elusive. The obvious exception is the case of

epitaxial ¯lm growth, which is discussed brie°y in the subsection to follow.

The more complex issue of sources of growth stress in polycrystalline ¯lms

is addressed in Section 1.8.
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1.7.2 Stress in epitaxial films

In general, stress in epitaxial ¯lms arises as a result of the constraint of

the substrate on the ¯lm material dictated by the requirement of coherency.

Estimates of stress magnitude as discussed in Section 1.4.1 and in subse-

quent chapters are generally reliable in this case, particularly for ¯lms of a

thickness that is both spatially uniform and much larger than atomic spac-

ing in the lattice. For very thin epitaxial ¯lms or for coherent ¯lms that

are not uniform in thickness, some interesting and signi¯cant di®erences

emerge. For example, Jesson et al. (1991) observed that when a Si(001)

surface was terminated by a single atomic layer of Ge, the surface energy

was reduced signi¯cantly from the value for the Si surface itself. This e®ect

implies the existence of a driving force for segregation of Ge to the growth

surface during the early stages of growth of a Si1−xGex ¯lm on a Si(001)

substrate surface, at least until the surface layer is composed entirely of Ge.

For the case of x = 0:25, this could occur once four atomic layers had been

deposited, at which point the thickness is a full unit cell of the lattice. If the

surface layer of Ge were two atomic layers thick, then it could not become

fully established until eight atomic layers of the alloy had been deposited.

In the measurement of ¯lm stress during the early stages of SiGe/Si(001)

¯lm growth, Floro and Chason (1996) observed anomalous deviations in

¯lm stress from the behavior anticipated in Section 1.4.1 on the basis of a

spatially uniform ¯lm composition, which they attributed to Ge segregation

at the surface and its in°uence on surface stress. The stress measurements

involved substrate curvature observations as described in Chapter 2; the

capability of measuring ¯lm stress changes as small as surface stress or as

the stress induced by a partial monolayer of growth has been demonstrated

by Martinez et al. (1990) and Schell-Sorokin and Tromp (1990). The issue

of spontaneous segregation of the constituents of an alloy, particularly the

interaction of deformation and segregation, is discussed in Chapter 9.

A strained epitaxial ¯lm has a natural tendency to become nonuni-

form in thickness, even under well-controlled growth conditions, as discussed

in Chapter 8. The origin of the driving force for this tendency may be the

prospect of partially relaxing elastic energy due to mismatch in the course

of creating additional free surface, or it may be the strain induced desta-

bilization of the crystal surface in the original orientation. The issue of

growth surface stability is pursued in detail in Chapters 3 and 8. Once such

a change in surface morphology occurs, the average ¯lm stress is reduced

and the stress ¯eld becomes spatially nonuniform. Local stress measurement

becomes extraordinarily di±cult due to the small size of such epitaxial struc-
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tures. Also, because of the small size of the ¯lm features, surface stress can

come into play in establishing the mechanical state of the system.

1.8 Growth stress in polycrystalline films

The circumstances for epitaxial growth, as described in the preceding sec-

tion, occur only under very special circumstances of material selection,

growth temperature and growth chamber vacuum conditions. For most ¯lm-

substrate material combinations, ¯lms grow in the Volmer{Weber (VW)

mode which leads to a polycrystalline microstructure. As described in Sec-

tions 1.3.2 and 1.3.5, the distinguishing feature of this growth mode is that

deposited material gathers into discrete clusters or islands on the substrate

surface from the outset, with no tendency toward planar growth. Thereafter,

the microstructure evolves through a sequence of stages that is characteristic

of a wide range of material combinations. Following the initial nucleation of

islands of ¯lm material, successive stages typically include: island growth,

island-to-island contact and coalescence into larger islands, establishment of

large area contiguity, and ¯lling in of the remaining gaps in the structure

to form a continuous ¯lm. Once islands begin to interact to form grain

boundaries, the process of grain coarsening can also contribute to structural

evolution.

The role of stress in these stages of microstructure evolution is not yet

fully understood. However, the application of real-time stress measurement

techniques has made it possible to identify some general trends in behavior.

The stress measurement techniques are usually based on in situ monitoring of

the curvature of the substrate (Flinn et al. (1987), Koch et al. (1990), Floro

et al. (1997)); the connection between substrate curvature and the ¯lm force

or average stress inducing this curvature is discussed in detail in Chapter 2.

The substrate curvature is interpreted in terms of an equivalent isotropic

membrane force on the substrate surface that is necessary to induce that

curvature. If it is assumed that the known amount of deposited material

is uniformly distributed over the substrate growth surface, then there is

a unique equi-biaxial volume-average stress corresponding to the observed

curvature. The calculation of this volume-average stress for a particular ¯lm

microstructure is discussed in Section 8.6. Real-time measurements of the

history of this stress parameter have provided insights into the nature of

the dynamic interplay between di®erent physical mechanisms of structural

evolution that induce or relax internal stress.

Experimental results based on deposition of four di®erent materials,

each grown on a Si substrate with a thick SiO2 surface layer under ultrahigh
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Fig. 1.32. Average ¯lm stress£mean ¯lm thickness versus mean ¯lm thickness for
deposition of Ag(0.24), Al(0.32), Ti(0.15) and polycrystalline Si(0.46) on a SiO2

surface. The number included in parentheses with each deposited material rep-
resents the corresponding homologous deposition temperature. From Floro et al.
(2001); reprinted with permission.

vacuum conditions, are shown in Figure 1.32. The ¯lm materials with the

corresponding homologous deposition temperatures shown in parentheses

are: Ag(0.24), Al(0.32), Ti(0.15) and p-Si(0.46). Each curve shows the

volume-average stress in the ¯lm times the mean ¯lm thickness, as inferred

from in situ substrate curvature measurements, versus mean ¯lm thickness.

In each case, the ordinate value of the graph at any thickness provides the

average stress, while the slope of the curve represents the incremental stress

associated with an increment in mean thickness. Because of the evolutionary

nature of the ¯lm microstructure, the incremental stress is not necessarily

the stress in the increment in ¯lm material deposited. While the graphs in

Figure 1.32 show obvious di®erences in detail, they share a common general

character in several respects. This common character is represented in a

schematic diagram of the time evolution of volume-average ¯lm stress versus

¯lm thickness during steady deposition shown in Figure 1.33. In the course

of forming a polycrystalline ¯lm by vapor deposition, the volume-average
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Fig. 1.33. Schematic diagram of volume-average ¯lms stress versus mean ¯lm thick-
ness during growth with a steady deposition °ocks. The features of initial compres-
sive stress, then tensile stress, and then again compressive stress with a plateau
value are common to a wide range of ¯lm materials.

stress ¯rst becomes compressive, then tensile, and then again compressive,

as indicated in the diagram. In the discussion that follows, mechanisms

which can account for the observed behavior are described.

1.8.1 Compressive stress prior to island coalescence

The compressive stress that arises early in the deposition process is usually

attributed to the action of surface and/or interface stress. The origin of the

idea lies in the observation that the lattice spacing in a very small isolated

crystallite is smaller than the spacing in a bulk crystal of the same material

at the same temperature. An elementary estimate of the magnitude of the

e®ect can be obtained by considering a homogeneous and isotropic spherical

crystallite of radius R. If f is the isotropic surface stress acting within the

spherical surface of the crystallite, then equilibrium requires that there must

be an internal equi-triaxial stress with magnitude

¾ = ¡2f

R
(1.19)

acting throughout the interior of the crystal.

Mays et al. (1968) estimated the surface stress generated during the

evaporative deposition of gold onto an amorphous carbon substrate in ultra-

high vacuum on the basis of (1.19). Using electron di®raction experiments,

they documented lattice contraction of gold nuclei with diameters as small

as 3.5 to 12.5 nm as a function of the nucleus diameter R. If the lattice

spacing in the interior of a bulk gold crystal is a, and the lattice spacing

within the gold nano-crystal is determined to be a + ¢a then the equi-

triaxial elastic strain is ¡¢a=a. The corresponding value of surface stress
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determined according to (1.19) is

f = ¡1

2
R¾ = ¡ REf

2(1¡ 2ºf)

¢a

a
(1.20)

where ºf and Ef are the Poisson ratio and elastic modulus of the isotropic

¯lm material.

Mays et al. (1968) observed that the average lattice constant varied

from 0.4075 nm to 0.4063 nm as the radius of curvature of the nano-crystal

varied from very large values down to about the two nm. Using (1.20),

they estimated the surface stress f to be 1.175 N/m. The surface energy

of gold has been estimated from independent measurements to be about 1.4

J/m2; see the review by Cammarata (1994), for example. Presumably, the

di®erence between these values arises from the strain dependence of surface

stress.

The hypothesis for generation of compressive stress in the early stage

of ¯lm growth is that crystallites forming on the growth surface become

¯rmly `attached' to the substrate at an early stage of their growth. Upon

further growth in the volumes of the clusters, the internal elastic strain in

the crystallites tends to relax because the surface radius becomes larger and

the corresponding internal stress becomes smaller, as suggested by (1.19).

However, it is prevented from doing so due to the constraint of the substrate.

An elementary model leading to a stress estimate due to this e®ect can

be constructed in the following way. Suppose that a representative crystallite

becomes attached to the substrate, or becomes `locked-down' against further

relaxation, at some radius Rld. The internal equi-triaxial strain in the grain

at this point is

²ld = ¡1¡ 2ºf
Ef

2f

Rld
: (1.21)

As the crystallite continues to grow to larger radius R > Rld, the strain

is prevented from relaxing further. In other words, as the grain becomes

larger, it is subject to a mismatch strain

²m =
1¡ 2ºf
Ef

µ
2f

R
¡ 2f

Rld

¶
(1.22)

for R > Rld. The remaining elastic strain is balanced by surface stress, but

the portion ²m is unbalanced within the grain itself. Its e®ect is transferred

to the substrate through tractions acting across the ¯lm-substrate interface.

The unbalanced stress that tends to deform the substrate is

¾ =
2f

Rld

µ
Rld
R

¡ 1

¶
: (1.23)
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This quantity is representative of the stress magnitude that can be expected

to arise in the ¯lm according to the proposed mechanism. Note that it has

the feature that it continues to increase as R becomes very large, approach-

ing an asymptotic limit of ¡2f=Rld as R=Rld ! 1.

This mechanism for generation of the initial compressive stress range

indicated in Figure 1.33 was apparently ¯rst proposed by Laugier (1981). It

was subsequently adopted by Abermann and Koch (1986) and Floro et al.

(2001) as a basis for interpretation of observations on growth of metal ¯lms

on substrates. A detailed estimate of the stress in (1.23) based on the same

general idea has been proposed by Cammarata et al. (2000); the latter esti-

mate provides additional numerical factors of order unity for the elementary

result shown in (1.23) which itself follows from dimensional considerations.

Although this model is appealing for several reasons, it is neither com-

plete or nor particularly well-founded. Perhaps the most signi¯cant unre-

solved questions concern the nature of load transfer between the strained

crystallite and its substrate that is necessary for the mechanism to oper-

ate, an issue discussed in the context of stress measurement by Floro et

al. (2001). How does this load transfer occur? Is it possible that there is

slippage between the crystallite and the substrate in the course of island

growth, perhaps in the form of glide, so that the load is only partially trans-

ferred and more relaxation of surface stress induced mismatch occurs than

is usually presumed? Are there observations that could yield direct evidence

in support of the lock-down model? Questions of load transfer based on

a balance of surface and interface stresses across the interface have been

addressed for a liquid surface island (Spaepen 1996) and for a solid surface

island (Spaepen 2000). If the adatoms or surface islands would simply re-

duce the surface stress of the growth surface, but not interact signi¯cantly

otherwise, then this e®ect itself could account for the apparent compressive

stress in the ¯lm material.

In the interpretation of observational data in the context of the type of

model represented by (1.23), an issue that is commonly overlooked is the im-

portance of surface area coverage or density of islands on the growth surface.

The stress ¯eld associated with an isolated island on the substrate surface is

self-equilibrating; overall, the stress ¯eld has no resultant force or moment

and its magnitude decays to very small values within a short distance from

the island. The prospect that a dilute distribution of tiny islands on a rel-

atively thick substrate of comparable sti®ness could result in a signi¯cant

curvature is remote, no matter how large the mismatch stress might be. For

a distribution of islands to lead to a perceptible curvature of the substrate,

the distribution must be su±ciently dense so that the ¯elds of the islands
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interact. This is essential if the rapid spatial decay of the self-equilibrating

stress ¯elds of individual islands is to be overridden to a degree that results

in measurable curvature. This issue is studied in some detail in Chapter 3

for patterned ¯lms on substrates, but an elementary estimate of the role of

surface distribution of islands on the connection between mismatch stress in

an island array and corresponding substrate curvature can be obtained on

the basis of elementary elastic beam theory. This is illustrated by means of

an example calculation in Section 1.8.2 below.

The apparent compressive stress present in the early stage of the

growth process is active from the onset of growth until the islands establish

large area contiguity across the growth surface. It has been observed that,

before this occurs, some growing islands are in the form of bicrystals or

tricrystals. This is presumed to occur because the islands nucleated in close

proximity and subsequently grew together at an early stage in the process.

Alternatively, it might suggest that tiny islands are mobile on the growth

surface in the early stages of deposition. In situ experimental measurements

of stress during the Volmer{Weber growth of polycrystalline Cu thin ¯lms

indicate that the compressive stress arising prior to the coalescence of islands

is largely relaxed during growth interruptions (Friesen and Thompson 2002).

In any case, the incremental stress tends to become positive or tensile once

mutual impingement of the growing islands occurs on a scale such that a con-

nected structure is established over relatively large portions of the substrate

surface. The origin of this tensile stress is considered in Section 1.8.3.

1.8.2 Example: Influence of areal coverage

Consider an elastic beam of length L, height hs and unit depth as illustrated in the
sketch in Figure 1.34. For simplicity, the deformation is assumed to be consistent
with a one-dimensional state of stress, typical of elementary beam theory (although
plane strain deformation might be a bit more appealing physically). The elastic
modulus of the isotropic beam material is Es. Attached to the surface of the beam
are N identical and equally spaced `islands', each of length b and height hf . The
elastic modulus of the isotropic island material is Ef . If the islands are deposited
onto the substrate surface with mismatch strain ²m, determine how the curvature
∙ of the substrate midline depends on the distribution of the islands on the surface,
as represented by b and p.

Solution:

Note that the center-to-center spacing of the islands is p = L=N . The rela-
tionship between substrate curvature and mismatch strain is readily obtained by
appeal to the principle of minimum potential energy. The elastic energy stored in
the beam at uniform curvature ∙ is 1

24Esh
3
s∙

2L. Suppose that positive curvature
corresponds to a reduction in extensional strain on the beam surface to which the
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Fig. 1.34. A model con¯guration of a distribution of islands on the substrate. The
islands are subject to an elastic mismatch strain with respect to the substrate,
which gives rise to substrate curvature.

islands are ¯rmly attached. Thus, the uniform extensional strain in each island in
the direction of the interface is ²m ¡ 1

2∙hs, assuming that hf ¿ hs. It follows that
the total elastic energy of the system as a function of beam curvature ∙ is

E(∙) = 1
24
Esh

3
s∙

2L+ 1
2
Ef(²m ¡ 1

2
∙hs)

2Nbhf : (1.24)

It follows that the minimum value in energy under variations in curvature ∙ occurs
for the curvature value

∙hs ¼ 6
b

p

²mEf

Es

hf

hs
: (1.25)

A term on the right side that is higher order in the small ratio hf=hs has been

omitted. The areal coverage is represented by the factor b=p, a ratio that can

be very small compared to unity for a dilute distribution of islands but which

approaches one in value at full coverage. A more detailed examination of these

issues is pursued in Section 3.10.

1.8.3 Tensile stress due to island contiguity

The most widely adopted mechanistic model for the origin of the tensile

stress is based on the work of Ho®man (1966), Ho®man (1976), Doljack

and Ho®man (1972). They hypothesized that small gaps between adjacent

grains could be closed by forming grain boundaries, and that the energy

released through reduction in surface area could be converted to elastic

deformation of the participating grains as a result of the deformation needed

to e®ect the gap closure. The maximum distance across which the gap

between surfaces of crystallites could be closed was estimated by drawing an

analogy between the energy of interaction between atoms and that between

crystallites surfaces. It was concluded that the maximum gap that could be

closed in this way is on the order of ±gap = 0:17 nm.

A simple expression for the stress generated when islands impinge on

each other can be obtained on the basis of this concept. Consider a °at
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substrate which is covered with a doubly periodic array of square islands,

each of thickness h and of lateral dimensions dgr £ dgr, the grain size. The

substrate thickness is large compared to dgr. The side faces of each island are

separated from the parallel faces of neighboring islands by the distance ±gap
on all four sides. The free surface energy of all surfaces has the value °f and

the islands are free of stress. Suppose that the islands deform spontaneously

to form a continuous ¯lm by closing all the gaps in the array. In doing so,

each island must be strained equi-biaxially by an amount ±gap=dgr in the

plane of the interface. The interfacial energy of the newly formed interfaces

has the value °i. If the material is an isotropic elastic material with elastic

modulus Ef and Poisson ratio ºf , the resulting increase in elastic strain

energy of each island is hd2gr£ (±gap=dgr)
2Ef=(1¡ ºf) where any in°uence of

the substrate on deformation has been ignored. The corresponding change

in surface/interface energy is ¡4dgrh £ (°f ¡ 1
2°i) < 0, where it is assumed

that one-half of the interface energy °i is associated with each of the islands

forming an interface and that 2°f > °i is a necessary condition for the

coalescence to occur. The uniform tensile stress based on this simple model

is

¾ =
Ef

1¡ ºf

±gap
dgr

: (1.26)

For representative values of the parameters of Ef=(1¡ ºf) = 100GPa, °f =

1J/m2 and dgr = 17nm, (1.26) leads to a stress estimate of ¾ = 1GPa, a

large stress magnitude.

An approach aimed at overcoming some shortcomings in this approach

was introduced by Nix and Clemens (1999). They imagined the island

boundaries to be rounded surfaces. The islands would then grow until each

made contact at a single point with each of its adjacent islands. Interfaces

then take on the physical characteristics of an elastic crack, with the con-

tact zone boundary being the crack edge. The system can lower its net

free energy by closing up this crack, thereby replacing free surface with its

relatively high surface energy °f by an interface with a relatively low inter-

facial energy °i. In the course of `zipping up' the interface, the participating

islands become strained elastically. The island size at which impingement

occurs is generally in°uenced by process parameters such as growth °ux,

substrate temperature and surface di®usivity (Thompson 1999).

The idea of zipping up a grain boundary between crystallites, once

they make contact, provides a viable and physically appealing framework

for estimating the magnitude of this tensile stress generated when islands

impinge. To pursue this issue, the same general concept is examined in
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Section 8.6.2 within the framework of a particular model which can capture

the zipping up process in a realistic way. The model is based on the theory

of elastic contact of solids with rounded surfaces known as Hertz contact

theory, with the added feature that the contacting surfaces cohere.

As noted, an estimate of the tensile stress magnitude based on the

Ho®man{Nix model often leads to a stress magnitude that is larger than

any observed. However, as soon as the stress level reaches the yield stress of

a polycrystalline material, glide dislocations can form to modulate the am-

plitude. This line of reasoning has been discussed in some detail by Machlin

(1995) who pointed out that the mechanism as described is athermal except

for the possible dependence of yield stress on temperature. At elevated tem-

peratures, mechanisms associated with increased surface mobility of atoms

can come into play to diminish the e®ectiveness of the Ho®man{Nix mecha-

nism in generating stress, and evidence for the in°uence of such mechanisms

is apparent in experimental data.

1.8.4 Compressive stress during continued growth

Shortly after it ¯rst arises during growth of a polycrystalline ¯lm, the tensile

stress is observed to decrease in magnitude, implying a negative or compres-

sive incremental stress. For the high mobility materials that are the subject

of the present discussion, the average stress continues to decrease until the

average stress in the ¯lm takes on compressive values. This fact alone indi-

cates that the decrease involves more than merely a mechanism of relaxation

of the tensile stress. Ultimately, the compressive average stress approaches

a steady value for a ¯xed growth °ux, as depicted in Figure 1.33, with

this value depending on temperature and growth °ux magnitude for a given

material system.

Two additional observations may provide clues as to the origin of the

compressive stress. First of all, if the growth is interrupted while the stress

magnitude is at its plateau value, the stress magnitude falls o® rapidly.

Then, upon resumption of the deposition °ux, the fallo® in stress magni-

tude is fully reversed and the same compressive stress plateau is eventually

re-established (Shull and Spaepen (1996), Floro et al. (2001)). The second

observation concerns the role of grain boundaries. It has been demonstrated

that the stress in Pd ¯lms deposited on polycrystalline Pt substrates be-

comes compressive while the stress in otherwise identical ¯lms deposited

onto single crystal Pt surfaces remains tensile (Ramaswamy et al. 2001).

Presumably, the compressive stress that arises in polycrystalline ¯lms

is due to an excess number of atoms comprising the ¯lm. The available
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observations suggest that this excess probably depends on the presence of

a deposition °ux and on the presence of grain boundaries in the ¯lm mi-

crostructure. Spaepen (2000) has pointed out that only a small number of

excess of atoms is necessary to result in the stress levels observed experimen-

tally. From the point of view of thermodynamics, there is always a driving

force tending to expel excess atoms from the crystal under equilibrium con-

ditions. However, this may not be the case under the circumstances of de-

position that maintain nonequilibrium conditions on the growth surface. It

was observed in Section 1.3.3 that the growth °ux provides a supersaturated

distribution of adatoms on the growth surface. These atoms have free ener-

gies in excess of the energies of surface atoms already incorporated into the

crystal which, in turn, have free energies higher than those of interior atoms.

The energies of the nonequilibrium surface atoms may not be su±cient to

drive them into interstitial sites in the crystal. However, the surface atoms

could reduce their energies by migrating into the grain boundaries; a mech-

anistic model based on this idea has been proposed by Chason et al. (2002).

The incorporation of excess atoms into the grain boundaries creates a com-

pressive stress in the ¯lm. This compressive stress increases the energies of

atoms within the grain boundaries; the associated grain boundary chemical

potential is discussed in Section 8.2.2. The driving force for introducing ad-

ditional excess grain boundary atoms decreases with increasing magnitude

of compressive stress, leading eventually to a steady-state balance between

these e®ects. This model, which is based on the observed central role of

nonequilibrium processes at the growth surface in generating compressive

stress, is not yet fully developed. However, its behavior does account for

the relaxation observed in ¯lms when the growth °ux is interrupted and the

e®ect of growth rate on the steady-state deposition compressive stress level

is captured.

1.8.5 Correlations between final stress and grain structure

Correlations have been observed between the growth stress in polycrystalline

¯lms and the ¯nal grain structure of the ¯lms as represented by the two types

of microstructure depicted in Figure 1.20. By measuring in situ the bending

of cantilever beams onto which a wide range of thin ¯lms were vapor de-

posited, Abermann (1990), Thurner and Abermann (1990), Schneeweiss and

Abermann (1992) estimated the volume-average internal stress as a function

of ¯lm thickness in both type 1 and type 2 microstructures. Representative

results are plotted in Figure 1.35. This ¯gure shows that type 1 materi-

als, in which the low surface di®usivity forces the initial structure on the
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Fig. 1.35. The evolution of intrinsic stresses during the evaporative deposition of a
range of type 1 and type 2 materials as a function of ¯lm thickness. After Abermann
(1990) and Schneeweiss and Abermann (1992).

substrate to be retained and ¯lm thickening essentially occurs by homoepi-

taxial growth on top of grains nucleated at the ¯lm-substrate interface, large

tensile residual stresses are generated. By contrast, the higher surface dif-

fusivity of type 2 materials promotes greater stress relaxation and, in these

cases, much smaller tensile stresses are estimated. As the ¯lm thickens, the

tensile stresses essentially vanish; for thick ¯lms, the ¯lm stress becomes

compressive, for reasons discussed above.

It is also noted that, for a given material, the transition from type 1

to type 2 response can occur as the substrate temperature Ts is raised. An

example of this e®ect and the associated evolution of intrinsic stress in Fe

¯lms vapor-deposited on MgF2 substrates is shown in Figure 1.36. At room

temperature, the Fe ¯lm thickens without a precipitous drop in the initial

tensile stress because of the low mobility of adatoms at the ¯lm surface.

However, as the substrate temperature is raised to 90◦C or 200◦C, a marked

reduction in the tensile stress occurs in the ¯lm with increasing adatom

mobility. For Ts = 200◦C, the tensile stresses vanish at a ¯lm thickness
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Fig. 1.36. Experimental observations, derived from the work of Abermann (1990),
of average ¯lm stress as a function of ¯lm thickness in Fe ¯lms vapor-deposited on
MgF2 substrates at Ts = 27, 90 and 200 ±C.

of about 40 nm and, thereafter, growth occurs with the ¯lm stressed in

compression.

1.8.6 Other mechanisms of stress evolution

The compression-tension-compression sequence of stress evolution during

deposition of thin polycrystalline ¯lms, as described in Sections 1.8.1, 1.8.3

and 1.8.4, appears to be characteristic of many growth processes. Further-

more, once the ¯lms become continuous across the growth surface, careful

measurements reveal very little alteration in average ¯lm stress during in-

terruptions in the deposition process; in most cases, stress evolution upon

resumption of deposition resumed continuously from the behavior observed

prior to the interruption (Floro et al. (2001), Shull and Spaepen (1996)).

This observation suggests a relatively minor role for time-dependent stress

relaxation processes that are not associated with the deposition process it-

self. However, time-dependent processes of stress relaxation such as grain

boundary area reduction, texture evolution and vacancy annihilation may

contribute to stress development in some cases. Consequently, the energetics
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of these mechanisms are brie°y described in this section. The prospect for

tensile stress development by reduction of grain boundary area, a mechanism

that is commonly called grain growth, is considered ¯rst. This is followed by

observations on the relationship between ¯lm stress and texture evolution

and on stress generation as a result of elimination of excess vacancies. Each

of these processes is time-dependent but no e®ort is made here to incorpo-

rate specialized kinetic relations as a basis for describing evolution. Instead,

a rough estimate of the magnitude of stress that could be achieved through

operation of each mechanism separately is obtained by assuming that ther-

modynamic equilibrium is reached from some initial nonequilibrium state.

Stress arising from reduction in grain boundary area

Consider a two-dimensional polycrystalline material, perhaps a portion of

a ¯lm with columnar grain structure, with its outer bounding surface con-

strained against normal displacement. The boundary constraint presumably

arises through interaction of the sample with statistically identical adjacent

portions of the ¯lm, in which case the bounding surface is a symmetry sur-

face. A model introduced by Chaudhari (1971) for development of tensile

stress in this representative portion of the ¯lm is based on a competition

between two physical e®ects. First, associated with the grain boundary sur-

face is an energy per unit area, say °gb, which represents the excess energy

of the grain boundary structure over and above that of the regular lattice

structure within the grains; this is an interface surface energy as described

in Section 1.3.3. It follows that the free energy of the sample can be reduced

by decreasing the total area of grain boundary surface within the represen-

tative material sample. For a two-dimensional polycrystalline material, as

assumed for this discussion, this is equivalent to reduction in the net length

of the trace of grain boundary surfaces in any plane of the ¯lm parallel to

the ¯lm-substrate interface.

The second feature is that the mass density of the material in the

immediate vicinity of a grain boundary is less than the density within the

grains themselves, a feature also arising from the relative disorder of the

atomic structure along a grain boundary. This volume de¯ciency is repre-

sented as a volume per unit area of grain boundary, say ¢v, that can be

viewed in the following way. If a grain boundary lying on a cross-section of

a prismatic bicrystal of unit cross-sectional area migrates out of the mate-

rial, the resulting reduction in length of the solid upon becoming a single

crystal is ¢v. It follows that the volume of the representative sample of the

material is reduced by ¢v per unit area of grain boundary eliminated. Re-

turning attention to the representative material sample with many interior
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grain boundaries, the sample undergoes a stress-free isotropic contractive

strain upon reduction in grain boundary area. The boundary of the sam-

ple is constrained against normal displacement do to symmetry, however.

Consequently, an elastic extensional strain must be induced to satisfy this

constraint. Associated with the elastic strain is an elastic energy density

throughout the material. The elastic energy of the sample then increases

parabolically with grain boundary area reduction.
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Fig. 1.37. Schematic diagram of the dependence of free energy of the ¯lm with
columnar grains on grain boundary area, as represented by a net length of the
surface trace of grain boundaries. Contributions due to elastic deformation and to
grain boundary area reduction are shown as dashed lines.

The nature of the competition between these two e®ects is depicted in

Figure 1.37. If the total length of the surface trace of grain boundary at the

outset is l0 and the subsequent length is l, then the change in free energy

per unit thickness of the ¯lm due to reduction in grain boundary area is

¡°gb(l0 ¡ l). The stress free change in total volume per unit thickness of

the sample due to grain boundary area reduction is ¡¢v(l0¡ l). This strain

must be negated by a uniform equi-biaxial elastic strain 1
2¢v(l0 ¡ l)=L2

which gives rise to the elastic energy of the system. The change in free

energy per unit thickness of the sample due to change l0 ¡ l in the grain

boundary trace length is then

E = ¡°gb(l0 ¡ l) +
Ef

2(1¡ ºf)

¢v2

L2
(l0 ¡ l)2 (1.27)
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where Ef is the modulus of the elastically isotropic ¯lm material and ºf is

the Poisson ratio. The two terms in this equation are sketched separately

in Figure 1.37 as dashed curves, and the sum is shown as the solid curve.

The illustration of elastic energy presumes that the stress is zero when the

grain boundary trace length is l0; the argument requires minor modi¯cation

if this is not the case. The stress at which total energy change is minimum

is found to be

¾ =
°gb
2¢v

: (1.28)

The expressions are conveniently expressed in terms of grain size, rather

than grain boundary trace length, by noting that

l0 ¡ l

2L2
» 1

d0gr
¡ 1

dgr
(1.29)

where d0gr is the initial grain size, dgr is the subsequent grain size, and the

factor two accounts for the fact that each grain boundary is shared by two

grains.

Insight into the magnitudes of grain size at which the energy reaches

a minimum value and the corresponding internal stress are gained by con-

sidering an example with °gb » 0.4 J/m2, Ef=(1¡ºf) = 100 GPa, and ¢v »
0.2 nm. For these values, grain growth leads to an equilibrium stress of 1

GPa, as seen from (1.28). The grain size at which the energy minimum is

reached is dgr = (d−10gr ¡ 0:5)−1 where the initial and ¯nal grain sizes are

given in units of nm. For an initial grain size d0gr = 10 nm, the minimum in

energy occurs at a grain size of dgr = 20 nm. If the initial grain boundary

dimension is already larger than this value at zero stress, then grain growth

cannot occur by this mechanism.

For an initial tensile stress in the ¯lm, there is a linear dependence of

elastic energy on grain boundary area reduction, in addition to the quadratic

increase illustrated in Figure 1.37. As a result, the minimum energy value

of grain boundary area reduction decreases, and grain growth becomes im-

possible if the value reaches zero. On the other hand, a compressive initial

stress is expected to move the minimum energy position toward larger values

of grain boundary area reduction, thus promoting a greater degree of grain

growth than in the absence of initial stress.

The presence of impurities and cavities on the grain boundaries can

also alter grain growth in thin ¯lms and the associated stress evolution. The

presence of interstitials and cavities changes the density of the grain bound-

ary region, while the interaction of these defects with the surrounding atoms

modi¯es the total energy change during grain growth. Thus, as reviewed by
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?, such phenomena as oxidation, di®usion, inert gas entrapment, or mois-

ture ingress during the deposition of the ¯lm, would be expected to alter

the evolution of internal stress.

Texture evolution in polycrystalline thin films

Departures from normal grain growth in thin ¯lms are introduced as a result

of the formation of grooves where the grain boundaries meet the free surface

of the ¯lm (Mullins (1958), Frost et al. (1990)). Such abnormal grain growth

can occur with additional contributions to driving force for grain growth that

is speci¯c to the crystallographic orientation of the grains. Consider the case

of fcc metal ¯lms deposited on amorphous substrates such as oxidized Si.

The free surface energy density of the ¯lm °f , as well as the energy density of

the interface between the ¯lm and the substrate °fs, are minimized when the

grains of the ¯lm have a f111g texture, that is, when the grains are oriented

with the <111> crystallographic directions being normal to the interface.

This suggests an energetic preference for growth of grains with the f111g
texture, over growth at other crystallographic orientations.

For fcc metals, consider the evolution of texture during grain growth,

as represented by a particular reorientation of ¯lm grains, due to thermal

excursions such as those arising from passivation of the material or from

post-patterning anneal. There can be a resulting energy change due to

orientation dependence of elastic moduli, as well as an energy change due

to orientation dependence of the surface/interface energy densities. Elastic

strain in the ¯lm in the case of temperature excursion ¢T arises from the

di®erence in coe±cients of thermal expansion between the ¯lm and substrate

materials. It is established in Chapter 2 that the thermal mismatch strain

must be accommodated entirely within the ¯lm if the substrate is relatively

thick. If the coe±cients of thermal expansion of the ¯lm and substrate

materials are denoted by ®f and ®s, respectively, then the stress-free thermal

strain of the ¯lm with respect to the substrate is (®f ¡ ®s)¢T . Because

the ¯lm is constrained against such strain by the substrate, an equal but

opposite elastic strain is generated to satisfy the constraint. If the thermal

expansion of the ¯lm material is isotropic, and if the biaxial elastic modulus

of the ¯lm material changes from M0 in the `initial' orientation to M in the

`¯nal' orientation, then the change in elastic energy per unit volume of ¯lm

material due to reorientation is

Ee = (M ¡M0)(®f ¡ ®s)
2¢T 2 : (1.30)

The change in surface energy per unit volume due to both the free
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Fig. 1.38. Experimentally observed texture following grain growth induced by a
temperature change ¢T from the deposition temperature in Ag thin ¯lms, up to
500 nm in thickness. The ¯lms were deposited on MgO(100) substrates coated
with an amorphous silicon dioxide layer. The solid line corresponds to the texture
transition prediction of (1.32). Adapted from Thompson and Carel (1995).

surface of the ¯lm and the ¯lm-substrate interface is

Es = (° ¡ °0)

hf
(1.31)

where ° = °f + °fs is the surface energy, free surface and interface together,

per unit volume in the `¯nal' orientation and °0 is the corresponding value

in the `initial' orientation.

For fcc metals on amorphous substrates, the f100g texture, which

minimizes the strain energy density, dominates during grain growth when

Ee > Es. In this case, grain growth serves as a strain relaxation mechanism.

For Ee ∙ Es, on the other hand, the f111g texture, which minimizes the

surface energy, would be expected to develop preferentially. The condition

for the transition from the f100g to the f111g texture formation during

grain growth can then be written as³
M{111} ¡M{100}

´
(®s ¡ ®f)

2 ¢T 2 ¼ °{111} ¡ °{100}
hf

(1.32)

in terms of material parameters speci¯c to these orientations.
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Thompson and Carel (1995) have experimentally studied texture evo-

lution in Ag thin ¯lms and have shown that the competition between strain

energy minimization and surface energy minimization leads to ¯lm textures

that are consistent with the transition predicted by (1.32). Figure 1.38

shows their experimental results on texture evolution in Ag polycrystalline

thin ¯lms of di®erent thicknesses as a function of temperature excursion

¢T from the deposition temperature. Here, the Ag ¯lms were deposited on

MgO(100) substrates coated with amorphous silicon oxide. The solid line in

this ¯gure denotes the texture transition condition predicted by (1.32).

It should be noted that this discussion has presumed from the outset

that the deformation of the polycrystalline ¯lms involved only elastic strains

and thermal expansion strains. With the progression of grain growth, the

yield strength of the ¯lm is expected to decrease. For the case of face-

centered cubic materials, grains with f110g or f210g texture promote plastic

°ow at lower stresses than do f100g or f111g textured grains. The onset of

plastic yielding may favor the growth of the former textures over the latter

two possibilities due to the lower yield strength in the former instance.

Excess vacancy reduction

The deposition of a crystalline ¯lm onto a substrate at relatively low tem-

perature can result in a distribution of vacancies throughout the ¯lm that

is in excess of the equilibrium concentration at the deposition temperature.

This structure is essentially a substitutional solid solution with the vacancies

dissolved in the ¯lm grains. There is an energetic driving force acting on a

vacancy near the growth surface of the ¯lm during deposition that tends to

draw the vacancy out of the material. An excess vacancy concentration can

be incorporated into the material if the rate of advance of the growth front

is greater than the di®usive °ux of vacancies through the instantaneous po-

sition of the growth surface; the vacancy di®usivity is strongly dependent

on growth temperature. If a crystallite containing an excess concentration

of vacancies would be free of boundary constraint, then the concentration

could decay in time to the equilibrium concentration by vacancy di®usion,

with excess vacancies leaving the crystal through its boundary. In e®ect,

the vacancies are annihilated at the crystal boundary. No stress is gener-

ated through vacancy annihilation within an unconstrained grain, as long as

vacancy concentrations are spatially uniform, but the volume of the grain

decreases by an amount proportional to the number of vacancies removed.

For purposes of this discussion, it is assumed that this volume contraction

is isotropic.

If the boundary surface of the grain in a ¯lm is constrained against
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displacement due to its attachment to the substrate or to adjacent grains, it

follows immediately that stress must be generated in the grain upon di®usion

of vacancies out of the grain. It is also possible for a grain boundary atom

to combine with a vacancy, resulting in annihilation of the vacancy and

generation of tensile stress in the grains forming the grain boundary as the

interface reconstructs to account for the atom removed. In any of these

cases, the number of atoms in a grain remains unchanged as the number of

vacancies is reduced.

The vacancy volume −vac can be de¯ned in the following way. If an

initially perfect crystal is altered by inserting a number density ½ of vacan-

cies per unit volume throughout its interior without changing the number

of atoms in the crystal, then the crystal undergoes a stress-free isotropic

expansion if its boundaries are unconstrained. If the change in volume per

unit volume is expressed as ½−vac, then −vac is the volume of a vacancy;

its value is commonly assumed to be between one-half and one times the

atomic volume of the material. If the distribution is not dilute, then the

value of vacancy volume could depend on the density itself.

The vacancy creation energy of the ¯lm material is essentially the

cohesion energy. In terms of the equilibrium energy Ef for pair potential

chemical bonding introduced in Section 1.3.2, the energy of cohesion under

the circumstances assumed is on the order of 6Ef for a close-packed structure,

and the energy change associated with movement of an interior atom to the

surface may be half as large. If ½0 is an initial number density of vacancies,

then the change in free energy associated with a reduction in vacancy number

density to ½ is estimated to be roughly Evac = ¡3(½0 ¡ ½)Ef .
The stress free isotropic extensional strain associated with reduction

in vacancy concentration from ½0 to ½ is ¡1
3(½0 ¡ ½)−vac. If the ¯lm is

free to contract in the thickness direction but is constrained from changing

its in-plane dimensions by the substrate, then an equal but opposite equi-

biaxial elastic extensional strain is generated by the reduction in vacancy

concentration. An estimate of the associated increase in elastic energy is

Ee = 1¡ ºf
9Ef

(½0 ¡ ½)2−2vac (1.33)

where Ef is the elastic modulus and ºf is the Poisson ratio of the elastically

isotropic ¯lm. If the free energy change Ee + Evac is minimized with respect

to variations in vacancy concentration, then the tensile stress corresponding

to the minimum value in free energy is approximately

¾ ¼ 4:5
Ef
−vac

: (1.34)
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For example, if Ef = 0:5 eV and −vac = 0:1 nm3 then ¾ ¼ 3:6GPa. The

estimate of stress is indeed very large, indicating that the vacancy reduc-

tion mechanism is potentially signi¯cant. However, there are several other

mechanisms by which the e®ect of this mechanism could be mitigated. These

include formation of interior or grain boundary cavities with increasing vol-

ume which could absorb vacancies without generating stress, motion of stress

relieving dislocations through the grains, atomic di®usion along grain bound-

aries, and so on.

Stress generation in sputtering deposition

The deposition of thin ¯lms by sputtering processes leads predominantly

to compressive stresses. Two features distinguishing sputtering deposition,

as described in Section 1.2.1, from deposition by vapor condensation are

the relatively high kinetic energies of atoms arriving at the growth surface

and the argon atmosphere of the growth chamber. The bombardment of

the growth surface by the energetic atoms arriving there can lead to the

generation of excess interstitials in the near surface region. It has been

observed that the amount of damage induced at the surface depends on

both the energy of the arriving atoms and the background pressure of the

inert gas.

Figure 1.39 shows results of average ¯lm stress multiplied by ¯lm thick-

ness, which were derived from the deposition thin ¯lms of a wide range of

materials onto glass wafer substrates surrounding dc cylindrical magnetron

sputtering sources. The ¯lm stresses were inferred from interferometric ob-

servations of the de°ection of the glass wafer substrate with respect to an

optical °at. Large compressive stresses, up to several GPa in magnitude,

evolve in these materials at argon pressures typical of common sputter de-

position processes. It was found that the occurrence of compressive internal

stresses in the sputtered ¯lms correlates with the presence of entrapped

argon in the ¯lms. However, large changes in argon content (where the

atomic concentration of argon varied from 0.02% to 2%) do not lead to ap-

preciable changes in the magnitude of the compressive stresses (Thornton

et al. 1979). As seen in Figure 1.39, low sputtering pressures and low de-

position rates lead to the evolution of compressive internal stresses. An

examination of the zone model illustrated in Figure 1.21 reveals that the

formation of columnar grains is restricted at low gas pressures. Lower gas

pressures during °ight of the target atoms lead to less loss of energy through

collisions and, as a result, the arriving source atoms would be expected to

have a higher energy.

On the basis of these observations, Thornton and coworkers postu-
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Fig. 1.39. Average internal stress versus argon pressure of Cr, Gd, Rh, Mo and Ta
sputter-deposited ¯lms, taken from the works of Thornton (1977) and Thornton et
al. (1979). Also shown are results for an electroplated Cr target from Ho®man and
Thornton (1979).

lated that the `atomic peening' process which induces damage at the surface

either during forward bombardment of high energy atoms or during atomic

recoil, is the primary cause of compressive intrinsic stresses during sput-

ter deposition. It is also interesting to note that the argon gas pressure at

which the transition from compressive intrinsic stresses to tensile stresses

occurs directly correlates with the atomic mass of the deposited material;

an increase in atomic mass leads to an increase in the gas pressure at which

the stresses change from compression to tension, as shown in Figure 1.40.

This trend also provides evidence for the mechanism of atom peening, with

materials with larger masses producing more compressive stresses through

increased damage.

Argon entrapment is believed to contribute to the intrinsic stress build-

up; however, it is not regarded as the principal mechanism. Although mech-

anisms underlying the evolution of compressive stresses in sputter-deposited

thin ¯lms remain largely unexplored, atom peening of surfaces is commonly

regarded as the main source of intrinsic stresses and as the chief reason for

a stress generation process which is distinctly di®erent from that seen in

vapor-deposited ¯lms.
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1.9 Consequences of stress in films

Several inferences can be drawn from the foregoing discussion. For one

thing, it is very di±cult to avoid the introduction of residual stress in the

course of fabrication of thin ¯lm and multilayer material structures. Fur-

thermore, the understanding of the relationship between states of residual

stress and the processing conditions through which they were introduced

is only qualitative in most cases. This residual stress can induce a variety

of consequences which are undesirable in those circumstances { excessive

deformation, fracture, delamination and microstructural changes in the ma-

terials. Nonetheless, such structures have been inserted into engineering

systems in order to accomplish a wide range of practical service functions.

The success of this endeavor has been enabled, to a large extent, through

research leading to the development of ways to measure residual stress in

small structures and by the identi¯cation of frameworks for characterizing

the resistance of material systems to failure. At this juncture, the need to

ensure mechanical integrity continues to be a technology limiting factor in

adoption of small material structures, even in situations where load carrying

capacity is not an eventual functional factor.

The purpose of the chapters that follow is to summarize the results
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of the research e®ort underlying the use of these material systems. The

presentation is loosely organized according to the scale of the dominant

physical phenomena involved. Accordingly, the discussion begins with the

study of overall deformation of ¯lm-substrate systems or multilayer struc-

tures in Chapters 2 and 3. This is followed by examination of the general

failure modes of fracture, delamination and buckling of ¯lms in Chapters 4

and 5. Finally, on a smaller scale, the focus is on the ways in which stress

can a®ect microstructural features through dislocation motion in Chapter 6,

plastic deformation in Chapter 7, and evolution of surface morphology and

alloy composition in Chapters 8 and 9.

1.10 Exercises

1. A well-known practical example of homoepitaxy is the deposition, by CVD
vapor phase epitaxy, of a single crystal Si ¯lm on a Si wafer. This is one of
the primary steps in the manufacture of bipolar transistors and some metal{
oxide semiconductor (MOS) transistors. Explain why an epitaxial Si ¯lm on
Si is deposited while the Si substrate alone could well su±ce as the material
for the required electronic and mechanical response?

2. Body-centered cubic Fe can be epitaxially grown on GaAs which has a zinc-
blende structure. An Fe ¯lm is grown on a (110) GaAs substrate. The lattice
constant of Fe is 0.2866 nm while that of GaAs is 0.5653 nm. Consequently,
two Fe unit cells could be accommodated into one unit cell of GaAs. Noting
that the epitaxial geometry of (110) Fe k (110) GaAs is equivalent to [200]
Fe k [100] GaAs, calculate the mis¯t strain for [001] Fe grown on a [001]
GaAs substrate.

3. There is a similarity between the hexagonal close-packed (HCP) and body-
centered cubic (bcc) crystal structures.

(a) Show which plane in the bcc structure is similar to the basal plane in
the HCP structure.

(b) Draw the arrangement of atoms in this plane and determine the stack-
ing arrangement normal to this plane in the bcc structure. Is the
stacking the same as in the HCP arrangement?

4. Ge and Si form a completely miscible binary solid solution, GexSi1¡x, over
the entire composition range, x = 0 to 1. Using the binary phase diagram of
Ge{Si and a speci¯c composition, x = 0.5, explain why it is practically di±-
cult to grow high-quality Ge{Si alloy single crystals of uniform composition
using bulk crystal growth methods.

5. Refer to Figure 1.17 and estimate the following.

(a) The mis¯t strain between a layer of GaAs and AlAs.
(b) The bandgap energy of a cladding layer of Al0:3Ga0:7As.
(c) The mis¯t strain between a layer of Al0:3Ga0:7As and a GaAs sub-

strate.
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6. The volume change associated with the annihilation of vacancies located at
grain boundaries oriented normally to the plane of a thin ¯lm was discussed
in Section 1.8.6. Although a volume change occurs at any site in a thin ¯lm
where a vacancy is annihilated, this process need not always result in the
generation of an internal stress. Provide a simple mechanistic justi¯cation
for each of the following statements.

(a) The annihilation of a vacancy located at the free surface of the ¯lm,
or at the internal surface of a large void (whose dimensions are much
larger than the atomic dimensions), or at the ¯lm{substrate interface
and grain boundaries oriented parallel to the plane of the ¯lm, does
not lead to any signi¯cant intrinsic stress.

(b) If an atom located on the extra half plane of an edge dislocation
replaces a nearby vacancy site, a tensile intrinsic stress is generated
if the Burgers vector, b, of the dislocation lies within the plane of
the ¯lm; no stress is produced if b is normal to the ¯lm{substrate
interface.

7. Consider a ¯lm{substrate system where the thicknesses of the ¯lm and the
substrates are hf and hs, respectively. Let °f be the surface energy/unit
length or surface tension at the free surface of the ¯lm; °s is the surface
tension of the free surface of the substrate; and °int is the surface energy
per unit length associated with the ¯lm{substrate interface. In the absence
of any other stresses in the ¯lm, estimate the magnitude of the ¯lm stress
arising solely from the surface stress e®ect following the discussions presented
in Section 1.3.4.

8. The epitaxial growth of magnetic thin ¯lms on crystalline underlayers was
discussed in Section 1.4.4.

(a) For the CoCrTaPt alloy grown epitaxially on the [110]-textured Cr
underlayer, show that the resulting epitaxial geometry is: f1011gCo k
f110gCr.

(b) Illustrate how the above epitaxial geometry forces the c-axis of the
Co alloy to be out of the plane of the ¯lm.

(c) For the CoCrTaPt alloy grown epitaxially on the [112]-textured NiAl
underlayer, show that the resulting epitaxial geometry is: f1010gCo k
f112gNiAl.
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Film stress and substrate curvature

The existence of residual stress in ¯lms deposited on substrates and the

e®ects of such stress on delamination and cracking were recognized as early

as the nineteenth century. For example, an antimony ¯lm deposited on a

substrate was found to be prone to cracking as a result of vibration or local

application of heat (Gore (1858); Gore (1862)). Gore ascribed the bending

of the deposited layers to the development of `unequal states of cohesive

tension' through the thickness of the deposit. The Earl of Rosse (circa 1865,

cited in Nature, Aug. 20, 1908, p. 366) attempted to make °at mirrors by

chemically coating glass with silver and then electroplating with copper. It

was noted that the contraction of copper ¯lm caused it to be detached from

the glass. Stoney (1909) found that copper electrodeposited as a protective

layer on silver ¯lms in searchlight re°ectors easily `peeled o®' when the

thickness of the copper layer was in excess of 10 ¹m.

Stoney (1909) made the observation that a metal ¯lm deposited on a

thick substrate was in a state of tension or compression when no external

loads were applied to the system, and that it would consequently strain the

substrate so as to bend it. He suggested a simple analysis to relate the

stress in the ¯lm to the amount of bending in the substrate. In an attempt

to assess the implications of his analysis, Stoney electrolytically deposited

thin layers of nickel, 5.6 ¹m to 46.2 ¹m in thickness, on 0.31 mm thick steel

rulers which were 102 mm long and 12 mm wide. Using measurements of

the ¯lm thickness, the amount of bending of the steel ruler, and the elastic

modulus of steel, Stoney estimated from his analysis the tensile stress in the

nickel ¯lm to be in the range from 152 to 296 MPa for ¯lm thickness ranging

from 46.2 to 5.6 ¹m, respectively. He also observed that when the rulers

were heated to `a red heat so as to anneal them', they `straightened out to

a considerable extent'.

Although highly sophisticated experimental tools for measuring the

93
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curvature of substrates with thin ¯lm deposits have become available since

Stoney's work, the concepts underlying his analysis have remained the basis

for the estimation of ¯lm stresses in a wide variety of modern applications in-

cluding microelectronics, optoelectronics and surface coatings in structural

components. Stoney's results for curvature and stress in a ¯lm{substrate

system can be derived using a number of di®erent methods. In the next sec-

tion an energy method, which facilitates direct extensions to more complex

multilayer geometries without modi¯cations, is described in detail.

2.1 The Stoney formula

Suppose that a thin ¯lm is bonded to one surface of a substrate of uni-

form thickness hs. It will be assumed that the substrate has the shape of

a circular disk of radius R, although the principal results of this section

are independent of the actual shape of the outer boundary of the substrate.

A cylindrical r; µ; z¡coordinate system is introduced with its origin at the

center of the substrate midplane and with its z¡axis perpendicular to the

faces of the substrate; the midplane is then at z = 0 and the ¯lm is bonded

to the face at z = hs=2. The substrate is thin so that hs ¿ R, and the ¯lm

is very thin in comparison to the substrate. The ¯lm has an incompatible

elastic mismatch strain with respect to the substrate; this strain might be

due to thermal expansion e®ects, epitaxial mismatch, phase transformation,

chemical reaction, moisture absorption or other physical e®ect. Whatever

the origin of the strain, the goal here is to estimate the curvature of the

substrate, within the range of elastic response, induced by the stress associ-

ated with this incompatible strain. For the time being, the mismatch strain

is assumed to be an isotropic extension or compression in the plane of the

interface, and the substrate is taken to be an isotropic elastic solid with

elastic modulus Es and Poisson ratio ºs: the subscript `s' is used to denote

properties of the substrate material. The elastic shear modulus ¹s is related

to the elastic modulus and Poisson ratio by ¹s =
1
2Es=(1 + ºs).

Imagine that the deformation is produced in the following way. The

substrate is initially separate from the ¯lm, stress-free and undeformed, as

shown in Figure 2.1. The isotropic membrane force f , with physical dimen-

sions of force/length, is maintained in the ¯lm by some external means. The

magnitude of f is such that it induces the prescribed elastic mismatch strain

in the free ¯lm; f may be positive or negative. If the incompatibility arises

from a stress-free transformation strain of the ¯lm material with respect to

the substrate material, then the elastic mismatch strain and the stress-free

transformation strain are equal in magnitude but opposite in sign. The
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Fig. 2.1. Film and substrate separated, but with distributed force f acting on the
¯lm edge so that its strain is exactly the mismatch strain. This loading gives rise
to an equi-biaxial state of stress at each material point in the ¯lm; such a state of
stress with magnitude ¾ is illustrated on the right side.

strained ¯lm is then brought into contact with the substrate surface and

bonded to it, after which the external means of maintaining the ¯lm tension

is relaxed. It is in the course of this relaxation that the substrate becomes

strained.

Substrate deformation is analyzed by invoking a number of assump-

tions, the range of validity of which will be probed in subsequent sections in

this chapter. It is assumed that:

¡ the substrate deforms according to the Kirchho® hypothesis of thin

plate theory, with the general expectation that the normal stress

component ¾zz = 0 everywhere, and that material lines that are

straight and perpendicular to the midplane of the substrate prior to

deformation remain so after deformation, so that ²rz = ²θz = 0;

¡ all components of displacement gradient are very small compared to

unity in the substrate so that the linear theory of elasticity can be

applied;

¡ the properties of the ¯lm{substrate system are such that the ¯lm

material contributes negligibly to the overall elastic sti®ness, and

¡ the membrane force f in the ¯lm is a system parameter determined

by the mismatch strain alone, and that the change in the magnitude

of the membrane force due to the deformation of the substrate is

small compared to the magnitude of f .

Certain assumptions are also invoked concerning the deformation it-

self. It is assumed that:
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Fig. 2.2. Free system with curvature due to mismatch strain represented as sum of
two deformation states which are depicted here.

¡ the deformation is axially symmetric so that ²rθ = 0 throughout and

all ¯elds are independent of µ;

¡ the curvature of the substrate midplane surface ∙ is spatially uniform;

¡ the in-plane strain of the midplane is a uniform, isotropic extension

²o so that ²rr(r; 0) = ²θθ(r; 0) = ²o, and

¡ localized edge e®ects around the periphery of the ¯lm, the principal

site of load transfer between the ¯lm and substrate, could be ignored

at least for the time being. The load transfer mechanism associated

with ¯lm edge e®ects will be discussed in Chapter 4.

As a result of symmetry and translational invariance, the deformed shape of

the midplane is spherical. This is a good approximation provided that the

material is nearly isotropic and the deformation is small.

For the system features outlined above, the strain energy density at

any point in the substrate material is expressible in terms of the nonzero

strain components as

U(r; z) =
¹s

1¡ ºs

h
²2rr + ²2θθ + 2ºs²rr²θθ

i
: (2.1)

For small deformation, the elastic strains appearing in (2.1) are conveniently

expressed in terms of u(r) and w(r), the radial and out-of-plane displacement

components, respectively, of points on the substrate midplane, as

²rr(r; z) = uI(r)¡ zwII(r) ; ²θθ(r; z) =
1

r
u(r)¡ z

r
wI(r); (2.2)

where the prime denotes di®erentiation with respect to the argument.
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The strategy adopted is to select plausible parametric forms for u(r)

and w(r), and then to invoke the principle of stationary potential energy to

determine optimal values of the parameters involved to minimize potential

energy. For small de°ections, the radial deformation and the out-of-plane

or transverse deformation are uncoupled and a choice for the midplane dis-

placement is

u(r) = ²or ; w(r) =
1

2
∙r2; (2.3)

where ∙ represents the curvature, or inverse of the radius of curvature, of

this plane. This is a reasonable choice because, in the absence of the edge

e®ects, points on the substrate midplane are indistinguishable and therefore

the curvature should be spatially uniform over the midplane. The in-plane

normal strain is ²θθ = ²rr = ²o ¡ ∙z where ²o represents the extensional

strain of the substrate midplane and ∙z denotes the extensional strain due

to the bending at any position z with respect to the midplane of the sub-

strate. Because the state of the key deformation is equi-biaxial strain at each

point of the substrate, the resistance to the deformation can be represented

in terms of the biaxial elastic modulus of the substrate material, which is

denoted by Ms. In an isotropic material, the biaxial elastic modulus is the

ratio of equi-biaxial stress to equi-biaxial strain. In the present instance, its

dependence on the elastic modulus Es and Poisson ratio ºs becomes evident

by noting that the extensional strain ²rr in the substrate midplane is given

by

²rr =
¾rr
Es

¡ ºs
¾rr
Es

=
¾rr
Ms

; (2.4)

and similarly for the circumferential direction or for any other direction in

the substrate midplane. Thus, the biaxial modulus of the substrate material

is Ms = Es=(1¡ ºs).

The strain energy density throughout the substrate is U(r; z) = Ms (²o ¡ ∙z)2,

where Ms denotes the biaxial modulus of the substrate. The total poten-

tial energy of the substrate in the state represented by the lower portion of

Figure 2.2, following relaxation of the external agent, is

V (²o; ∙) = 2¼

Z R

0

Z hs/2

−hs/2
U(r; z) r dz dr + 2¼f ur(R; hs=2)R

(2.5)

= ¼R2Mshs
³
²2o +

1
12∙

2h2s

´
+ 2¼R2f

³
²o ¡ 1

2∙hs
´
;

where the sign of the external potential energy term is determined by the

fact that the substrate is strained by negating the membrane force f as
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indicated in Figure 2.2. Within the class of permissible deformations, the

equilibrium midplane deformation, represented by ²o and ∙, is that which

renders the total potential energy V stationary with respect to variations in

its arguments, that is, @V=@²o = 0, and @V=@∙ = 0. It follows from (2.5)

that

²o = ¡ f

Mshs
; (2.6)

andy

∙ =
6f

Msh2s
: (2.7)

The sign of curvature is the same as the sign of f . For the case of a tensile

mismatch stress, the face of the substrate bonded to the ¯lm becomes con-

cave whereas, for a compressive mismatch stress, the face of the substrate

bonded to the ¯lm becomes convex. If hf is the thickness of the ¯lm, then

the mean stress ¾m in the ¯lm is

¾m =
f

hf
: (2.8)

The expression for curvature in (2.7) is the famous Stoney formula

relating curvature to stress in the ¯lm (Stoney 1909). Stoney's original

analysis of the stress in a thin ¯lm deposited on a rectangular substrate was

based on a uniaxial state of stress. Consequently, his expression for curvature

did not involve use of the substrate biaxial modulus Ms. Consequently,

(2.7) can be applied in situations in which mismatch derives from inelastic

e®ects. However, the relationship (2.7) is based on Stoney's concept as

outline in this section, and it has become known as the Stoney formula. It

has the important property that the relationship between curvature ∙ and

membrane force f does not involve the properties of the ¯lm material. The

elastic mismatch strain ²m corresponding to the stress ¾m given in (2.8) is

²m =
f

Mfhf
(2.9)

where Mf is the biaxial elastic modulus of the ¯lm material and hf is the ¯lm

thickness. The Stoney formula (2.7) serves as a cornerstone of experimental

work in which stress values are inferred from curvature measurement in thin

¯lms bonded to substrates; several experimental techniques are discussed in

later sections of this chapter.

† The result (2.7) is enclosed in a box to highlight it as a result of broad significance and utility.
The practice of identifying principal results in this way is followed throughout the book.
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As a secondary result, the location of the unstrained neutral plane in

the substrate, at z = znp say, can be determined from (2.6), (2.7) and (2.2).

The condition that ²rr(r; znp) = 0 implies that

znp =
²o
∙

= ¡1
6hs: (2.10)

Thus, the neutral plane always lies at a distance 1
6hs from the midplane of

the substrate and in the direction away from the ¯lm, no matter what the

sign or magnitude of f might be. It is also noted that ∙hs À 1, to the

level of approximation assumed in deriving the Stoney formula (2.7). This

implies that the di®erences among the curvatures of the midplane, neutral

plane, top face and bottom face of the substrate are negligibly small.

The results in (2.7) can be obtained by a number of di®erent ap-

proaches. For example, the lower portion of Figure 2.2 implies that the

deformation of the substrate is due to a compressive force f per unit length

around its periphery and a bending moment fhs=2 per unit length around

its periphery. The Stoney formula follows from these observations and a

force balance approach to derivation of the result is developed more fully in

later sections. However, use of the energy method outlined above is justi¯ed

by the fact that it can be applied without modi¯cations in order to handle

more complicated cases. Much of the discussion in the remainder of this

chapter is devoted to examining various extensions of the simple develop-

ment in this section. This discussion should lead to a better understanding

of the limitations on the use of the Stoney formula (2.7) and to more detailed

results which relax some of the restrictions on the range of validity of the

Stoney formula.

2.1.1 Example: Curvature due to epitaxial strain

Suppose that a single crystal ¯lm of thickness hf = 100 nm of a SiGe alloy is grown
epitaxially on a Si substrate of thickness hs = 1 mm. The alloy is composed of
80 atomic percent Si and 20 atomic percent Ge, and is commonly designated by
Si0:8Ge0:2. The mean lattice parameter at room temperature of Si0:8Ge0:2 alloy is
aSiGe ¼ 0:8aSi + 0:2aGe = 0.5476 nm, while the lattice parameter of Si at room
temperature is aSi = 0.5431 nm. The interface between the alloy and substrate is
the f100g plane of each material. The biaxial moduli Mf and Ms for the ¯lm and
substrate, respectively, are estimated by using the elastic sti®nesses, shear moduli
and fractional concentrations for the principal crystallographic directions, and by
using linear interpolation between the values for Si and Ge separately to determine
the properties of the SiGe alloy. The properties of the constituent materials are
MGeh100i = 142GPa and MSih100i = 180:5GPa, from which it is found by linear
interpolation thatMf = 173 GPa andMs = 180.5 GPa. Determine (a) the mismatch
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strain of the ¯lm with respect to the substrate at room temperature, (b) the stress
in the ¯lm due to the mismatch strain, and (c) the curvature of the substrate
containing the ¯lm.

Solution:

(a) The mismatch strain at room temperature is

²m =
aSi ¡ aSiGe

aSiGe
= ¡0:0082: (2.11)

The stress-free lattice paramter of Ge is larger than that of Si. Therefore, the
alloy is compressed in directions parallel to the interface, and consequently,
the mismatch strain is found to be negative.

(b) From (2.9), the corresponding uniform mismatch stress is

¾m = ²mMf = ¡1:43GPa: (2.12)

(c) From (2.7), the change in curvature of the substrate is

∙ =
6f

Msh2
s

=
6¾mhf

Msh2
s

= ¡4:74£ 10¡3 m¡1: (2.13)

Therefore, the change in radius of curvature is ½ = ∙¡1 = ¡221 m. The
result that the curvature is negative implies that the substrate is concave
on the face away from the bonded ¯lm. This is consistent with compressive
mismatch strain in the ¯lm with respect to the substrate.

2.1.2 Example: Curvature due to thermal strain

Consider a thin ¯lm of aluminum, 1 ¹m in thickness, which is deposited uniformly
on the f100g surface of a Si substrate, which is 500 ¹m thick and 200 mm in diam-
eter, at a temperature of 50 C. The thermoelastic properties of the ¯lm are: elastic
modulus, Ef = EAl = 70 GPa, Poisson's ratio, ºf = ºAl = 0.33, and coe±cient of
thermal expansion, ®f = ®Al = 23£10¡6 ±C¡1. The corresponding properties of
the Si(100) substrate are: Ms = MSi = 181 GPa and ®s = ®Si = 3£10¡6 ±C¡1. The
¯lm{substrate system is stress-free at the deposition temperature. Determine (a)
the mismatch strain of the ¯lm with respect to the substrate at room temperature,
that is, at 20 ±C, (b) the stress in the ¯lm due to the mismatch strain, and (c) the
radius of curvature of the substrate.

Solution:

(a) The mismatch strain in the Al ¯lm with respect to the substrate, at room
temperature, is

²m = (®s ¡ ®f)¢T = 6:0£ 10¡4: (2.14)

(b) The equi-biaxial stress in the ¯lm is determined from (2.9) to be

¾m = ²mMf = 62:7 MPa: (2.15)

Note that this is substantially smaller than a typical plastic yield stress for
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aluminum thin ¯lms, indicating that the stress in the ¯lm is elastic at room
temperature.

(c) From (2.7), the curvature of the substrate is

∙ =
6f

Msh2
s

=
6¾mhf

Msh2
s

= 8:31£ 10¡3 m¡1: (2.16)

The radius of curvature is ½ = 120 m. The positive curvature implies that
the substrate is concave on the surface on which the ¯lm is deposited, which
is consistent with a state of residual tension in the ¯lm.

Values of linear thermal expansion coe±cients of commonly used non-

metallic thin ¯lm, interlayer or substrate materials are given in Table 2.1

over a broad range of temperatures of practical interest. Table 2.2 provides

corresponding values of linear thermal expansion coe±cients for polycrys-

talline metals. Table 2.3 lists the room temperature values of elastic modulus

and Poisson's ratio for a wide variety of polycrystalline and amorphous ma-

terials with isotropic elastic properties, which are commonly used as thin

¯lms, interlayers or substrates. The anisotropic elastic properties of cubic

and hexagonal single crystals are given in Tables 3.1 and 3.2, respectively,

in the next chapter.

2.2 Influence of film thickness on bilayer curvature

In the preceding section, an estimate was made of the curvature caused by

the mismatch strain when a very thin ¯lm is bonded to the surface of a

substrate. It was assumed that the change in ¯lm stress due to substrate

deformation was negligible, and that the sti®ness of the system depended

only on the properties of the substrate. These assumptions led to the Stoney

formula (2.7) relating the membrane force in the ¯lm to the curvature of

the midplane of the substrate. The value of ¯lm thickness hf entered the

derivation only peripherally. The issue is re-examined in this section for

cases where the ¯lm thickness hf is not necessarily small compared to the

substrate thickness hs.

Detailed analyses of the e®ects of ¯lm thickness on substrate curva-

ture in bimaterials date back to the early twentieth century, when interest

in the use of thermostatic bimetals began to expand rapidly, as described in

the historical note on thermostatic bimetals in Section 2.2.3. Timoshenko

(1925) and Rich (1934) derived thermoelastic solutions for curvature and

stress evolution in a bimetallic strip as a function of temperature change,

for arbitrary variations in the relative thickness and elastic properties of the
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Table 2.1. Representative values of thermal expansion coefficient ® of

nonmetallic materials used as substrates, films and layers.

Materiala Linear thermal expansion coefficient α Temp. range
in units of (10−6 ◦C−1); T in units of ◦C (◦C)

Si (100) 3.084 + 0.00196 T 20 — 700

Ge (100) 6.05 + 0.0036 T — 3.5×10−7T2 20 — 810

GaAs (100) 5.35 + 0.008 T 10—300

C (diamond) 0.87 + 0.00923 T + 7×10−6T2 0 — 555

polycrystalline 2.5 30 — 350
diamond film

DLC film 2.3 30 — 250
(diamond-like C)

TiN 4.9 + 0.0077 (T+273) — 2.6×10−6(T + 273)2 20 — 1327

polysilicon —0.15 — 3.1×10−3(T + 273) + 4.6×10−5(T + 273)2 —253 — 20
1.6 + 4.4 ×10−3(T + 273) — 1.6×10−6(T + 273)2 20 — 1327

fused SiO2 —1.479 + 0.0111 (T + 273) — 1.432×10−5(T + 273)2 —193 — 20
0.3968 + 9.332 ×10−4(T + 273) — 1.034×10−6(T + 273)2 20 — 727

Ta2O5 0.027 + 0.0094 (T+273) — 5.4×10−6(T + 273)2 25 — 937

α—SiC 3.0 + 0.0028 (T+273) — 4.5×10−7(T + 273)2 20 — 2500

β—SiC 1.6 + 0.0042 (T+273) — 5.9×10−7(T + 273)2 20 — 900

Si3N4 —3.4 + 0.018 (T+273) — 1.2×10−5(T + 273)2 20 — 227
1.7 + 0.0024 (T+273) — 6.3×10−7(T + 273)2 227—1727

Al2O3 —2.5 + 0.033 (T+273) — 2.0×10−5(T + 273)2 —173 — 20
4.5 + 0.0062 (T+273) — 1.5×10−6(T + 273)2 20—1627

ZrO2 13 - 0.018 (T+273) + 1.2×10−5(T + 273)2 20 — 1127

ThO2 5.1 + 0.0075 (T+273) — 2.3×10−6(T + 273)2 —123 — 1727

Cr2O3 10.4 — 0.0062 (T+273) + 3.2 ×10−6(T + 273)2 20—1127

BeO 4.4 + 0.0066 (T+273)— 8.3×10−7(T + 273)2 20—2000

a The entries in this table are taken from the following sources: (1) R.S. Krishnan, R. Srinivasan
and S. Devanarayanan, Thermal Expansion of Crystals, Pergamon Press, New York (1979),
(2) Y.S. Touloukian, R.K. Kirby, R.E. Taylor and T.Y.R. Lee, Thermophysical Properties of
Matter: Thermal Expansion; Nonmetallic Solids, vol. 13, IFI/Plenum Press, New York (1977),
and (3) Tencor Instruments, Film Stress Applications Note 3, Mountain View, CA (1993).

two layers in the strip. Their analyses involved a local equilibrium approach

that invoked translational invariance and symmetry. Similar approaches

have since been exploited to extract curvature and elastic stress ¯elds as

well as certain conditions governing the onset of plastic deformation in mul-
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Table 2.2. Representative values of thermal expansion coefficient ® of

polycrystalline metals used as substrates, films and layers.

Materiala Linear thermal expansion coefficient, α Temp. range
in units of (10−6 ◦C−1); T in units of ◦C (◦C)

W 4.266 + 1.696×10−3(T − 20) — 5.922×10−7(T − 20)2 20 — 1122
5.416 + 3.904×10−4(T − 1122) + 1.327×10−6(T − 1122)2 1122 — 2222
7.451 + 3.308×10−3(T − 2222) + 2.27×10−7(T − 2222)2 2222 — 3327

Mo 4.697 + 1.951×10−3(T − 20) + 2.821×10−7(T − 20)2 20 — 1272
7.583 + 2.658×10−3(T − 1272) + 3.447×10−6(T − 1272)2 1272 — 2527

Al 1.415 + 0.1615(T + 268) — 2.60×10−4(T + 268)2 —268 — 27
23.64 + 8.328×10−3(T − 27) + 2.481×10−5(T − 27)2 27 — 627

Cu 10.73 + 0.0581 (T + 173) — 1.364 ×10−4(T + 173)2 —173 — 20
16.85 + 5.404×10−3(T − 20) + 3.447×10−6(T − 20)2 20 — 1027

Au 11.67 + 0.02694 (T + 173) — 6.351 ×10−5(T + 173)2 —173 — 20
14.51 + 2.426×10−3(T − 20) + 5.043×10−6(T − 20)2 20 — 1027

Ag 16.47 + 7.478×10−3(T + 273) + 1.885×10−6(T + 273)2 —73 — 927

steel 4.337 + 25.46×10−3(T + 273) — 1.334×10−5(T + 273)2 —223 — 727

a The entries in this table are taken from Y.S. Touloukian, R.K. Kirby, R.E. Taylor and T.Y.R.
Lee, Thermophysical Properties of Matter: Thermal Expansion; Nonmetallic Solids, vol. 13,
IFI/Plenum Press, New York (1977), where complete references to original sources of the data
can be found.

tilayers with arbitrary combinations of layer thicknesses and thermoelas-

tic properties (Freund (1993); Suresh et al. (1994); Giannakopoulos et al.

(1995)). Further discussion of the local equilibrium approach is taken up

in Section 2.4.1 in the context of multilayered and compositionally graded

materials, and in Chapter 7 in the context of inelastic deformation in layered

materials.

2.2.1 Substrate curvature for arbitrary film thickness

The issue of ¯lm thickness e®ects on substrate curvature evolution is pursued

now by recourse to the energy minimization method which was introduced

in Section 2.1 for the derivation of the Stoney formula. All other features

of the system introduced in that section are retained in this discussion,

which follows the work of Freund et al. (1999). It is assumed that the

¯lm material carries an elastic mismatch strain in the form of an isotropic

extension ²m (or contraction if ²m is negative) in the plane of the interface;

the physical origin of the mismatch strain is immaterial. The mismatch

strain is spatially uniform throughout the ¯lm material. In this case, ²m is
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Table 2.3. Elastic properties of polycrystalline and amorphous materials.

Materiala Elastic modulus E (GPa) Poisson ratio ν

polycrystalline diamond 974 0.10

diamond-like C (DLC) 110 0.13

TiC 370 — 380 0.19

polysilicon 170 ± 10 0.22

amorphous silicon 80 ± 20 0.22

SiO2 71 0.16

SiC 400 — 445 0.22

Si3N4 280 — 310 0.22

Al2O3 372 0.25

ZrO2 160 — 240 0.26

Cr2O3 105 0.20

WC 450 — 650 0.22

W 385 0.30

Mo 324 0.31

Al 70 0.35

Cu 130 0.34

Cr 279 0.21

Au 78 0.44

Ag 83 0.37

Ta and alloys 150 — 186 0.34

Mg and alloys 41 — 45 0.29

steels 190 — 214 0.30

Ni-base alloys 130 — 234 0.31

Co-base alloy 200 — 248 0.30

Zr and alloys 96 —

polycarbonate 2.6 —

polypropylene 0.9 —

polymethyl methacrylate 3.4 —

a The data are room temperature values taken from: (1) G.W.C. Kaye and T.H. Laby, Tables
of Physical and Chemical Constants, 14th edition, Longman, London (1973), p. 31. (2) M.F.
Ashby and D.R.H. Jones, Engineering Materials I, Second edition, Butterworth—Heinemann,
Cornwall, UK (1997), p. 34. (3) Tencor Instruments, Film Stress Applications Note 3, Moun-
tain View, CA (1993), where details on original sources of the data can be found. The elastic
properties are essentially insensitive to film geometry, but variations in properties could result
from variations in processing conditions, impurity content or property measurement techniques.
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Fig. 2.3. In the upper diagram, the elastic mismatch is maintained by externally
applied traction of magnitude ¾m; there is no interaction between the ¯lm and
substrate in this condition and the substrate is unrestrained. If the externally
applied traction is relaxed, the mismatch strain in the ¯lm induces a curvature in
the substrate as shown in the lower diagram.

a system parameter but it does not necessarily represent the actual strain

anywhere in the material.

The system is depicted in Figure 2.3. The top portion of the ¯gure

shows the ¯lm{substrate system with an arti¯cial, externally applied trac-

tion acting to maintain the mismatch strain ²m; the substrate is unstrained

in this state. The magnitude of the traction necessary to maintain this con-

¯guration is ¾m = Mf²m, and its e®ect is to render the ¯lm compatible with

respect to the undeformed substrate. There is no interaction between the

¯lm and the substrate across the shared interface in this state. Then, the

arti¯cial externally applied traction is relaxed. The result is the deformed

con¯guration shown in the lower part of Figure 2.3. As before, the goal is to

relate the curvature ∙ induced in the substrate midplane to the mismatch

strain ²m and other system parameters.

The description of deformation in which the development in Sec-

tion 2.1 is based is retained. However, if the thickness of the ¯lm is to

be taken into account, then the strain energy of the ¯lm material must be

included in the calculation of total potential energy. This is accomplished

by adopting the strain expression (2.2) for the ¯lm as well as the substrate,

but augmenting it by the elastic mismatch strain ²m in the former case. The

strain energy density throughout the system is then

U(r; z) =

8><>:
Ms (²o ¡ ∙z)2 for ¡1

2hs < z < 1
2hs;

Mf (²o ¡ ∙z + ²m)
2 for 1

2hs < z < 1
2hs + hf :

(2.17)
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The total potential energy of the ¯lm{substrate system is

V (²o;∙) = 2¼

Z R

0

Z 1
2
hs+hf

− 1
2
hs

U(r; z) r dz dr: (2.18)

There is no external potential energy for the deformed state represented in

the lower part of Figure 2.3 as there was in (2.5). In e®ect, the loading is

now represented by ²m rather than by an external force comparable to f .

As in Section 2.1, the actual midplane deformation within the class

of admissible deformations is that which renders the total potential energy

V stationary with respect to variations in ²o and ∙. It follows from the

requirements that @V=@²o = 0 and @V=@∙ = 0 that the curvature is given

by

∙

∙St
=

µ
1 +

hf
hs

¶"
1 + 4

hf
hs

Mf

Ms
+ 6

h2f
h2s

Mf

Ms
+ 4

h3f
h3s

Mf

Ms
+

h4f
h4s

M2
f

M2
s

#−1
;

(2.19)

and that the midplane extensional strain is given by

²o
²o,St

=

Ã
1 +

h3f
h3s

Mf

Ms

!"
1 + 4

hf
hs

Mf

Ms
+ 6

h2f
h2s

Mf

Ms
+ 4

h3f
h3s

Mf

Ms
+

h4f
h4s

M2
f

M2
s

#−1
:

(2.20)

The factors

∙St =
6²m
hs

hf
hs

Mf

Ms
and ²o,St = ¡²m

hf
hs

Mf

Ms
(2.21)

appearing on the left sides of (2.19) and (2.20) are the curvature and mid-

plane extenional strain for this con¯guration according to (2.6) and (2.7).

Consequently, any departure from a value of unity on the right side of (2.19)

or (2.20) represents the in°uence of ¯lm thickness on the ratio ∙=∙St or

²o=²o,St. The curvature implied by the Stoney formula is a limiting case of

(2.19), that is, ∙=∙St ! 1 in the limit as hf=hs ! 0, and similarly for the

extensional strain. Once the midplane curvature ∙ and the midplane exten-

sional strain ²o are known, the components of elastic strain in the substrate

can be determined according to ²rr = ²θθ = ²o ¡ z∙; the strain components

in the ¯lm are given by the same expression with the value of ²m added to

account for elastic mismatch.

The in°uence of ¯lm thickness or, more precisely, the in°uence of the

ratio hf=hs on substrate curvature, is considered here in two ways. First,

the leading two terms in a series expansion of curvature ∙ in powers of hf=hs
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Fig. 2.4. With reference to the expression (2.19) for substrate curvature for any
values of hf=hs and Mf=Ms, the error in the Stoney formula for a system corre-
sponding to parameter values in the region bounded by the two curves and the
coordinate axes is less than 10%.

for any value of Mf=Ms are identi¯ed. The result is

∙ ¼ 6²m
hs

Mf

Ms

hf
hs

∙
1 +

µ
Ms ¡ 4Mf

Ms

¶
hf
hs

¸
; (2.22)

which provides some indication of the range of validity of the Stoney formula.

For example, if Mf = Ms, the second \correction" term within the square

brackets is ¡3hf=hs. Thus, if hf=hs = 0:05, the error inferred in using the

Stoney formula for curvature in this case is 15%. However, this way of

examining the expression for curvature does not re°ect the in°uence of the

sti®ness ratio.

A second way to represent the in°uence of ¯lm thickness on substrate

curvature is to establish the range of both parameters Mf=Ms and hf=hs
for which the error incurred in using the Stoney formula is less than some

prescribed value, say 10%. For example, the range of these parameters for

which ¯̄̄̄
∙hs
6²m

hs
hf

Ms

Mf
¡ 1

¯̄̄̄
∙ 1

10
(2.23)
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Fig. 2.5. The distribution of normalized strain ²rr=²m versus normalized distance
z=hs across the thickness of a substrate-¯lm system for three values of the ratio
hf=hs. The neutral plane of the substrate is located by the value of z at which
²rr=²m = 0. The material properties are such that Mf=Ms = 1.

can be calculated from (2.19); the result is illustrated in Figure 2.4. From

this graph, it is clear that the limitation on the use of the Stoney formula

depends on ¯lm sti®ness as well thickness. If the ¯lm material is more

(less) sti® than the substrate material, then the restriction on ¯lm thickness

becomes more (less) severe.

The equilibrium elastic strain in both the ¯lm and the substrate is

independent of r; the edge e®ects being ignored will be taken up in Chap-

ter 4. The strain components vary linearly with z, with a discontinuity

of magnitude ²m in both ²rr and ²θθ across the interface between the ¯lm

and substrate. The variation of ²rr=²m with z=hs is shown in Figure 2.5

for three ratios of ¯lm thickness to substrate thickness in hf=hs for the case

when Mf=Ms = 1; recall that ²θθ = ²rr in the range of small deformation.

Perhaps the most signi¯cant feature of this ¯gure is that the strain in the

¯lm is already very di®erent from the mismatch strain for the case when

hf=hs = 0:1. This observation highlights the restricted range of validity of

one of the assumptions which underlies the Stoney formula. The results

presented in Figure 2.5 make it clear that the elastic strain in the ¯lm can
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di®er signi¯cantly from the mismatch parameter ²m unless the ¯lm is indeed

very thin compared to the substrate.

To probe the in°uence of modulus ratio, consider the sensitivity of ∙

to Mf=Ms for the case when hf = hs. Then, from (2.19), the curvature is

given by

∙ =
12²m
hs

Mf

Ms

"
1 + 14

Mf

Ms
+

M2
f

M2
s

#−1
: (2.24)

For Mf=Ms = 1, this reduces to

∙ =
3

4

²m
hs

; (2.25)

whereas, for either Mf=Ms =
1
2 or 2, it reduces to

∙ =
24

33

²m
hs

: (2.26)

Thus, the di®erence in curvature between (2.25) and (2.26) is only 3 percent

for a two-fold increase or decrease in the modulus ratio.

The foregoing result suggests that ∙ passes through a local maximum

as the modulus ratio varies from 1
2 to 2 for the thickness ratio hf=hs = 1 and

²m held ¯xed. To pursue this matter further, consider curvature ∙ for ¯xed

²m and hs as a function of thickness ratio hf=hs and modulus ratio Mf=Ms.

To ¯nd the maximum curvature for ¯xed hf=hs under variations in Mf=Ms,

set the partial derivative @∙=@(Mf=Ms) = 0 for the general result in (2.19),

which is satis¯ed for
M2
s

M2
f

=
hf
hs

: (2.27)

Substituting this result into (2.19), the maximum value of curvature is found

to be

∙max = ²m
3

(hf + hs)
for ¯xed

hf
hs

: (2.28)

On the other hand, to ¯nd the maximum curvature for ¯xed Mf=Ms under

variations in hf=hs, with all other parameters being held ¯xed as before, the

requirement that @∙=@(hf=hs) = 0 implies that

h2f
h2s

µ
3 + 2

hf
hs

¶
=

Ms

Mf
: (2.29)

The corresponding curvature is

∙max = ²m
3hs + 2hf

(hf + hs)
2 for ¯xed

Mf

Ms
: (2.30)
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The expressions (2.27) and (2.29) have no intersections in parameter space,

which implies that there is no absolute maximum in curvature over the full

range of Mf=Ms and hf=hs.

2.2.2 Example: Maximum thermal stress in a bilayer

Consider a ¯lm{substrate bilayer system of circular geometry, where the ¯lm and
the substrate have the same thicknesses and biaxial moduli: hf=hs = 1 and Mf=Ms

= 1, and the bilayer diameter, d À (hs+hf). Let the mismatch strain ²m in this case
be a consequence of a temperature change from an initial, stress-free temperature To

to another temperature T , and let the thermal expansion coe±cients of the ¯lm and
the substrate be denoted by ®f and ®s, respectively. (a) Determine the variation of
the radial stress ¾rr and circumferential stress ¾µµ across the thickness of the ¯lm
and the substrate. (b) Find the magnitude and sign of the thermal mismatch stress
as the interface is approached from the ¯lm and from the substrate. Show that the
magnitude of the stress at the interface is independent of the thickness of the ¯lm
or the substrate for a ¯xed thickness ratio.

Solution:

(a) Following the discussion immediately preceding (2.17), the variation of the
radial stress ¾rr through the thickness of the ¯lm{substrate system is written
as

¾rr (z) =

8<: Ms (²o ¡ ∙z) for ¡ 1
2hs < z < 1

2hs;

Mf (²o ¡ ∙z + ²m) for 1
2
hs < z < 1

2
hs + hf :

(2.31)

Since the in-plane dimension of the ¯lm{substrate system is much larger
than its total thickness, an equi-biaxial state of stress can be assumed in the
system (ignoring edge e®ects). Therefore, ¾µµ (z) = ¾rr (z).

(b) From (2.14), note that ²m = (®s ¡ ®f) ¢ (T ¡ To). From (2.19){(2.21), it is
seen that ²o = ¡²m=8 and ∙ = 3²m=(4hs). At the interface between the ¯lm
and the substrate at z = hs=2, the stress values for Mf = Ms = M are

¾rr =

8<: ¡ 1
2
M (®s ¡ ®f) ¢ (T ¡ To) for z = 1

2
hs in the substrate;

1
2
M (®s ¡ ®f) ¢ (T ¡ To) for z = 1

2
hs in the ¯lm:

(2.32)
If (®s¡®f) < 0 and (T¡To) > 0, the normal stress components in the lateral
direction, ¾rr and ¾µµ, are both compressive as the interface is approached
from the ¯lm side, and they are both tensile as the interface is approached
from the substrate. Thus, similar to the trends shown in Figure 2.5 for the
strain components, the magnitude of the stress discontinuity at the interface
can be estimated for the ¯lm{substrate system; the elastic stresses vary
linearly with z in each layer. Equation (2.32) reveals that when the thickness
ratio hf=hs is ¯xed, the peak stresses occur at the interface, and that these
peak stresses are independent of the individual thickness of the ¯lm or the
substrate; they depend only on the thickness ratio. When the biaxial moduli
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of the two materials are the same, the jump in stress across the interface is
M(®s ¡ ®f )(T ¡ T0) = M²m.

2.2.3 Historical note on thermostatic bimetals

A thermostatic bimetal is a layered component made by bonding plates of two
metal alloys with di®ering coe±cients of thermal expansion (CTE). The two alloy
layers, usually of comparable thicknesses, are typically joined together by brazing
or welding. In addition to their di®ering values of thermal expansion coe±cient, the
alloys are chosen so as to minimize deformation hysteresis during thermal excursions
and to have adequate strength. When the bimetal thermostat is subjected to a
temperature change, it undergoes a change of shape which, in turn, is exploited for
the accurate control of temperature or some other function.

The ¯rst documented application of a thermostatic bimetal was in balance
wheel compensators dating back to 1775 (Eskin and Fritze 1940). A United States
patent (No. 24896) was granted to Wilson (1858) for his invention of a thermo-
static bimetal comprising brass and steel layers. Since these alloys do not have a
high thermal expansion mismatch, the shape change or bending produced by the
bimetal during thermal excursion was not su±ciently large for many practical ap-
plications. An analysis of the deformation of thermostatic bimetals was reported
by Villarceau (1863). With the development of a special class of Ni{Fe alloys,
known as `invar', by Guillaume (1897), thermostatic bimetals became the focus
of an increasing number of industrial applications for automatic use of regulating
and indicating devices intended to facilitate enhanced control accuracy, energy sav-
ings and operational e±ciency. Herrman (1920) published a detailed report of the
thermal properties of bimetal strips based on his work conducted for the General
Electric Company. Timoshenko (1925) presented a comprehensive analysis of the
thermoelastic deformation and curvature evolution in bimetallic strips as functions
of the bilayer geometry and mismatch in properties. By the 1930s, bimetals in the
shapes of spirals, helices, disks as well as °at and U-shaped strips had found a wide
range of industrial, automotive, aviation and marine applications.

Thermostatic bimetals were primarily designed to produce a de°ection or
rotation when subjected to a temperature change. In many applications, such as
thermometers, the chief function of the bimetal was that of moving an indicator
dial or pointer. In this case, the only work to be performed was that needed to
overcome the friction of the bearings of the pointer, and the de°ection constant
was the principal mechanical property which entered into design. There were also
many other applications where the bilayer strip was used to perform considerable
work such as lifting components or obtaining snap actions by overcoming stored
elastic or magnetic energy in a system. In such situations, the force constant of the
bilayer strip was an important design input.

The thermostatic bimetal consists of a low expansivity alloy bonded to a high
expansivity alloy. In his investigation of Ni{Fe alloys, Guillaume (1897) discovered
that the addition of 35.4 wt% Ni to Fe (typically containing 0.4% Mn and 0.1%
C) led to a very low value of thermal expansion coe±cient, as shown in Figure 2.6.
Since the dimensions of this alloy were nearly invariant during ordinary °uctuations
in atmospheric temperature, it was given the name `invar'. It is seen from Figure 2.6
that the thermal expansion coe±cient of pure Fe is 11.9£10¡6 (±C)¡1, while that
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Fig. 2.6. The coe±cient of linear thermal expansion ® at room temperature of Ni{
Fe alloys containing 0.4% Mn and 0.1% C. The dotted line denotes the value of ®
predicted by a linear rule of mixtures. (After Eskin and Fritze, 1940.)

of pure Ni is 13£10¡6 (±C)¡1. The dashed line connecting these two limiting values
denotes the theoretical thermal expansion coe±cient values obtained from a simple
law of mixture. As seen by the trend exhibited by the solid line, however, the true
thermal expansion coe±cient values deviate signi¯cantly from those predicted by
the rule of mixture.

Figure 2.7 shows the variation of thermal expansion coe±cient in Ni{Fe al-

loys as a function of temperature for di®erent Ni concentrations. Invar, with a

concentration of 35.4% Ni in Fe, has the lowest thermal expansion coe±cient in

the temperature range 0{100 ±C. Beyond 100 ±C, however, its thermal expansion

coe±cient increases precipitously, making it unsuitable for high temperature appli-

cations. The alloy with 42% Ni in Fe maintains its thermal expansion coe±cient

at a nearly ¯xed value up to a temperature of about 300 ±C, although its thermal

expansion coe±cient is much higher at room temperature than that of invar. Thus

invar found widespread use as a low expansivity alloy for a thermostatic bimetal

for low temperature applications, whereas the 42% Ni alloy became the choice as

a low expansivity metal for a variety of applications involving medium to high

temperatures. For the high expansivity layer of the bimetal, brass became the

common choice for use in conjunction with invar. Subsequent developments led to

the adoption of Monel (for example, commercial alloy Monel 400 with composition:

Ni (63.0% min.), Cu (28.0{34.0 %), Fe (2.5% max., Mn (2.0% max), Si (0.5% max),
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Fig. 2.7. The variation of thermal expansion coe±cient with temperature in several
Ni-containing steels. (After Eskin and Fritze, 1940.)

C (0.3% max), and S (0.024% max)), and Ni{Cr{Fe alloys (typically with 18{27%

Ni, 3{11% Cr and the balance, Fe) as high expansivity alloys in bimetal strips for

medium to high temperature regimes.

2.3 Methods for curvature measurement

The change in substrate curvature induced during ¯lm deposition or tem-

perature excursion provides valuable insight into the evolution of mismatch

stress in the thin ¯lm. As noted earlier, a particularly appealing feature

of curvature measurement is that extraction of the membrane force f from

substrate curvature by recourse to the Stoney formula (2.7) does not involve

the material properties of the ¯lm, provided that the ¯lm is su±ciently thin

compared to the substrate. Substrate curvature measurements also pro-

vide a means to assess the functional properties of thin ¯lms in photonic

and microelectronic applications. For example, strain in ¯lms can mod-

ify the electronic transport characteristics of layered semiconductor systems

through modi¯cation of the bandstructure of the material (Singh 1993).

Methods to measure changes in substrate curvature during stress evo-

lution in a layered material can be broadly classi¯ed into the following
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groups: mechanical methods, capacitance methods, x-ray di®raction meth-

ods, and optical methods. All these techniques, with the exception of x-

di®raction, have the common feature that they provide a measure of the

out-of-plane de°ection of the curved ¯lm{substrate system.

The most common mechanical method of estimating curvature in-

volves a stylus which scans the surface along the radial direction by making

physical contact with it. The resulting record of the out-of-plane displace-

ment w(r) versus distance r from some reference point is converted to the

radius of curvature ½, or curvature ∙, using the relation

∙ =
1

½
=

d2w(r)

dr2
: (2.33)

Since the original substrate is not generally °at, it is essential to measure

the substrate radii of curvature ½1 and ½2 before and after ¯lm deposition,

respectively. Use of the Stoney formula (2.7) provides the average ¯lm stress

in terms of the measured values of the radii of curvature of the substrate as

¾m =
Ms h

2
s

6hf

½
1

½2
¡ 1

½1

¾
(2.34)

provided that the ¯lm is su±ciently thin compared to the substrate.

The capacitance method involves a non-contact probe which records

the changes in capacitance between a reference point in the probe and the

surface it scans as discussed by Marunez et al. (1990), for example. The

radial variation of capacitance change is then converted to w(r), from which

the curvature is estimated using (2.33). Although the capacitance and me-

chanical stylus techniques can provide accurate measures of curvature, they

are not particularly as well suited to monitor curvature changes at elevated

temperature or during °uctuations in temperature. They are also generally

unsuitable for curvature measurements in constrained space, such as inside a

deposition chamber or a high-temperature furnace. Since the geometry and

mounting requirements for the specimen can be restrictive, these methods

are not widely used for in-situ probing of curvature evolution during ¯lm

deposition or passivation.

The x-ray di®raction method, which will be discussed in more detail

in Section 3.6, can also be used to estimate the curvature of a crystalline

substrate by successively determining the Bragg angle for the maximum dif-

fraction intensity at di®erent radial locations on the substrate surface. For

example, consider the geometrical center on the surface of a circular sub-

strate of (100) Si. Using x-ray di®raction, exact Bragg angle at which a peak

occurs in di®raction intensity for the particular crystallographic texture of
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the substrate is determined by oscillating the beam through the Bragg angle.

The beam is then translated radially to a new location on the substrate, and

the new angular position of maximum intensity is determined. The radius

of curvature of the substrate is then the radial distance between the two lo-

cations on surface at which the di®raction measurements are made divided

by the di®erence in the angular position of the intensity maxima (Blech

and Meieran (1967); Van Mellaert and Schwuttke (1972); Blech and Cohen

(1982)). While this method can be fully computerized to provide accurate

measures of substrate curvature in crystalline materials, it is not commonly

used because of the cost associated with the x-ray di®raction setup and the

safety precautions needed for the use of x-rays.

Many of the limitations of the above techniques are overcome by opti-

cal methods which o®er the convenience, accuracy and °exibility to measure

curvature through remote sensing capabilities. In this section, several dif-

ferent optical techniques for the measurement of substrate curvature are

described, and their advantages and limitations are examined.

2.3.1 Scanning laser method

Fig. 2.8. Schematic illustration of the scanning laser method for measuring sub-
strate curvature.

The optical method for measuring substrate curvature is generally con-

venient for in-situ measurement of ¯lm deposition stress in CVD and MBE

systems, provided that optical access is provided to the substrate and that

the specimen is mounted in a manner which facilitates unconstrained curva-

ture evolution in one direction. One of the most common optical methods of
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estimating thin ¯lm stress, particularly for ¯lms deposited on Si wafers used

in microelectronics, involves the re°ection of a laser beam from the substrate;

this technique is often simply referred to as the wafer curvature measure-

ment method, and it has been discussed by Retajczyk and Sinha (1980),

Pan and Blech (1984), Flinn et al. (1987), Volkert (1991), and Schull and

Spaepen (1996), among others. The substrate is ¯xed at one point such that

its position and orientation there are known. Then, a laser beam incident

on the substrate surface is scanned along a straight line, and the angular

de°ection 2£ of the re°ected beam from the incident is measured as a func-

tion of distance r from a reference point. The scanning mirror arrangement,

schematically sketched in Figure 2.8, utilizes a mirror and laser to scan a

single laser beam along the specimen surface. The de°ection of the scanned

beam is monitored through a position-sensitive detector. The curvature is

related to the angle of re°ection of the beam by the relation

∙ =
1

½
=

d2w(r)

dr2
=

d£(r)

dr
: (2.35)

A linear regression analysis of the £ versus r data then provides an estimate

of ∙ from which the mean stress can be determined using the Stoney formula

for a su±ciently thin ¯lm. The e®ect of initial curvature of the substrate is

factored into the stress calculation by comparing the curvatures before and

after ¯lm deposition or thermal cycling, as indicated in (2.34). Commercial

scanning laser systems typically are capable of measuring radii of curvature

as large as several km.

The time involved in scanning a large area of a substrate could also

limit the use of this method as a real-time probe for curvature evolution in

some applications. In addition, a major limitation of this technique is the

sensitivity of this serial scanning method to mechanical vibrations, such as

those commonly encountered in ultra-high vacuum chambers. This limita-

tion could be overcome by the introduction of a beam-splitter in the path

of the laser to introduce multiple incident beams on the specimen, as de-

scribed by Schell-Sorokin and Tromp (1990) and Marunez et al. (1990). The

re°ections of these beams could then be independently monitored by a CCD

camera.

2.3.2 Multi-beam optical stress sensor

This method, schematically shown in Figure 2.9, is an optical technique

which exploits the advantages of a multi-beam output while, at the same

time, obviates the need for a multitude of position-sensitive detectors for
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Fig. 2.9. Schematic of the setup of multi-beam optical stress sensor.

vibration isolation. In this approach (Floro and Chason 1996), an incident

beam from a HeNe laser is directed through a spatial ¯lter with a focusing

objective lens and an etalon which generates multiple, parallel beams that

are targeted at the specimen whose curvature is to be determined. The

beams re°ected from the curved specimen are directly captured by a CCD

camera, thus circumventing the need for position-sensitive detectors. Since

the CCD camera could completely image the re°ected spots, these spots

are easily monitored on a computer screen for focusing the objective lens.

The curvature of a line in the specimen can be determined from the relative

de°ection of the adjacent beams re°ected from points along that line. This

constitutes a distinct advantage over optical measurements that involve a

beam splitter where only a single beam spacing is captured. Information

from a frame grabber can then be numerically analyzed to de¯ne and capture

the pixels around each beam. A two-dimensional grid of re°ected spots,

which provides the mapping of the surface of the curved substrate, can also

be extracted using this method by introducing a second etalon which is

oriented orthogonally to the ¯rst.

If Á is the angle of re°ection of the laser beams, L is the distance be-

tween the specimen and the CCD camera, D is the average spacing between

adjacent re°ected beams, andD0 is the average initial spacing, the substrate
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curvature is calculated from the expression

∙ =
1

½
=

cosÁ

2L

½
1¡

µ
D

D0

¶¾
: (2.36)

A typical resolution of 15 km is achieved for the radius of curvature ½, for

an array consisting of four or ¯ve parallel laser beams. From the substrate

curvature, the ¯lm stress is calculated using the Stoney formula as a function

of ¯lm thickness, thereby providing a complete history of intrinsic stress

evolution during the deposition of the ¯lm on a substrate. For a typical

setup, the deposition of a 1 nm thick Si1−xGex ¯lm with a stress of 50 MPa

(i.e., a membrane force of 50 MPa¢nm) on a 100-nm thick Si substrate is

routinely detected (Floro et al. 1997).

If the re°ected spots are merely translated because of vibration or

rigid-body motion of the specimen (as, for example, during ¯lm deposition

or heating), realignment of the camera is not necessary because the CCD

array has a large active area. Since all the laser spots move in unison during

vibration, such external noise does not introduce any change in the measured

curvature. The set-up shown in Figure 2.9 provides a compact apparatus

which is given optical access to CVD and MBE systems through standard

viewports.

A limitation of the serial and parallel laser scanning methods and

multi-beam optical stress sensor is that they employ monochromatic beams,

which would lead to di±culties in measuring the curvature of transparent

¯lms with thicknesses of one-fourth the wavelength. These optical methods

also require re°ective surfaces for curvature determination.

2.3.3 Grid reflection method

The grid re°ection method is a simple optical method which provides a full-

¯eld re°ection of a grid or grating from the surface of a curved substrate

(Finot et al. 1997). The working principle of this method is schematically

sketched in Figure 2.10. A °at surface containing a periodic pattern or

grating is placed at a distance G from the re°ective surface of a wafer or a

substrate with deposited ¯lm, with the grid facing the surface of the wafer.

The grid is appropriately illuminated so as to achieve the best image qual-

ity on the wafer. A CCD camera images the re°ection of the grid on the

substrate through a hole in the grid plane, as shown in Figure 2.10(a). As

the substrate curves under the in°uence of the ¯lm stress, the re°ected grid

pattern captured by the camera becomes distorted. Analysis of continuous

changes in the grid pattern during ¯lm deposition or thermal cycling pro-
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Fig. 2.10. The grid re°ection method. (a) Overall set-up. (b) Schematic and de¯-
nition of key dimensions.

vides in-situ and real-time records of radial variations in curvature over the

entire surface of the substrate.

Let the camera be located at a distance L from the re°ective surface

of the substrate, Figure 2.10(b). Consider a point P on the plane of the grid

whose image is located at P I. A straight line linking the point O, which is

the point at which the reference coordinate axes and the camera are located,

with P I intersects the curved substrate surface at M . Provided that the out-

of-plane de°ection of the curved substrate is much smaller than both G and

L, the orientation of the substrate at point M is given by the angle,

®r =
pIr ¡ pr
2G

; (2.37)

where pIr and pr are the radial distances of the points P
I and P , respectively,

from the center of the substrate. It is readily shown from simple geometrical

considerations that

®r =
Ãmr ¡ pr

2G
; Ã =

L+G

L
; (2.38)

where mr is the radial distance of point M from the center. For a °at
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substrate, for which ®x = 0, let mr = mrF . With this de¯nition, (2.38) is

rewritten as

®r =
Ã

2G
(mr ¡mrF ) : (2.39)

In other words, the orientation angle of the surface at pointM for the curved

substrate is proportional to the deviation of the grid point image from that

re°ected from a °at mirror. The substrate curvature is determined to be

∙ =
¢®r
¢mr

=
Ã

2G

½
1¡ ¢mrF

¢mr

¾
: (2.40)

by considering small variations, ¢mr and ¢mrF in mr and mrF , respec-

tively. The accuracy of the curvature values determined by the grid re°ection

method is strongly in°uenced by the distances L and G, and the sensitivity

with which optical images of grid distortion are digitally converted to small

variations in grid point locations, which is essentially determined by the

resolution of the digital camera.

The scanning laser method or the multi-beam optical stress sensor are

convenient for curvature measurement during ¯lm deposition and thermal

cycling when the out-of-plane de°ection of the specimen is much smaller than

the substrate thickness, that is, when deformation is in the geometrically

linear range. On the other hand, the grid re°ection method does not require

the use of a monochormatic optical beam; it is found to be a particularly

useful and simple method for measuring full-¯eld, non-uniform curvature

evolution over large wafers and °at panels where the out-of-plane de°ection

is greater than the substrate thickness. To compensate for errors introduced

by large de°ections, the solution is iterated until a self-consistent de°ection

value is obtained. Variations in the design of this method also include the

use of an array of light-emitting diodes (LEDs) to provide grid points instead

of the grating (Giannakopoulos et al. 2001). An example of the use of the

grid re°ection method for curvature determination is included in Section 2.6.

2.3.4 Coherent gradient sensor method

The coherent gradient sensor (CGS) method is a full-¯eld interferometric

technique that produces fringe patterns by laterally shearing an incident

wavefront. This method, developed by Rosakis et al. (1998) for curvature

measurement in ¯lm{substrate systems, is amenable for use in a variety of

experimental con¯gurations in either a re°ection or a transmission arrange-

ment.

In a typical re°ection experimental setup, shown in Figure 2.11, a



2.3 Methods for curvature measurement 121

Fig. 2.11. Schematic illustration of the experimental setup of CGS in the re°ection
mode. (After Rosakis et al., 1998.)

collimated laser beam illuminates the region of interest on the specimen

which must be specularly re°ective. In a transmission con¯guration, the

beam would be transmitted through the specimen instead. After penetrating

through or re°ecting o® the specimen, the collimated laser light traverses

through two parallel sets of identical, high-density gratings, marked G1 and

G2, that are separated by a distance ¢.

Figure 2.12 is a two-dimensional schematic illustrating the principles of

the CGS method. The ¯gure shows an optical wavefront, S(x1; x2), incident

on the two gratings in which the lines are taken to be oriented along x1.

At the ¯rst grating, G1, the incident wavefront is di®racted into several

wavefronts, E0, E1, E−1, E2, E−2, etc., of which only the ¯rst three are

drawn in Fig. 2.12. Each of these wavefronts, in turn, is di®racted by

the second grating to generate additional wavefronts, such as E0,1, E1,0,

E0,−1, etc. The di®racted beams are combined by a ¯ltering lens to produce

di®raction spots, such as D+1, D0, D−1, etc., in the focal plane of the lens.

One of the di®raction spots, typically the ¯rst di®raction order, that is, the

D+1 spot, is chosen for imaging in a camera with an aperture onto the ¯lm

plane.

The presence of the two gratings in the path of the optical wavefront

generates a lateral shift or shearing or `optical di®erentiation' of the front.

For example, the di®racted beam E1,0, denoted as S (x1; x2 + !), is shifted
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Fig. 2.12. Schematic illustration of the optical path in the CGS method. (After
Rosakis et al., 1998.)

from the beam E0,1, denoted as S (x1; x2), by a distance ! in the x2 direc-

tion. If µ = arcsin (¸=p) is the di®raction angle, where ¸ is the wavelength

of light and p is the pitch of the gratings, the shift distance, ! = ¢tan µ.

For small angles of di®raction, ! ¼ ¢ ¢ µ ¼ (¢ ¢ ¸)=p.
The condition for constructive interference of the original and shifted

wavefronts is given by

S (x1; x2 + !)¡ S (x1; x2) = n(2)¸; n(2) = 0; §1; §2; ::: K; (2.41)

where n(2) is an integer that represents fringes associated with shearing

along the x2 direction, and K is a positive integer. Dividing (2.41) by !,

and taking ! to be su±ciently small, it is seen that

@S (x1; x2)

@x2
=

n(2)¸

!
=

n(2)p

¢
; n(2) = 0; §1; §2; ::: K: (2.42)

This equation can be generalized to represent the shearing of the wavefront

in either the x1 or the x2 direction:

@S (x1; x2)

@xα
=

n(α)p

¢
; n(α) = 0; §1; §2; ::: K; (2.43)

where n(α) denotes the fringes generated as a result of shearing along the xα
direction, with ® 2 f1; 2g. The interferograms formed in the CGS method

are governed by this set of equations.

The relation between the optical wavefront and the re°ector surface

topography can be found by expressing the the specularly re°ective, curved
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surface as

x3 = f (x1; x2) : (2.44)

Using this relation, it can be shown that the wavefront S (x1; x2) can be

reasonably well approximated by 2f (x1; x2). Consequently, the alternat-

ing dark and bright interference fringes correspond to a constant values of

components of the in-plane gradient of f(x1; x2) as follows:

@f (x1; x2)

@xα
¼ n(α)p

2¢
; n(α) = 0; §1; §2; ::: K: (2.45)

This set of equations thus relates the CGS fringe patterns to the in-plane

gradients of the specimen surface described by the functional form of (2.44).

In the present context of thin ¯lms on substrates, the quantity of inter-

est is the local curvature. The curvature tensor ¯eld, ∙αβ, can be determined

directly from the CGS patterns recorded in re°ection by di®erentiating the

fringes of the in-plane gradient:

∙αβ (x1; x2) ¼ @2f (x1; x2)

@xα @xβ
¼ p

2¢

(
@n(α) (x1; x2)

@xβ

)
; (2.46)

where ®; ¯ 2 f1; 2g. In order to determine the full curvature tensor, it is

clear that the gradient ¯eld in two orthogonal directions must be recorded.

Equations 2.46 represent the governing equations that determine the in-

stantaneous curvature tensor ¯eld at any in-plane location (x1; x2) and

they enable the full-¯eld measurement of curvature for the ¯lm{substrate

system. The stress tensor can be calculated from the experimentally deter-

mined curvature ¯eld with appropriate assumptions regarding, for example,

the deformation state. For the simple case of a continuous thin ¯lm on

a substrate, the Stoney formula, (2.7), provides a direct link between the

substrate curvature and the ¯lm stress. Similar connections are derived in

Section 3.9 for the more complex situation involving patterned thin stripes

on substrates.

A system based on the CGS method o®ers several advantages for cur-

vature measurements for thin ¯lms and layered solids. The measurement

provides all the normal and shear components of the curvature tensor. It

also provides full ¯eld information from the entire area of the substrate{¯lm

system. The measurement area could also be scaled as necessary from a few

millimeters to hundreds of millimeters so that large wafers and °at panels

with thin ¯lm deposits are tested. The method involves non-contact mea-

surements which are carried out with an adjustable working distance, and

performed in-situ and in real time as, for example, during thermal cycling,
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or ¯lm deposition, or passivation. The measurement sensitivity is adjustable

by varying the grating separation. Since the CGS technique measures gra-

dients of displacement rather than displacements, no special provisions are

necessary to isolate the system from vibration. The method, however, re-

quires a detailed computer software package, such as that involving Fourier

optics, to provide an automatic and digital record of fringe geometry and

spacing from the optical images so that the curvature tensor could be read-

ily extracted. Examples of the use of the CGS method for determining

substrate curvature will be presented in Section 2.6.

2.4 Layered and compositionally graded films

In some engineering applications involving thin ¯lms and multilayers, di®u-

sion of atomic species occurring during processing and/or service often leads

to local spatial variations in composition and microstructure. Such varia-

tions which may or may not be bene¯cial, could have a marked in°uence

on the evolution of stress, damage and cracking as well as on the overall

mechanical integrity of the layered structure, as described by Suresh and

Mortensen (1998), Kaysser (1999), and Suresh (2001), for example.

Compositional gradients are also purposely introduced in a variety of

engineering situations with the speci¯c objective of enhancing the mechan-

ical performance by controlling stress, inelastic deformation or damage at

speci¯c sites such as surfaces, corners and interfaces. Well-known examples

include tribological protection of gear teeth surfaces through carburizing

and nitriding processes which lead to controlled gradations in carbon and

nitrogen content, respectively, beneath the surface, and ion implantation

used in microelectronic devices and components. Gradations in composi-

tion and microstructure in one or more dimensions can be induced in a con-

trolled manner by recourse to a variety of commercially viable deposition

and synthesis methods such as PVD, CVD, MBE, thermal spray, sintering,

three-dimensional printing and combustion synthesis.

The motivation for the introduction of compositional gradients in thin

¯lms and multilayers arises through e®orts to achieve various technical ob-

jectives. Among these are:

¡ Eliminating abrupt transitions in thermal, elastic and plastic mis-

match across interfaces between dissimilar solids through the intro-

duction of continuous or step-wise gradients in composition can, in

some cases, result in marked reductions in thermal and residual stress

at critical crack nucleation sites such as interfaces and sharp corners
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where interfaces intersect free surfaces. The onset of consequent in-

elastic deformation and damage can also be suppressed or delayed by

such graded interfaces. It is, however, important to note that bene-

¯cial e®ects of grading which promote enhanced mechanical perfor-

mance at some locations can also lead to a more detrimental response

at some other location of the same layered structure. Discussion of

methods to compute stress in graded multilayers is taken up in the

next section.

¡ The corners at which sharp interfaces between dissimilar materials in-

tersect free surfaces are prime sites of crack nucleation where singular

stress ¯elds, similar to those at crack tips, develop. The mechanics

of stress evolution and cracking at such corners will be described in

Chapter 4. An insightful discussion on the use of ¯ne scale layering to

in°uence stress levels near a geometrical stress concentration is given

by Budiansky et al. (1993). Blurring of the interface by grading the

composition may, in some situations, mitigate stress concentrations

at such corners (Erdogan 1995).

¡ Applications requiring surface protection against thermal degrada-

tion or wear necessarily require the deposition of a `thick' coating,

with a surface layer thickness of 1 mm or higher, on a substrate. The

deposition of `thick' ceramic coatings on metallic substrates for ther-

mal protection in the piston head of diesel-engines used in ground-

vehicles or marine applications is a case in point. In such situations,

strong adherence between the coating and the substrate is achieved

through the introduction of step-wise or continuous gradients in com-

position across the interface (Beardsley 1990).

¡ In optoelectronic devices, control of mis¯t dislocation nucleation and

of the kinetics of threading dislocations is essential for the optimal

design of light emitting diodes and quantum wells. Strategies for ma-

nipulating dislocation densities and mobility in such applications will

be discussed in Section 7.3.2. Purposely introducing compositionally

graded bu®er layers between semiconductor substrates and quantum

wells, by recourse to CVD or MBE processing methods, is a practical

method for enhancing the performance of optoelectronic devices.

¡ Spatial gradients in elastic and/or plastic properties at contact sur-

faces are known to have a marked e®ect on the resistance of the sur-
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face to normal indentation and sliding contact damage (Suresh 2001).

Analysis and experiment show that appropriate choices of gradients

in composition beneath the surface could redistribute contact stress

in such a way that the onset of Hertzian cone cracks during nor-

mal indentation or herringbone cracks during frictional sliding could

be suppressed (Giannakopoulos and Suresh (1997); Jitcharoen et al.

(1998); Suresh et al. (1999)).

In this section, the e®ect on substrate curvature of the variation of

mismatch strain and material properties through the thickness of layered

¯lms is analyzed. The derivation of the Stoney formula (2.7) in Section 2.1

refers only to the resultant membrane force in the ¯lm; any through-the-

thickness variation of mismatch strain in the ¯lm is considered only periph-

erally. Film thickness was taken into account explicitly in Section 2.2, but

it was assumed there that mismatch strain and elastic properties of the ma-

terial were uniform throughout the ¯lm. However, there are situations of

practical signi¯cance for which this is not the case. Two of the most com-

mon cases are compositionally graded ¯lms in which the mismatch strain

and the elastic properties vary continuously through the thickness of the

¯lm, and multi-layered ¯lms for which the mismatch strain and the elas-

tic properties are discontinuous, but piecewise constant, from layer to layer

throughout the thickness of the ¯lm. In both cases, the mismatch strain and

the material properties are assumed to be uniform in the plane of the inter-

face. With reference to the cylindrical r; µ; z¡coordinate system introduced

in Section 2.1, the mismatch strain and ¯lm properties are now assumed to

vary with z for ¯xed r and µ, but both are invariant with respect to r and

µ, for ¯xed z.

2.4.1 Nonuniform mismatch strain and elastic properties

All features of the ¯lm{substrate system introduced in Section 2.2 are re-

tained. In addition, it is assumed that the ¯lm material carries a mismatch

strain in the form of an isotropic equibiaxial extensional strain ²m(z) paral-

lel to the interface. This strain may depend on distance from the interface

in an arbitrary way, as suggested by writing the mismatch as a function of

z; this function need not be continuous in z. Similarly, the biaxial elastic

modulus of the ¯lm Mf(z) may vary through the thickness of the ¯lm.

The system is depicted in Figure 2.13 which shows the undeformed

substrate. An externally applied traction acts to maintain the mismatch

²m(z) in the state shown. The magnitude of this traction at a given z is
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Fig. 2.13. An elastic mismatch strain, which varies in an arbitrary way through the
thickness of the ¯lm, is maintained by an externally applied traction. Release of
this traction induces curvature in the substrate.

¾m(z) = Mf(z)²m(z), and its e®ect is to render the ¯lm compatible with

respect to the stress-free substrate. Upon release of this arti¯cial externally

applied traction, the substrate takes on a curvature which is to be estimated.

This is ¯rst pursued on the basis of the principle of minimum potential

energy, followed by a discussion of an equilibrium approach leading to the

formula relating curvature and mismatch strain.

The strain energy density of the system can be written just as in

(2.17), if it is understood that ²m and Mf are now functions of z. To make

the results useful for a broader class of systems, it is convenient to adopt a

slightly modi¯ed notation. First, suppose that the de¯nition of mismatch

strain is modi¯ed so that ²m(z) ´ 0 for ¡1
2hs ∙ z < 1

2hs. In addition,

suppose that the biaxial modulus throughout the system is denoted by

M(z) =

8<:
Ms for ¡1

2hs ∙ z < 1
2hs

Mf(z) for 1
2hs ∙ z ∙ 1

2hs + hf :
(2.47)

Then, the strain energy density can be written as

U(r; z) = M(z) f²o ¡ z∙+ ²m(z)g2 (2.48)

throughout the system. The total potential energy is then

V (²o; ∙) = 2¼

Z R

0

Z 1
2
hs+hf

−1
2
hs

U(r; z) r dz dr

(2.49)

= ¼R2
h
²oC0,0 ¡ 2²o∙C1,0 + ∙2C2,0 ¡ 2∙C1,1 + C0,2 + 2²oC0,1

i
;

where

Cm,n =

Z 1
2
hs+hf

− 1
2
hs

zmM(z)²m(z)
n dz: (2.50)

For any particular system, the quantity Cm,n is constant for any choice of

integer values for m and n.
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If the total potential energy is minimized with respect to variations in

²o and ∙, it is found that, at the minimum value,

∙ =
C1,1C0,0 ¡ C0,1C1,0
C2,0C0,0 ¡ C21,0

; ²o =
C1,1C1,0 ¡ C0,1C2,0
C2,0C0,0 ¡ C21,0

: (2.51)

While these results appear to be simple in form, they are not su±ciently

transparent to permit easy interpretation for the general case. Thus, several

particular cases are pursued in detail. First, the result for curvature obtained

in Section 2.2 is recovered. To do so, it is noted that if Mf(z) and ²m(z)

have the constant values Mf and ²m throughout the ¯lm, the constants in

(2.51) are

C0,0 = hfMf + hsMs ; C1,0 =
1
2afMf (hf + hs)

C0,1 = ²mhfMf ; C1,1 =
1
2²mhfMf (hf + hs) (2.52)

C2,0 = 1
12

³
4h3fMf + 6h2f hsMf + 3hfh

2
sMf + h3sMs

´
:

and the result (2.19) is recovered.

Energy minimization is a powerful tool for establishing global defor-

mation characteristics of a strained ¯lm{substrate system on the basis of a

particular set of assumptions and approximations, as demonstrated above.

Essentially, the same assumptions and approximations can be used as a ba-

sis for a local equilibrium approach to arrive at the same results. Indeed,

by exploiting the features of translational invariance and symmetry, it is re-

vealed that some of the `assumptions' on which the energy analysis is based

are known a priori to be true. These include the vanishing of the normal

stress component ¾zz, the shear stress component ¾rθ and the shear strain

components ²rz and ²θz. This approach was adopted by Freund (1993) and

the main features are sketched out here for future reference.

Consider an observation point in the midplane of the substrate. For

the conditions adopted, the system is invariant under translation of the ob-

servation point in any direction along the midplane so long as edge e®ects

are ignored. It follows immediately that all components of stress are inde-

pendent of position in the midplane. Furthermore, both the top surface at

z = hf + hs=2 and the bottom surface at z = ¡hs=2 are free of traction, so

that all shear components of stress vanish identically, and the normal stress

in the z¡direction is zero everywhere. Furthermore, the normal components

of stress in the lateral direction are identical for isotropic material response,

that is,

¾rr(z) = ¾θθ(z) (2.53)
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in planar cylindrical coordinates. The distribution ¾rr(z) is subject to re-

strictions imposed by overall equilibrium. The absence of any externally

applied loads on the system implies that the net force and net moment on

any cross-section due to internal stress must vanish. In view of the transla-

tional invariance noted above, this condition requires thatZ hf+hs/2

−hs/2
¾rr(z) dz = 0 ;

Z hf+hs/2

−hs/2
z¾rr(z) dz = 0: (2.54)

These conditions do not depend on the particular choice of reference plane

z = 0.

The materials involved are isotropic and linearly elastic; they are also

laterally homogeneous but the properties can vary with z in the thickness

direction. Thus, the extensional strain in any lateral direction is related to

the corresponding stress through the local value of bilateral elastic modulus

M(z). In particular, for the radial direction,

¾rr(z) = M(z)²rr(z); (2.55)

where M(z) is a piecewise continuous function of z.

The total strain in the system is not compatible, which is the feature

that gives rise to residual stress. The incompatibility is readily handled

explicitly, however, so that a compatible di®erence strain can be de¯ned.

Without loss of generality, the midplane of the substrate is chosen as the

reference plane for de¯nition of the mismatch distribution ²m(z). Any strain

of the material in either the ¯lm or the substrate with respect to the reference

plane at the reference temperature is included in ²m(z). The equi-biaxial

di®erence strain ²dif(z) is simply

²dif(z) =
¾(z)

M(z)
¡ ²m(z): (2.56)

When ¾(z) = ¾m(z), the di®erence strain is zero (but the system is not in

equilibrium, in general).

The strain components for any deformation are subject to the condi-

tions of strain compatibility which assure that the strain ¯eld can be derived

from a physically realizable displacement ¯eld. In the present case, the only

compatibility condition which is not satis¯ed identically is ²IIdif(z) = 0. This

condition follows directly from the symmetry and translational invariance

characteristics of the system and is independent of material response. If

the notation introduced above is preserved here, whereby ∙ is the spherical

curvature of the substrate midplane and znp is the location of the plane for
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which the di®erence strain is zero with respect to the reference plane, then

²dif(z) = ¡∙(z ¡ znp): (2.57)

It then follows from (2.56) that

¾rr(z) = M(z) [²m(z)¡ ∙(z ¡ znp)] : (2.58)

The values of the two parameters ∙ and znp then follow from imposition of

the equilibrium conditions (2.54). The results for curvature ∙ and strain of

the substrate midplane ²o are again given by (2.51). The parameters ²o and

znp are related through ∙znp = ²o. The equilibrium approach and the energy

approach provide precisely the same results as long as the approaches are

based on the same systems with the same physical features.

2.4.2 Constant gradient in mismatch strain

Next, the case of a ¯lm with a constant gradient in mismatch strain is

considered, that is, the case of a ¯lm for which

²m(z) =
²top
hf

³
z ¡ 1

2hs
´
; 1

2hs ∙ z ∙ 1
2hs + hf (2.59)

where the mismatch strain increases linearly from zero at the interface z =
1
2hs to ²top at the ¯lm surface. The curvature ∙ of the midplane of the

substrate is compared to the curvature ∙St based on the Stoney formula

(2.7). The Stoney formula is based on the total stress resultant f in the ¯lm

due to the mismatch, discounting any relaxation of strain in the ¯lm due to

deformation of the substrate. Thus, in this case, this force is

f =

Z 1
2
hs+hf

1
2
hs

²top
hf

Mf(z)
³
z ¡ 1

2hs
´
dz: (2.60)

For the present example, it will be assumed that Mf(z) = Mf , a constant,

throughout the ¯lm. In this case, f = 1
2²topMfhf .

If the curvature given by (2.51) is evaluated for the linearly varying

mismatch strain (2.59) and constant ¯lm sti®ness Mf , then

∙

∙St
=

3 + 4´ +m´2

3(1 + 4m´ + 6m´2 + 4m´3 +m2´4)
(2.61)

where m = Mf=Ms and ´ = hf=hs. This result is illustrated in Figure 2.14

for three values of the parameter m. It is evident from the ¯gure that the

normalized curvature is strongly in°uenced by both the modulus ratio and

the thickness ratio.
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Fig. 2.14. Substrate curvature due to a mismatch strain which increases linearly
through the ¯lm thickness for three values of sti®ness ratio. The curvature is
normalized by the value ∙St based on the Stoney formula for this case.

2.4.3 Example: Stress in compositionally graded films

Consider a ternary epitaxial structure in which a linearly graded layer provides a
transition between a uniform substrate and a uniform capping layer of composition
di®erent from that of the substrate. In this example, the substrate is a gallium
arsenide layer of thickness hs and biaxial modulus Ms, and the capping layer is
an indium-gallium arsenide ¯lm of thickness hc and biaxial modulus Mc. Twelve
percent of the gallium sites in GaAs have been replaced by indium to form the
capping layer compound, which is indicated by writing In0:12Ga0:88As. In the
intermediate layer of thickness hg, the indium content of the material varies linearly
from zero at the interface with the substrate to 12 percent replacement of gallium
sites in the compound at the interface with the capping layer. All materials are
assumed to be isotropic elastic materials for simplicity, and both the mismatch
strain and elastic modulus are assumed to vary linearly within the graded layer. The
stress-free lattice parameters of GaAs and InAs at room temperature are 5.653ºA
and 6:058ºA, respectively. The extensional elastic moduli along any cubic axis
are 85:3MPa and 51:4MPa, and the contraction ratios (essentially, Poisson ratios)
along orthogonal cubic axes are 0.31 and 0.35, respectively. Find the distribution of
biaxial stress characterized by ¾rr(z) = ¾µµ(z) as a function of position z through
the thickness of the tri-layer for hc = 0:1hs and for the three values of thickness of
the graded layer hg = 0, 0:5hs, hs.

Solution: The biaxial modulus of the substrate is Ms = Es=(1 ¡ ºs) = 85:3=0:69 =

123MPa. The biaxial modulus of InAs is 51:4=0:65 = 79:1MPa. By linear inter-
polation, the modulus of the capping layer is estimated to be Mc ¼ (0:88£ 123) +
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Fig. 2.15. A compositionally graded InGaAs layer sandwiched between a homoge-
neous layers of GaAs and a homogeneous In0:12Ga0:88As layer.

(0:12 £ 79:1) = 118MPa. The variation of modulus through the thickness of the
structure is then

M(z) =

8>><>>:
Ms ; ¡ 1

2
hs ∙ z < 1

2
hs

Ms

¡
1
2hs + hg ¡ z

¢
=hg

+Mc

¡
z ¡ 1

2
hs

¢
=hg ;

1
2
hs ∙ z < 1

2
hs + hg

Mc ;
1
2
hs + hg ∙ z < 1

2
hs + hg + hc:

(2.62)

The stress-free mean lattice parameter in the capping layer is estimated to
be (0:88£ 5:653ºA) + (0:12£ 6:058ºA) = 5:702ºA. The uniform mismatch strain in
the capping layer, with respect to the substrate, is denoted by ²c and is estimated
to be

²c ¼ 5:653¡ 5:702

5:702
= ¡0:00859: (2.63)

Thus, by linear interpolation, the variation of mismatch strain through the thickness
of the structure is

²m(z) =

8<: 0 ; ¡1
2
hs ∙ z < 1

2
hs

²c
¡
z ¡ 1

2hs

¢
=hg ;

1
2hs ∙ z < 1

2hs + hg

²c ;
1
2hs + hg ∙ z < 1

2hs + hg + hc:
(2.64)

With the variation of modulus and mismatch strain known explicitly in (2.62)
and (2.64), respectively, the values of Cm;n which are required for determining
deformation according to (2.51) can be determined from (2.50); these are

C0;0 =
hsMs

2

∙
2 +

Mc

Ms

hg(2hc + hg)

h2
s

¸
(2.65)

C0;1 =
²chsMs

6

∙
hg

hs
+ 2

Mc

Ms

3hc + hg

hs

¸
C1;0 =

h2
sMs

12

∙
hg(3hs + 2hg)

h2
s

+
Mc

Ms

6hc(hc + hs) + hg(12hc + 3hs + 4hg)

h2
s

¸
C1;1 =

²ch
2
sMs

12

∙
hg(hs + hg)

h2
s

+
Mc

Ms

6hc(hc + hs) + hg(12hc + 2hs + 3hg)

h2
s

¸
C2;2 =

h3
sMs

24

"
2 + 3

hg

hs
+ 4

h2
g

h2
s

+ 2
h3
g

h3
s

+
Mc

Ms
£
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Fig. 2.16. Stress distribution across the tri-layer depicted in Figure 2.15 for three
values of graded layer thickness hg = 0; 0:5hs; hs. The capping layer thickness is
hc = 0:1hs for all cases. Adapted from Freund (1993).

8h3
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2
s + 8hghs + 6h2
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h3
s

#
:

The magnitude of the equi-biaxial strain for any value of z in the structure is

²rr(z) = ²µµ(z) = ²o ¡ ∙z + ²m(z) (2.66)

and the biaxial stress follows from (2.55). Results are shown graphically in Fig-

ure 2.16 for Mc=Ms = in the form of ¾rr(z)=²cMs versus z=hs.

2.4.4 Periodic multilayer film

Consider a periodic multilayered ¯lm consisting of Nλ periods, each of thick-

ness ¸, bonded to a substrate of thickness hs; the overall ¯lm thickness is then

hf = ¸Nλ. A period consists of a single layer of a material with modulus Ma,

thickness ¢ha and mismatch strain ²ma with respect to the substrate plus

another single layer of material with modulus Mb, thickness ¢hb = ¸¡¢ha
and mismatch strain ²mb with respect to the substrate. The quantity Cm,n,

de¯ned in (2.50), can then be evaluated in terms of the parameters Nλ, hs,

Ms, ¢ha, Ma, ¢hb, Mb, ²ma and ²mb. The resulting curvature will again
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be normalized with respect to the approximate form based on the Stoney

formula (2.7). For this case, the unrelaxed stress resultant f appearing in

the Stoney formula is

f = Nλ (fa + fb) = Nλ (¢ha²maMa +¢hb²mbMb) : (2.67)

For purposes of illustration, suppose that the substrate is also com-

posed of material `b' and that all layers have the same thickness, so that

¢ha = ¢hb = 1
2¸, Mb = Ms and ²mb = 0. In terms of the remaining para-

meters ¸, hf , hs, Ms, Ma, and ²ma, evaluation of Cm,n in (2.50) leads to the

values

C0,0 = hsMs +
1

2
hf(Ms +Ma) ; C0,1 =

1

2
hf²maMa

C1,0 =
1

8
hf [2(hs + 2hf)(Ms +Ma) + ¸(Ms ¡Ma)]

C1,1 =
1

8
²mahfMf [2hs + 2hf ¡ ¸] (2.68)

C2,0 =
1

12
h3sMs +

1

8
hfhs [hs(Ms +Ma) + ¸(Ms ¡Ma)] :

The curvature is then given by (2.51). Also, for this case,

∙St =
3²ma
hs

hf
hs

Ma

Ms
: (2.69)

It can be con¯rmed that, if the number of periods in the multilayer is very

large, the expression for curvature is consistent with the result obtained for a

homogeneous layer in (2.19). This can be demonstrated by letting ¸=hs ! 0,

identifying the ¯lm modulus Mf in (2.19) with 1
2(Ms+Ma), and identifying

the mismatch strain ²m in (2.19) with 1
2²ma.

2.4.5 Example: Overall thermoelastic response of a multilayer

Copper is an important material for electronic applications because of its electrical
properties. To compensate for its relatively low yield strength ¾y and moderate
coe±cient of thermal expansion ® it is used in some applications in multilayer
form along with molybdenum, which has a relatively high yield strength and low
coe±cient of thermal expansion. The geometrical arrangement is usually in the
form of a Cu/Mo/Cu tri-layer with thickness ratios depending on the application.
The Cu/Mo/Cu is sometimes bonded to a ceramic, such as Al2O3, to provide a
ceramic chip carrier assembly for use in avionics and telecommunication systems.
The Al2O3 ceramic is brittle and it fails under a tensile stress ¾TS as low as 140
MPa. The requisite material properties for Cu, Mo and Al2O3 are:
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Material E (GPa) ® (10¡6 ±C¡1) ¾y (MPa) ¾TS (MPa)

Cu 117 16.7 140 {

Mo 324 4.8 690 {

Al2O3 300 6.9 { 140

The basic multilayer geometry under consideration is shown schematically in
Figure 2.17. The Poisson ratio of the metallic layers is 0.33 and that of Al2O3 is
0.27. Suppose that the thickness of each Cu layer is hCu = 95.3 ¹m, and that of the
Al2O3 layer is hAl2O3

= 0.762 mm. (a) What should be the thickness hMo of each
Mo layer so that any extensional strain which tends to develop along the interface
in the Al2O3 layer during any temperature change ¢T is compensated by an equal
strain in the multilayer ¯lm? (b) Assuming that the entire multilayer is stress-free
at room temperature, what is the stress state in each layer when the laminate is
subjected to a temperature increase of 40 ±C?

Fig. 2.17. A schematic of the multilayer ¯lm comprising Cu and Mo on an alumina
substrate.

Solution:

(a) Note that the layered Cu{Mo ¯lm is symmetric under re°ection in its mid-
plane. If it is not constrained by the substrate during temperature change,
there would be no gradients in stress across the thickness in any layer and
no tendency for the ¯lm to change its curvature. To render the Al2O3 layer
stress-free for any temperature change ¢T , the resultant biaxial force in the
¯lm must vanish. This will be the case if 2hCu¾Cu + hMo¾Mo = 0 for any
¢T , or

2hCuMCu (®Al2O3
¡ ®Cu) + hMoMMo (®Al2O3

¡ ®Mo) = 0; (2.70)

where a common factor ¢T has been canceled from each term. Solving
(2.70) for hMo yields

hMo =
2 hCuMCu (®Cu ¡ ®Al2O3

)

MMo (®Al2O3
¡ ®Mo )

= 321:2¹m; (2.71)

which is the thickness necessary to keep the Al2O3 substrate free of stress.
In e®ect, hMo has been chosen to make the e®ective coe±cient of thermal
expansion of the multilayer equal to that of the substrate. It is clear from
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(2.71) that this can be achieved only if the coe±cient of thermal expansion
of the Al2O3 substrate is intermediate between the coe±cients of thermal
expansion of the two materials comprising the ¯lm.

(b) For ¢T = 40 ±C, the strain common to all layers is ®Al2O3
¢T = 2:76£10¡4.

The biaxial stress in the Cu and Mo layers, respectively, are then

¾Cu = MCu

¡
2:76£ 10¡4 ¡ ®Cu ¢T

¢
= ¡68:4 MPa

¾Mo = MMo

¡
2:76£ 10¡4 ¡ ®Mo ¢T

¢
= 40:6 MPa: (2.72)

The layer geometry is such that there is no stress in the Al2O3 layer.

2.4.6 Multilayer film with small total thickness

As another example of the result obtained in Section 2.4, consider the case

of a thin ¯lm of total thickness hf ¿ hs which consists of a number Nf of

separate layers deposited on a substrate of thickness hs and modulus Ms.

Suppose that the i{th layer has thickness ¢hi, modulus Mf ;i and mismatch

strain ²m;i with respect to the substrate, where i ranges from 1 to Nf . No

assumptions on periodicity of the layering or on other relationships among

the properties of the individual layers are presumed.

If the expression for curvature ∙ given in (2.51) is evaluated for this

case, and if only those terms of ¯rst order in ¢hi=hs are retained, then it is

found that

∙ =
6

Msh2s

NfX
i=1

¢fi =
NfX
i=1

¢∙St;i (2.73)

where ¢fi = Mf ;i ²m;i¢hi is the membrane force within the i{th layer.

Thus, to ¯rst order in the small parameters ¢hi=hs, the total curvature is

equal to the simple sum of the curvatures that would be induced if each in-

dividual layer would be deposited by itself on the substrate. Each individual

curvature ¢∙St;i is given by the Stoney formula (2.7). The average stress in

the multilayered ¯lm is

¾ave =
1

hf

NfX
i=1

¢fi ; hf =
NfX
i=1

¢hi: (2.74)

In the foregoing development, it is tacitly assumed that the individual

layers in the ¯lm are added sequentially and that the mismatch strain in

each layer depends only on the substrate but not on the order in which

the layers are formed. If this is the case, then (2.73) yields the cumulative

curvature after Nf layers have been added. However, it is noted that the

same reasoning can be applied if the layers are removed sequentially. In the
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latter situation, the change in total substrate curvature due to removal of the

last layer added is ¡¢∙St;Nf . This can be a useful viewpoint, for example, in

a situation in which curvature change cannot be measured during deposition

of the layers, but it can be measured as material is removed from the ¯lm

surface by chemical or other means (Freund 1996).

2.4.7 Example: Stress in a thin multilayer film

A 0:614¹m thick tetraethylorthosilane (TEOS) ¯lm is deposited on a relatively
thick Si wafer. The biaxial stress in the TEOS ¯lm, say ¾TEOS, is estimated from
wafer curvature measurements to be ¡114MPa. A 0:6¹m thick silicon nitride ¯lm is
then deposited on the TEOS ¯lm. The average stress in the bilayer ¯lm (composite
TEOS and silicon nitride layers) is estimated from curvature measurements to be
¡190MPa. (a) If a 0:6¹m thick silicon nitride ¯lm is then deposited on a Si wafer,
estimate the mismatch stress ¾SiN in this ¯lm. (b) Suggest an experimental strategy
for determining the stress in each ¯lm for a two-¯lm stack deposited on a substrate,
without relying on the superposition formula given in (2.74).

Solution:

(a) Using (2.74), ¾SiN is determined to be

¾SiN =
1

hSiN
[¾ave (hTEOS + hSiN)¡ ¾TEOShTEOS] = ¡268 MPa: (2.75)

(b) Consider a substrate on which a single layer thin ¯lm has been deposited.
A second thin layer is then deposited. Assuming that the ¯rst deposited
layer deforms elastically during deposition of the second layer, it is possible
to measure the stress in the second ¯lm by measuring the substrate radius
change before and after the second ¯lm deposition. The stress in the second
¯lm is then obtained simply by measuring the membrane force in the two-
¯lm stack and then subtracting the membrane force of the ¯rst ¯lm, as was
done in (a). There are, however, many material systems and deposition
conditions where the stress in the ¯rst ¯lm could change irreversibly due
to the temperature cycle employed to deposit the second ¯lm. For this
situation, the stress in the second ¯lm could not be extracted using the
simple superposition method given by (2.74). Instead, the second ¯lm could
be preferentially etched, using a wet chemical, without damaging the ¯rst
¯lm. The curvature change of the substrate is then measured before and after
the removal of the second ¯lm by the wet chemical etch; the stress in the
second ¯lm is then estimated from this curvature change. Once the stress in
the second ¯lm is known, the stress in the ¯rst ¯lm could be calculated from
knowledge of the average stress in the two-¯lm stack using (2.74). One may
also compare the radius of curvature of the substrate after the second ¯lm
is etched away with the original radius of curvature of the bare substrate
to calculate the stress in the ¯rst ¯lm. If the two-¯lm stack comprises a
crystalline ¯lm and an amorphous ¯lm, the stress in the crystalline ¯lm
could be measured using x-rays whereas that in the amorphous ¯lm could
be estimated afterwards using (2.74).
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2.5 Geometrically nonlinear deformation range

Because of their relatively low bending resistance (compared to extensional

resistance at comparable strain) and relatively large lateral extent, plate-like

solids are readily deformed into a regime where rotations of material line

elements are no longer small compared to unity, even though strains remain

small. In such cases, it becomes necessary to adopt nonlinear kinematics

for a proper description of deformation. In the present context, this can be

seen by considering the radial extensional strain induced at the substrate

midplane due to transverse de°ection alone. An elementary geometrical

construction illustrated in Figure 2.18 shows this strain to be essentially

ds=dr¡1 ¼ 1
2fwI(r)g2. An instructive exercise is to compare the magnitude

of this quantity to ²o at r = R for the circumstances in which the Stoney

formula (2.7) is `valid', that is, for wI(R) = ∙R and ²o =
1
6∙hs. In this case,

fwI(R)g2
2²o

= 3∙R
R

hs
; (2.76)

which is not always small in magnitude. For example, for hs = 100¹m,

R = 1 cm and radius of curvature of ∙−1 = 10 m, this number is 0.3, a

signi¯cant value compared to 1.

� � �

� � � �

� � � � 	 2 	 � 3 � � � 	 � �

� �

1

Fig. 2.18. Illustration of extensional strain in an in¯nitesimal radial line element in
the substrate midplane due only to transverse displacement of the midplane.

This e®ect arises because the initially °at substrate does not deform

into a developable surface, that as, a surface with zero Gaussian curvature.

As a result, the substrate cannot deform into a spherical cap shape without

stretching or compressing portions of its midplane. The substrate is very

sti® in extension compared to bending, as noted above, and this coupling
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between curvature and stretching tends to sti®en the system response in

comparison to behavior in the linear range.

2.5.1 Limit to the linear range

The e®ect of midplane stretching is incorporated into the model by including

the nonlinear term 1
2fwI(r)g2 in the expression for radial strain in (2.2),

which then takes the form

²rr(r; z) = uI(r)¡ zwII(r) +
1

2
fwI(r)g2 : (2.77)

The origin of the additional term as the extensional strain due to trans-

verse de°ection is evident from the geometrical construction illustrated in

Figure 2.18. It should be noted that the strains are still small and that

Hooke's law is still appropriate as a description of material behavior. The

main point is that the second-order contribution of rotation to strain can

be as signi¯cant as the ¯rst-order linear e®ect. (In terms of the nonlin-

ear strain tensor commonly known as Lagrange strain in material coordi-

nates, the second-order contributions due to stretching are ignored but the

second-order contributions due to rotation are retained; see Fung (1965), for

example.)

In this case, the midplane displacement is assumed to be

u(r) = ²or + ²1r
3 + ²mr ; w(r) =

1

2
∙r2; (2.78)

where it is understood that ²m ´ 0 in the substrate. The term in u(r) which

is cubic in r contributes to ²rr in the same way as fwI(r)g2 and, in a sense,

these two terms compete in minimizing the total potential energy. Also,

once the nonlinear description is adopted, the lateral dimension R must also

enter into an estimate of curvature. Whereas the kinematic `assumption' in

(2.2) turned out to be strictly true within the linear deformation range, as

noted in Section 2.4, there is no basis for expecting (2.78) to be so. The point

in adopting this form of deformation is that it o®ers an additional degree of

freedom in the model to probe the issue of departure from linear behavior.

There is, however, no a priori reason to expect (2.78) to provide an accurate

picture of deformation into the range of nonlinear elastic response.

The requirement that the potential energy must be stationary under

variations in ∙, ²o, and ²1 at equilibrium leads to a nonlinear relationship

between curvature and mismatch strain which is too involved to warrant

presentation here in its most general form. However, there are two useful
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Fig. 2.19. Normalized curvature versus normalized mismatch strain according to
the linear and nonlinear theories. The de¯nitions of ¹²m and ¹∙ for two particularly
useful cases are given in (2.80) and (2.81).

special cases which can both be cast into the form

¹²m = ¹∙
h
1 + (1¡ ºs)¹∙

2
i
; (2.79)

where ¹²m is a normalized mismatch strain and ¹∙ is a normalized curvature

(Freund 2000). For the case when the materials have the same elastic prop-

erties (Mf = Ms) but hf=hs is arbitrary,

¹²m =
3

2
²m

R2hshf
(hs + hf)4

; ¹∙ =
R2∙

4(hs + hf)
: (2.80)

For the case when hf=hs ¿ 1 but the material properties are arbitrary,

¹²m =
3

2
²m

R2

h2s

Mf

Ms

hf
hs

; ¹∙ =
R2∙

4hs
: (2.81)

A graph of ¹∙ versus ¹²m applicable to either case is shown in Figure 2.19,

where it is compared to the linear relationship between curvature and strain

based on the same assumptions, but ignoring nonlinear kinematics. The

most important observation to be made on the basis of this calculation is

that the relationship between curvature and mismatch strain begins to de-

part from linearity at about ¹∙ ¼ 0:3 or ¹²m ¼ 0:3. As an illustration of the
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signi¯cance of this departure, consider the value of mismatch strain to be

inferred from a particular curvature observation. The two values of normal-

ized strain inferred for a `measured' curvature of ¹∙ ¼ 0:9, approximately

¹²m ¼ 0:9 for linear deformation and ¹²m ¼ 1:5 for nonlinear deformation, are

indicated in the ¯gure. The value ¹²m = 1:5 of normalized strain corresponds,

for example, to ²m = 0:01, R=hs = 100, hf=hs = 0:01 and Mf=Ms = 1. The

actual behavior of the system in the range of geometrically nonlinear defor-

mation cannot be established on the basis of this simple model due to the

unfounded assumption of spatially uniform curvature. The case of general

nonlinear deformation without this restriction is considered next.

2.5.2 Axially symmetric deformation in the nonlinear range

The assumption which underlies the derivation of (2.79), that the radial

curvature is uniform everywhere in the ¯lm{substrate system, is an essential

feature of the deformation in the linear range. In the nonlinear deformation

range, on the other hand, there is no basis for expecting the curvature to

be uniform. The ¯nite element method of numerical analysis can be used

to determine the deformed shape of the substrate midplane in the nonlinear

range without a priori assumptions on the distribution of curvature. The

deformation is constrained to be consistent with the Kirchho® hypothesis

but it is otherwise general. In particular, transverse de°ections which are

large compared to the substrate thickness hs are accommodated.

As an illustration, the following situation is considered. A thin ¯lm

is bonded to a circular substrate for which R=hs = 100. The ¯lm thickness

is such that hs=hf = 100 and the ¯lm carries a spatially uniform mismatch

strain ²m with respect to the substrate. The elastic properties of the two

materials are assumed to be identical.

The problem was analyzed in the following way. The approximate

de°ection was computed for values of mismatch strain ²m which spanned

a range of practical interest. An eighth order polynomial in r was ¯t

to the computed transverse de°ection w(r) for each value of ²m, and the

polynomial was di®erentiated to determine the radial curvature ∙(r) =

wII(r)=(1 + fwI(r)g2)3/2. The overall dependence of local normalized ra-

dial curvature ¹∙(r) = R2∙(r)=4hs on mismatch strain and radial position

was then represented by means of a contour plot of ¹∙ on the plane of r=R

versus ¹²m. The result is shown in Figure 2.20 for the case when hs=hf = 100

and R=hs = 100 (Freund 2000). The approximation ∙(r) = wII(r) leads to

results which are nearly indistinguishable from those shown.

With reference to Figure 2.20, the curvature is essentially constant
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Fig. 2.20. Contour plot showing level curves of normalized curvature ¹∙(r) for axially
symmetric deformation in the plane with normalized distance r=R as coordinate
on the horizontal axis and normalized mismatch strain ¹²m on the vertical axis for
ºf = ºs = 1=4. Uniform curvature requires the level curves to be parallel to the
horizontal axis.

over the entire substrate at a given level of mismatch strain as long as the

level curves of curvature are parallel to the radial distance axis for 0 ∙
r=R ∙ 1. This is indeed the case for normalized curvature varying between

zero and a value of about 0.3. Because of the normalization convention for

curvature and mismatch strain adopted here from (2.80), this implies that

the corresponding normalized mismatch strain is also in the range 0 ∙ ¹²m ∙
0:3. Thus, the implied limit on the range of linear response found here is

consistent with the result represented in Figure 2.19.

As the normalized mismatch strain ¹²m is increased above the value 0.3,

the curvature distribution becomes increasingly nonuniform. The general

trend is that the curvature assumes values substantially below the average

curvature for portions of the substrate near its center, and it takes on values

substantially above the average value near the periphery of the substrate.

For example, for a normalized mismatch strain of ¹²m = 2, the normalized

curvature varies from about 0.7 at the substrate center to a value of about
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2.5 at the substrate edge. The result shown in Figure 2.20 is typical as long

as hf=hs ¿ 1, hs=R ¿ 1 and the elastic properties of the ¯lm and substrate

are similar.

Substrate curvature in the geometrically nonlinear range was studied

experimentally by Finot et al. (1997) and Lee et al. (2001). In both instances,

the systems studied comprised metal ¯lms on Si substrates. In the former

study, the substrates had diameters of 15 cm or 20 cm, and thicknesses of

675¹m or 730¹m, respectively. A thin SiO2 layer was ¯rst deposited on a

f100g face of the substrate, followed by a 0.5¹m thick layer of an Al alloy

with 0.5 wt% Cu. Tungsten ¯lms of thickness 0.6¹m, 0.9¹m or 2.4¹m

were deposited on the Al{Cu layer. To broaden the parameter range over

which nonlinear deformation occurred, several substrates were then thinned

by grinding the back side to ¯nal thicknesses between 325¹m and 415¹m.

Substrate curvatures were observed by a standard laser scanning method

(see Section 2.3.1) or, for cases in which the deformations were too large for

use of such a method, by the grid re°ection method (see Section 2.3.3). Lee

et al. (2001) studied Si wafers with nominal diameters of 25mm and nominal

thicknesses of 105¹m. An aluminum ¯lm of thickness 5¹m was deposited

onto a f100g surface of the substrate at a temperature of about 75 ◦C. A wide

range of elastic behavior was probed by varying the temperature between

room temperature and 75 ◦C, with the curvature measured experimentally

by recourse to the coherent gradient sensor method (see Section 2.3.4). In

all cases observed in these two sets of experiments, behavior consistent with

that represented in Figure 2.20 was reported.

Figure 2.21 shows an example from Finot et al. (1997) of the variation

of radial curvature along a radial direction in a 15 cm diameter, 350¹m thick

circular Si substrate on which the presence of a 0.9¹m thick continuous W

¯lm led to a membrane force f ¼ 103N/m. Also plotted in this ¯gure is

the result of a ¯nite element simulation of the evolution of nonuniform cur-

vature for comparison with the experimental observation. It is evident that

the curvature ∙x = ∙y = 0:14m−1 at the center of the substrate is approx-

imately one half of that predicted by the Stoney approximation; nonlinear

deformation is not taken into account in the latter result.

2.6 Bifurcation in equilibrium shape

Consider a thin ¯lm in which a uniform mismatch strain is imposed, with the

magnitude of the strain being increased from an initial value of zero. For

relatively small values of the mismatch strain, the deformed shape of the

substrate is essentially spherical as long as the response remains within the
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Fig. 2.21. Experimentally observed and numerically estimated variation of curva-
ture as a function of radial position, measured from the center of a Si substrate
with a W ¯lm deposit. After Finot et al. (1997).

range of linear deformation. This is the range of behavior that was discussed

in Section 2.2. Once ²m becomes large enough in magnitude to bring the

system into the range of geometrically nonlinear response, the deformed

shape may continue to be axially symmetric, as described in Section 2.5.

However, this deformation mode requires that the substrate must deform in

extension as well as in bending, and the sti®ness against such deformation

is very large compared to bending sti®ness at comparable levels of surface

strain. In contrast, cylindrical bending, or generalized plane strain bending,

can occur with only very limited midplane extension. This suggests that,

as the magnitude of ²m increases, the system may begin a transition, at

some value of ²m, from axially symmetric deformation, as the only possible

equilibrium shape, toward cylindrical bending deformation as an alternate

shape, which is energetically favorable. Conditions at which departure from

spherical curvature of the substrate gives way to other more complicated

modes of deformation mark the onset of the geometrically nonlinear range

of behavior. Such conditions were discussed quantitatively in the preceding

section. In this range of behavior, the local deformation response of the

system at any material point depends on the overall size and shape of the

substrate. If the plan view shape of the substrate is a regular geometric
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shape, such as a square, regular octogon or circle, the curvature distribution

retains the symmetry of the substrate shape well into the nonlinear range.

Eventually, a bifurcation occurs at which the highly symmetric deformation

gives way to a more complex deformed shape. If the substrate does not have

a shape that is highly regular, say a rectangle or a semi-circle, the curvature

deformation also departs from symmetry as soon as nonlinear e®ects become

evident but no sharply de¯ned bifurcation occurs. In this section, attention

is focused mainly on the highly symmetric shapes for which a well-de¯ned

bifurcation state exists. Quantitative estimates are obtained for specifying

this state in terms of system parameters. The same approaches can also

be used to study curvature in ¯lm{substrate systems with less symmetric

substrate shapes.

The in°uence of nonlinear response on equilibrium shape has impor-

tant implications for the design and use of layered materials in a variety

of structural and functional applications. Figures 2.22(a){(c) show three

examples of shapes in three distinctly di®erent engineering situations. The

evolution of a cylindrical shape at room temperature, upon cooling from

the curing temperature, is shown in Fig. 2.22(a) for an unsymmetric, lami-

nated graphite{polyimide composite. The four-layer 0.46 m £ 0.67 m poly-

imide matrix laminate has a graphite ¯ber reinforcement stacking sequence

of [0/{45/90/45]. The driving force for this large deformation is the mis-

match strain induced by di®erential thermal contraction between the layers

upon slowly cooling from the curing temperature of approximately 170 ◦C.
Figure 2.22(b) is an optical micrograph showing the development of cylin-

drical shape in an Al2O3{ZrO2 tapecast ceramic bilayer which was cooled

from a bonding temperature of approximately 1500 ◦C. The thermal mis-

match as well as shrinkage mismatch between the two layers led to curling

and cracking. Figure 2.22(c) is a micrograph revealing the post-bifurcation,

non-spherical shape of a polysilicon disk which is connected at its center to

a monocrystalline Si substrate in a MEMS device.

The issue of bifurcation in equilibrium shape is pursued in two steps.

First, a simple energy approach is taken. The deformed shape of the sub-

strate midplane is assumed to be ellipsoidal so that the shape is characterized

completely by two principal curvatures which need not be the same. Consis-

tent in-plane displacements, which account for midplane stretching, are also

assumed. The principle of stationary potential energy is then invoked to

determine the relationship of the principal curvatures to system parameters

to ensure that the system is in equilibrium. A more detailed examination

of bifurcation on the basis of a ¯nite element simulation, without a priori

restrictions on deformation beyond the Kirchho® hypothesis, is described
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Fig. 2.22. (a) Cylindrical shape of an unsymmetric graphite{polyimide laminate at
room temperature. (NASA photograph L-79-1771. Courtesy of National Aeronau-
tics and Space Administration, Langley Research Center, Langley, VA. Reprinted
with permission.) (b) Photograph showing curling and cracking in an alumina{
zirconia bilayer ceramic. (Courtesy of Augustini and Rowcli®e, 1993. The Royal
Institute of Technology, Stockholm, Sweden. Reprinted with permission.) (c) Large
deformation of a polysilicon disk attached at its center to a Si wafer. (Photograph
courtesy of H. Kahn, Case Western Reserve University, Cleveland, Ohio. Reprinted
with permission.)

subsequently. The goal is to extract fairly simple analytical results which

are merely representative of the phenomena of interest. As before, attention

is restricted to systems for which the elastic response of both the ¯lm and

substrate materials is isotropic, and the moduli of the ¯lm and substrate are

the same.

2.6.1 Bifurcation analysis with uniform curvature

As described in Section 2.1, the basic idea is to adopt a parametric fam-

ily of deformed shapes for the substrate midplane, along with a consistent

strain distribution which incorporates the mismatch strain, and then to de-

termine values of the parameters which represent stationary points of the

total potential energy. Even though the undeformed substrate is a circular
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disk in the present case, the deformed shape is not axially symmetric, in

general, and rectangular coordinates are thus more convenient than polar

coordinates as independent variables. The origin of coordinates is still in

the midplane of the substrate and on the axis of rotational symmetry of the

undeformed substrate. The x-axis and y-axis are taken to coincide with the

orthogonal directions of principal curvature; circumstances for which this

is not so are considered in Section 2.6.2. The transverse de°ection of the

substrate midplane is assumed to be

w(x; y) =
1

2

³
∙xx

2 + ∙yy
2
´

(2.82)

where ∙x and ∙y are the (spatially uniform) principal curvatures of the

deformed shape. The in-plane displacement components are assumed to be

ux(x; y) = a1x+ a2
x3

3R2
+ a3

xy2

R2
+ ²mx

uy(x; y) = b1y + b2
y3

3R2
+ b3

x2y

R2
+ ²my; (2.83)

where a1; a2; : : : ; b3 are six additional dimensionless parameters character-

izing the deformation. Values of the principal curvatures and of these six

parameters are to be determined. A compatible strain distribution consis-

tent with the de°ection distribution (2.83) is determined according to
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²xy =
1

2

µ
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+
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+
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¶
¡ z
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@x@y
;

which generalizes (2.77) in such a way that strain of the substrate midplane

surface due to transverse de°ection w is taken into account. The strain

components are

²xx = a1 + a2
x2

R2
+ a3

y2

R2
+ ∙2x

x2

2
¡ z∙x + ²m

²yy = b1 + b2
y2

R2
+ b3

x2

R2
+ ∙2y

y2

2
¡ z∙y + ²m (2.85)

²xy = (a3 + b3)
xy

R2
+ ∙x∙y

xy

2
:

As before, the mismatch strain is uniform throughout the ¯lm and it is

identically zero in the substrate. This deformation is identical to that rep-
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resented by (2.78) when ∙x = ∙y = ∙, a1 = b1 = ²o, a2 = b2 = ²1 and

a3 = b3 = 0.

With the explicit spatial dependence of strains in (2.85), the strain en-

ergy density can be integrated over the volume of the ¯lm{substrate system

to determine the total potential energy V (∙x; ∙y; a1; b1; a2; b2; a3; b3)

as a function of the eight parameters characterizing the deformation. Then,

equilibrium con¯gurations are determined by ¯nding the values of the char-

acterizing parameters for which V is stationary with respect to its argu-

ments, that is, any set of values of ∙x; ∙y; a1; b1; a2; b2; a3; b3 that

satis¯es the equations @V=@∙x = 0; : : : ; @V=@b3 = 0 de¯nes an equilibrium

con¯guration.

For the present case, the equilibrium conditions can be obtained in

relatively simple form for the case when the elastic properties of the ¯lm

and substrate materials are the same (Masters and Salamon (1993); Freund

(2000)). In particular, for a given mismatch strain and geometric parame-

ters, it is possible to express equilibrium values of ∙x and ∙y in terms of ²m.

If ²m is then eliminated, a relationship between ∙x and ∙y is obtained which

represents the locus of equilibrium states for the system in the plane of ∙x
versus ∙y, namely,

(∙x ¡ ∙y)
h
∙x∙yR

4(1 + º)¡ 16(hs + hf)
2
i
= 0; (2.86)

where º is the value of the Poisson ratio common to both materials. This

result is exact within the class of deformations (2.85). An important con-

sequence of admitting the possibility of ¯nite de°ections is evident in this

expression. It is clear that a spherical deformed shape of the system with

∙x = ∙y is an equilibrium shape. The new feature is the possibility of an

alternate asymmetric equilibrium shape represented by the vanishing of the

term in square brackets in (2.86).

The locus of possible equilibrium curvatures is plotted in Figure 2.23

for º = 1=4 in terms of curvature normalized according to (2.80)2. The

straight line bisecting the quadrant represents the spherical shape with

∙x = ∙y. The curved branch of the locus is obtained by setting the second

factor in (2.86) equal to zero, and it represents asymmetric deformation,

that is, ∙x 6= ∙y. The intersection point of these two branches is a bifurca-

tion point. For values of spherical curvature on the branch with ∙x = ∙y
which are less than the curvature at the bifurcation point, it is found that

the equilibrium value of potential energy is a local minimum under vari-

ations in curvature. Thus, that part of the symmetric branch represents

stable equilibrium con¯gurations. On the other hand, for values of spherical

curvature which are larger than the curvature at bifurcation, the station-
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Fig. 2.23. Relationship between normalized principal curvatures ¹∙x and ¹∙y implied
by the equilibrium condition (2.86) for º = 1=4, based on the assumed deformed
shape (2.82) for the substrate midplane. The intersection between the branch
¹∙x = ¹∙y corresponding to spherical curvature and the hyperbolic branch is the
bifurcation point.

ary value of potential energy is found to be a saddle point, so that part of

the symmetric branch represents unstable equilibrium con¯gurations. All

equilibrium con¯gurations on the asymmetric branch in Figure 2.23 (except

that corresponding to the bifurcation point itself) are found to be stable

con¯gurations.

If the strain magnitude is increased beyond the value corresponding

to the bifurcation point (a value which will be given below) then the defor-

mation becomes asymmetric with the curvature increasing in some direction

and decreasing in an orthogonal direction. The principal directions of the

asymmetric deformation are completely arbitrary. The bifurcation is stable,

in the sense that an increasing strain is required to move the equilibrium

con¯guration away from the bifurcation point along the asymmetric branch

in Figure 2.23. As the strain magnitude increases further, the equilibrium

shapes become more and more asymmetric, approaching a cylindrical limit-

ing shape, that is, ∙x=∙y ! 0 or ! 1 as j²mj ! 1.

The locus of equilibrium shapes depicted in Figure 2.23 provides no

information on the actual variation of mismatch strain ²m along the equi-
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Fig. 2.24. Relationship between one normalized principal curvature ¹∙x and the nor-
malized mismatch strain ¹²m corresponding to the behavior illustrated in Figure 2.23
for º = 1=4. The bifurcation occurs at approximately ¹²m(bif) = 1:43. The dotted
line is the linear relationship between curvature and mismatch strain which is valid
for small deformation.

librium paths, so this is illustrated in Figure 2.24. The mismatch strain

is normalized according to (2.80)1. The nonlinear curvature and mismatch

strain prior to bifurcation is identical to that shown in Figure 2.19.

The results in Figure 2.23 are valid for the full range of geometrical

parameters for systems which meet the general characteristics of compliant

free-standing layers. To give an impression of the magnitudes of parameters

involved, consider the state represented by the bifurcation point in Fig-

ure 2.23. If the geometry of the system is characterized by hs=R, the ratio

of substrate thickness to radius, and by hf=hs, the ratio of ¯lm thickness to

substrate thickness, then the spherical curvature ∙ = ∙x = ∙y at bifurcation

is given by

∙(bif) =
4p

1 + º

hs
R2

µ
1 +

hf
hs

¶
) ¹∙(bif) =

1p
1 + º

(2.87)

and the critical magnitude of mismatch strain in the ¯lm which leads to
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Fig. 2.25. Measured normalized curvature versus normalized mismatch strain for Si
wafers with W ¯lms. The data points represent experiments conducted for di®erent
combinations of wafer diameter, wafer thickness and ¯lm thickness. The ¯lled
circles correspond to curvature measurements made by Finot et al. (1997) using
the scanning laser method for the pre-bifurcation data points or the grid re°ection
method for the post-bifurcation data points. The other symbols denote experiments
using the coherent gradient sensor method. Superimposed on the experimental
data are the predicted trends for the stable symmetric and stable asymmetric cases
replotted from Figure 2.24 with º = 0.26.

bifurcation is given by

²m(bif) =
4

3(1 + º)3/2
h2s
R2

hs
hf

µ
1 +

hf
hs

¶4
) ¹²m(bif) =

2

(1 + º)3/2
: (2.88)

For º = 1=4, the value of ¹²m(bif) is about 1.43.

Figure 2.25 shows the results of observations of pre-bifurcation and

post-bifurcation curvatures in the central portion of Si wafers with di®er-

ent in-plane dimensions and thicknesses and with di®erent thicknesses of W

thin ¯lm deposits. The critical values of normalized curvature and normal-

ized mismatch strain at which bifurcation in equilibrium shape is triggered

in the experiments are close to those predicted by (2.87) and (2.88). The
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Fig. 2.26. Micrographs obtained using the grid re°ection method which illustrate
large deformation of Si wafers containing W ¯lms; the wafer diameter is 150mm.
Nonlinear deformation with axially symmetric curvature, prior to bifurcation, is
shown on the left. A post-bifurcation asymmetric shape is shown on the right.
Note that the axially symmetric curvature of the wafer on the left causes the hole
in the grid plane to be re°ected as a dark circle in the center of the wafer, whereas
the post-bifurcation shape of the wafer on the right causes the hole to be re°ected
with an elliptical shape. (After Finot et al., 1997.)

pre-bifurcation nonlinear response matches the analytical estimates more

closely than the near- or post-bifurcation response. The observed discrep-

ancy between the simple theory and the experimental measurements could

possibly arise from the nonuniform curvature evolution, which will be dis-

cussed in Section 2.6.3, or perhaps from the anisotropic elastic properties

of the substrate material; these factors have not been taken into account in

the analysis up to this point.

The data shown in Figure 2.25 were obtained by means of the wafer

curvature scan, the grid re°ection method, or the coherent gradient sensor

method. The last of these will be discussed further in Section 2.6.2 in the

context of a visualization of deformation via Mohr's circle for curvature.

The grid re°ection method was described in Section 2.3.3, and a typical set

of images obtained with this method is shown in Figure 2.26.

Once the deformation of the substrate progresses into the geometri-

cally nonlinear range, the state of curvature is no longer uniform over most

of the area of the substrate. Within the pre-bifurcation range of nonlinear

behavior, roughly 0:3 < ¹²m < 1:5, the state of curvature remains spher-

ical only near the center of the substrate and it tends to diverge further

from being spherical with increasing distance from the center. Within the

post-bifurcation range of nonlinear behavior, roughly 1:5 < ¹²m, the state

of curvature is locally ellipsoidal everywhere but with principal curvatures
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varying from point-to-point. In spite of the complexity of this spatially

nonuniform curvature in the range of nonlinear response, the deformation of

the substrate is often discussed in terms of pre-bifurcation spherical curva-

ture and post-bifurcation ellipsoidal curvature. In such cases, the reported

values of curvature must be understood to be only representative or average

values over a fairly large portion of the substrate near the center. It is in

this spirit that the Mohr's circle method of visualizing substrate curvature

is discussed brie°y in the next section.

A number of additional observations on ¯lm{substrate deformation in

the geometrically nonlinear range can be made on the basis of modeling of

the kind introduced here. Among these are:

¡ A sharp bifurcation in equilibrium shape, such as that shown in Fig-

ure 2.24, is possible only for symmetric substrate con¯gurations, such as

a circle, a square and an equilateral triangle.

¡ Estimates for the critical curvature ∙(bif) and the mismatch strain ²m(bif)
at which bifurcation occurs were given in (2.87) and (2.88) for a circular

substrate of radius R. The corresponding results for a ¯lm{substrate

system of square shape with lateral dimensions L £ L are obtained by

replacing R2 in (2.87) and (2.88) with L2=¼ (Giannakopoulos et al. 2001).

¡ Without a high degree of symmetry, the principal curvatures of the sub-

strate midplane are unequal from the onset of deformation. This trend

is best described by considering a rectangular shape of lateral dimen-

sion Lx £ Ly, where Lx > Ly. Instead of a sharp bifurcation seen when

Lx = Ly, the rectangular shape exhibits a more gradual transition from a

uniform spherical curvature in the linear deformation regime to an asym-

metric curvature in the nonlinear regime as the mismatch strain is in-

creased. This transition is accompanied by a larger principal curvature

along the longer dimension Lx. An increase in the shape aspect ratio

Lx=Ly causes a reduction in the mismatch strain at which a transition

occurs from nominally symmetric deformation to asymmetric deforma-

tion, similar to the behavior shown in Figure 2.30 for the asymmetry in

mismatch strain (Finot and Suresh 1996).

¡ It was seen in Section 2.4 that through-thickness variation in properties

can signi¯cantly modify the in-plane normal stress. However, compo-

sitional gradation does not markedly alter the propensity for curvature

bifurcation compared to that seen in a ¯lm{substrate system comprising

homogeneous layers (Finot and Suresh 1996).

¡ While the emphasis in the discussion of nonlinear elastic deformation of

¯lm{substrate systems has been on situations in which mismatch strain
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is the source of internal stress, large diameter wafers and thin plates in

°at panel displays show a propensity for deformation in the geometrically

nonlinear range due to weight alone. Giannakopoulos et al. (2001) have

extended the energy minimization method introduced in Section 2.6 to

obtain solutions for the e®ects of gravity on large deformation and bi-

furcation in equilibrium shape. Some general trends predicted by their

analysis are: (a) the extent of large deformation is strongly in°uenced

by the manner in which the ¯lm{substrate system is supported; (b) the

critical magnitude of curvature at which a sharp bifurcation occurs for

circular and square shapes of the system is una®ected by gravitational

forces; (c) the critical mismatch strain at which bifurcation is triggered

is strongly in°uenced by whether the ¯lm is facing up or down as the

system is placed on a ¯xed set of support points; for example, the critical

mismatch strain at which bifurcation occurs under the in°uence of grav-

ity is higher when the backside of the substrate is supported than when

the free surface of the ¯lm is held on support points; and (d) the radial

variation of curvature during large deformation is signi¯cantly in°uenced

by gravity.

2.6.2 Visualization of states of uniform curvature

In the discussion in Section 2.6.1 of substrate curvature in the range of be-

havior where the deformation is not axially symmetric, it was assumed a

priori that the coordinate axes coincided with the axes of principal curva-

ture. This assumption was incorporated in writing the transverse de°ection

w(x; y) in the form given in (2.82). On the other hand, in determining curva-

ture from measurements in this range of behavior, the directions of principal

curvature are not known in advance. How is data to be interpreted in order

to extract complete curvature information under the circumstances? An

approximation based on measurements obtained with the CGS method, as

discussed in Section 2.3.4, is brie°y considered here on the basis of a graph-

ical construction known commonly as Mohr's circle.

As a starting point, consider a set of synthetic fringes obtained by

means of the CGS method, as illustrated on the left in Figure 2.27. The two

fringe patterns were obtained by aligning the di®raction gratings with two

orthogonal but otherwise arbitrary directions in the plane of the sample.

These directions will be denoted as the x¡direction and the y¡direction.

With the gratings normal to the x or y direction, a gradient in slope in the

x or y direction is sensed optically. The region of the sample represented
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by Figure 2.27 will typically be only a part of the entire substrate area in

which the curvatures can be viewed as being uniform.

The components ∙x, ∙y and ∙xy referred to the coordinate directions

are determined in the region by measuring the fringe spacing distances in

Figure 2.27 as indicated. The quantity ∙xy is called the twist of the sur-

face in this discussion, although there is no standard terminology for this

geometrical quantity. In analogy with the de¯nition of curvature, the term

derives from the fact that the quantity ¡∙xy is the local gradient of the

x¡component (y¡component) of a unit vector normal to the surface in the

y¡direction (x¡direction). As such, the term twist is nicely descriptive.

The gradient of the x¡component of the normal vector in the x¡direction

is ¡∙x, and similarly for ¡∙y. The synthetic fringes then yield the values

∙x =
p

2¢

1

¢x(x)
; ∙y =

p

2¢

1

¢y(y)
;

(2.89)

∙xy = ∙yx =
p

2¢

1

¢x(y)

on the basis of (2.46). The symmetry indicated in extracting the value of

twist is a check that the deformed surface is locally smooth on the scale of

the observation. The parameters p and ¢ are the pitch and spacing of the

di®raction grating plates used in the experiment.

The four quantities identi¯ed in (2.89) are the components of a second

rank tensor with the same mathematical characteristics as the tensor repre-

senting a state of plane stress. It follows immediately that the geometrical

construction known as Mohr's circle can be used to determine the princi-

pal curvatures and the directions of principal curvature for the deformation

represented by Figure 2.27, as was noted by Hyer (1981). The construc-

tion is illustrated in Figure 2.27 which is drawn for a particular case when

all components of the curvature tensor are positive. The points (∙x;∙xy)

and (∙y;¡∙xy) are plotted in the plane with horizontal axis representing

curvature and vertical axis representing twist. The convention whereby the

twist is positive downward in the plane is adopted so that rotations in both

the physical plane and in the Mohr's circle plane corresponding to a given

rotation of coordinates are in the same sense. The line connecting these

two points is a diameter of Mohr's circle. In the plane of Mohr's circle, the

principal curvatures are readily identi¯ed at (∙1; 0) and (∙2; 0). The direc-

tions of the larger and smaller principal curvatures are at a counterclockwise

angle of µp1 and µp2, respectively, from the x¡axis in the experiment where
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Fig. 2.27. The two circles on the left are idealized schematics of CGS fringe patterns.
The upper (lower) circle represents a changing substrate slope in the x¡direction
(y¡direction); the uniformity of fringes implies a constant gradient. The curvature
components inferred from the fringe spacing in coordinate directions according to
(2.89) are used to construct Mohr's circle, as shown on the upper right; the con-
struction provides values of principal curvatures ∙1 and ∙2, as well as directions
of principal curvature. A constant de°ection contour with respect to the tangent
plane to the subustrate at the point of measurement is shown in the inset on the
lower right, with »1; »2¡axes aligned with the directions of principal curvature. The
¯gures are drawn for the case of a substrate deformed into an ellipsoidal shape, but
other shapes are possible.

both angles must satisfy

tan 2µp =
2∙xy

∙x ¡ ∙y
(2.90)

The values of principal curvature are given in terms of the measured com-

ponents by

∙1;2=
1
2(∙x + ∙y)§

q
1
4(∙x ¡ ∙y)2 + ∙2xy (2.91)

In a rectangluar coordinate system aligned with the principal directions of

curvature, with the coordinate axes labeled »1 and »2, say, the transverse

de°ection measured from a tangent plane at »1 = »2 = 0 is

w(x; y) = 1
2

³
∙1»

2
1 + ∙2»

2
2

´
(2.92)
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as in (2.82). A level curve w(x; y) = constant of this de°ection is illustrated

in Figure 2.27.

In general, the values of principal curvature and the principal direc-

tions of curvature indicate the most essential features of the local substrate

deformation. For example,

¡ if both ∙1 and ∙2 are nonzero and they have the same algebraic sign,

the shape is ellipsoidal, and Mohr's circle is completely con¯ned to

one side or the other of the twist axis;

¡ if both ∙1 and ∙2 are nonzero and they have opposite signs, the shape

is hyperboloidal or saddle-like, and Mohr's circle spans the twist axis;

¡ if either ∙1 or ∙2 is zero then the surface is cylindrical and Mohr's

circle is tangent to the twist axes;

¡ if ∙1 = ∙2, the shape is spherical and Mohr's circle is a point on the

curvature axis;

¡ if ∙1 = ∙2 = 0, Mohr's circle reduces to a point at the origin of the

curvature-twist plane.

A limitation on the use of Mohr's circle to interpret curvature observations is

that it applies only over regions of the surface small enough so that the com-

ponents of the curvature tensor are essentially constant within the region.

For conditions in which the deformation is in the geometrically nonlinear

range, the curvature is no longer uniform over the entire area of the sub-

strate and interpretation of observations becomes less straightforward than

it is in the linear range .

Figure 2.28 shows fringe patterns obtained using the coherent gradient

sensor method described in Section 2.3.4 to observe the large deformation

of a 150-mm diameter Si wafer with a W ¯lm, a system similar to that

used to obtain the results plotted in Figure 2.21. The fringe patterns as-

sociated with deformation prior to bifurcation in equilibrium shape reveal

an axisymmetric shape for a substrate thickness of 350¹m, ¯lm thickness

of 0.9 ¹m and a ¯lm stress of 1.1GPa. Fringe patters in the geometrically

nonlinear range were obtained by keeping the directions in the two CGS

gratings parallel to each other and horizontal (see Figure 2.11) and by ro-

tating the wafer in increments of 45 degrees. Prior to bifurcation, the fringe

patterns at all orientations are essentially the same, which con¯rms that the

shape of the wafer is axially symmetric. On the other hand, for a Si wafer of
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415¹m thickness with a 2.4¹m thick W ¯lm with a mismatch stress of 0.98

GPa, an asymmetric shape evolves; the principal curvatures ∙x and ∙y asso-

ciated with this post-bifurcation deformation mode show di®erent numbers

of fringes parallel to the gratings. When this Si wafer is rotated 45 degrees

counterclockwise from either principal curvature orientation, the fringes are

no longer parallel to the gratings, which indicates that twist curvature can

be detected in this direction. Rotation in opposite directions from either

principal curvature direction results in distortion of the fringe patterns in

the same general manner but in the opposite sense, indicating the onset of

substate twist of opposite signs. The use of the CGS method, in conjunction

with Mohr's circle construction, provides global information on the shapes

of surfaces with di®erent combinations of curvature and twist.

2.6.3 Bifurcation for general curvature variation

The foregoing discussion of bifurcation is based on the assumption of spher-

ical curvature of the substrate midplane prior to bifurcation and on the

assumed transverse de°ection (2.82) with spatially uniform principal curva-

tures following bifurcation. It was noted in the discussion of axially sym-

metric deformation in the previous section that the deformed shape of the

substrate midplane can depart signi¯cantly from a shape with uniform cur-

vature. Therefore, the bifurcation analysis is repeated in this section, but

without a priori assumptions on the deformed shape of the substrate mid-

plane, by means of the numerical ¯nite element method.

The calculations were carried out under the assumption that the de-

formation has at least one plane of re°ective symmetry. The midplane of

the 180 degree sector of the substrate was covered with a regular radial{

circumferential mesh. An eight-noded plate element was prescribed in each

mesh segment. The element adopted admits through-the-thickness varia-

tion of material properties, and the ¯lm{substrate system was de¯ned by

prescribing the appropriate variation. Mismatch strain was imposed by spec-

ifying a coe±cient of thermal expansion for the ¯lm material relative to the

substrate material, and by making temperature the imposed loading para-

meter. The temperature was gradually increased from zero initial value, and

the equilibrium shape for large de°ections was computed.

To precipitate stable deformation beyond the point of bifurcation, a

slight imperfection in the system was introduced in the form of an anisotropic

mismatch strain. Typically, the mismatch strain in the x-direction (y-

direction) was taken to be 0.01% larger (smaller) than the nominal value

²m. With this level of imperfection, the deformation prior to bifurcation
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Fig. 2.28. A series of images showing the correlation of CGS fringe patterns with
points on Mohr's circle for curvatures. For axially symmetric surface deformation
in the geometrically linear range, the twist is zero and the principal curvatures
are identical, so the state corresponds to a point on the horizonatal axis. The
four images around the outside of the circle show the same deformation, but in a
way that senses the larger principal curvaure, mean curvature with twist, smaller
principal curvature, and mean curvature with opposite twist, going around the
circle in a counterclockwise sense. These images were taken simply by rotating the
entire sample at a ¯xed condition. CGS fringe patterns provided by T.-S. Park,
Massachusetts Institute of Technology (2002).

was essentially indistinguishable from results based on an a priori assump-

tion of axial symmetry, the bifurcation point was sharply de¯ned in each

case and reproducible from case to case, and the post bifurcation behavior

was stable and reproducible.

The general response observed as the mismatch strain was increased

was a range of axially symmetric deformation, with the substrate midplane

curvature becoming ever more nonuniform. Then, over a very narrow range

of values of nominal mismatch strain, the midplane showed ¯rst a slight

waviness in the circumferential direction (compared to substrate thickness)

followed by large amplitude waviness in the circumferential direction. This

behavior is illustrated in Figure 2.29 which shows plots of the normalized
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Fig. 2.29. Plots of normalized radial curvature ¹∙ in the directions µ = 0; ¼=2 and
¼ versus normalized mismatch strain ¹²m in a circular ¯lm{substrate system for
º = 1=4. These results were obtained by ¯nite element calculation, assuming
identical elastic constants for the ¯lm and substrate materials. They involve no a
priori assumptions on the deformed shape. Bifurcation occurs when ¹²m(bif) ¼ 1:54.
The normalized curvature ¹∙ and mismatch strain ¹²m are de¯ned in (2.81). The
results obtained for R=hs = 50, 100 and 200 are identical when expressed in terms
of these parameters.

radial curvature ¹∙ near the center of the substrate in the directions µ = 0,

¼=2 and ¼ versus normalized mismatch strain ¹²m. As ¹²m increases from zero,

the deformation remains axially symmetric within the resolution of a graph.

As ¹²m increases through the value of about 1.54, a fairly sharp transition in

response occurs. The radial curvatures in the directions µ = 0 and µ = ¼

increase dramatically for a very small increase in ¹²m, while the curvature

in the direction µ = ¼=2 decreases dramatically. In e®ect, this is the same

phenomenon as illustrated in Figure 2.24. In the present case, however, the

curvature is not restricted to be radially uniform.

There are other signi¯cant features of the behavior illustrated in Fig-

ure 2.29. Among these are: the axially symmetric response is nonlinear for

values of ¹²m beyond about 0.3, consistent with the behavior observed in Fig-

ure 2.20; the maximum de°ection at the substrate periphery reaches a value

of about two times the substrate thickness before bifurcation occurs; the

post bifurcation deformation becomes more like cylindrical bending as ¹²m
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increases to values substantially beyond 1.54. Also, as noted in the preced-

ing section, the substrate midplane surface is less curved at interior points

and more curved near its outer edge.

Another noteworthy aspect of the result illustrated in Figure 2.29 is

the apparent insensitivity of the behavior to the aspect ratio of the substrate.

Calculations were carried out for R=hs = 50, 100 and 200. The plots for

the three cases, when expressed in terms of the normalized parameters used

in Figure 2.29, are indistinguishable. Note that the ratios hs=hf = 100 and

Ms=Mf = 1 were maintained in all calculations so that the ¯lm is always

relatively thin and the e®ects of modulus di®erence are not considered.

For a circular substrate, the elementary model yielded ¹²m(bif) = 1:43

as the critical value for bifurcation, while the ¯nite element analysis yielded

the estimate ¹²m(bif) = 1:54 for a range of values of R=hs. Most calculations

were carried out for hs=hf = 100, that is, the dependence of the value of

bifurcation strain on variations on hs=hf was not examined systematically.

On the basis of a few calculations, it appears that the bifurcation value

of ¹²m is lowered slightly as the value of hs=hf is increased. In any case,

the magnitude of mismatch strain needed for bifurcation to occur which is

implied by ¹²m(bif) = 1:54 with R=hs = 100, hs=hf = 100 and Ms=Mf = 1, is

roughly 0.01.

A systematic experimental study of deformation of ¯lm{substrate sys-

tems in the range of nonlinear deformation that covers a wide range of sys-

tem parameters is not yet available. However, some observations have been

reported in the literature which are generally consistent with the models

introduced here. Finot et al. (1997) described experiments in which a bi-

layer ¯lm consisting of an Al{Cu alloy layer and a W layer deposited on a

circular Si substrate wafer. Principal curvatures of the substrate were mea-

sured for various relative thicknesses of the layers, and the results reported

were consistent with the behavior indicated in Figure 2.24. The value of

normalized e®ective mismatch strain ¹²m at bifurcation, as determined from

the net membrane force in the bilayer ¯lm, was found to be approximately

1.55. In a similar study, Lee et al. (2001) conducted experiments with an Al

¯lm on a Si substrate. In this case, the ¯lm was observed to be nonuniform

in thickness, a feature which was incorporated into the simulation of the ex-

periment. They also observed a mode of deformation that is consistent with

that depicted in Figure 2.24, and a value of normalized mismatch strain of

about 1.55 upon onset of asymmetric deformation.

Finally, it is noted that the behavior of thin structures of the kind

being discussed here is very sensitive to imperfections in the system. To

illustrate the point in the present context, the calculation which led to



162 Film stress and substrate curvature

0.0 0.5 1.0 1.5 2.0 2.5

normalized mismatch strain

0.0

0.5

1.0

1.5

2.0

n
o

rm
al

iz
ed

 c
u

rv
at

u
re

θ = 0, π

θ = π/2

Fig. 2.30. Plots of normalized radial curvature ¹∙ in the directions µ = 0; ¼=2 and
¼ versus normalized mismatch strain ¹²m for º = 1=4. The di®erence in mismatch
strains in orthogonal directions divided by the sum of these strains was assumed to
have a value of 0.01. The calculation was identical to that leading to Figure 2.29
(results shown here as curves in lighter shade) except that the normalized di®erence
in mismatch strains for that case had a value of 0.0001.

Figure 2.29 (shown by curves in a lighter shade here) was redone with a

mismatch strain that is 1% larger (smaller) than the nominal value ²m in

the x¡direction (y¡direction). The result is shown in Figure 2.30, where

it can be seen that a 1% imperfection in mismatch strain obliterates the

sharp bifurcation transition. Instead, the system undergoes a long, gradual

transition from axially symmetric deformation to asymmetric deformation

as ¹²m increases.

2.6.4 A substrate curvature deformation map

The results obtained for ¯lm{substrate systems in Section 2.5 and in the

present section provide connections between substrate curvature and ¯lm

mismatch strain that de¯ne boundaries between regimes of behavior. For

the case of a very thin ¯lm on a relatively thick substrate, it was shown in

Section 2.5.1 that the response is linear with spherical curvature for normal-

ized mismatch strain in the range 0 ∙ j¹²mj ∙ 0:3. Furthermore, for a circular

substrate, the response is geometrically nonlinear but axially symmetric for
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Fig. 2.31. An illustration of a substrate curvature map for the case when ²m = 0:01
and Mf=Ms = 1. The regimes of behavior are separated by curves which represent
the locus of conditions for which geometrically nonlinear e®ects come into play and
for which asymmetric bifurcation occurs in a circular substrate.

0:3 ∙ j¹²mj ∙ 1:5, as shown in Section 2.6. For magnitudes of j¹²mj greater
than roughly 1.5, the deformation is asymmetric.

Following Finot et al. (1997), these ranges of behavior can be repre-

sented graphically in parameter space as a general guide to understanding

behavior. The parameters involved in the de¯nition of ¹²m include ²m, R=hs,

hf=hs and Mf=Ms. Often, the values of some of these parameters are ¯xed by

material or geometric constraints. For example, in a case where the origin of

mismatch is the constraint of epitaxy in a particular material system, both

²m and Mf=Ms are speci¯ed at the outset. For purposes of illustration, sup-

pose that the values are Mf=Ms = 1 and ²m = 0:01. Then the behavior can

be represented in a plane of hs=R versus hf=hs that is divided into regions

by the curves j¹²mj = 0:3 and j¹²mj = 1:5. The result is shown in Figure 2.31.

Other types of curvature maps can be constructed in the same spirit.

2.6.5 Example: A curvature map for a Cu/Si system

Consider a circular Si wafer of radius R and thickness hs on which a thin Cu ¯lm is
deposited. The ¯lm thickness is hf . Consider wafer diameters of 200 mm and 300
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mm, each with a ¯lm thickness of 1¹m. Determine the minimum thickness that
each of these wafers can have if the deformation is to remain in the linear range
of behavior for a temperature change of 100 ±C from the reference temperature.
Assume that the system is stress-free at the reference temperature, and that the
response is thermoelastic.

Solution:

For a temperature change of ¢T from the reference temperature, the mis-
match strain is ²m = (®s ¡®f)¢T and the corresponding ¯lm stress is ¾m = Mf²m.
The boundary of the geometrically linear range of behavior is de¯ned by j¹²mj = 0:3.
In the present instance, this equation takes the form

1 = 5j(®s ¡ ®f)¢T jR
2

h2
s

Mf

Ms

hf

hs
(2.93)

which is a relationship among material and geometrical parameters that de¯nes
the limit of the linear range. The lower curve in Figure 2.31 illustrates such a
relationship. For given values of the material parameters, wafer radius and ¯lm
thickness, this relationship gives the minimum thickness (hs)min in terms of j¢T j.

To obtain a numerical estimate for the minimum admissible value (hs)min

for each wafer diameter, assume that ®f = 17 £ 10¡6 =±C, ®s = 3 £ 10¡6 =±C,
Mf = 197£109 N/m2 and Ms = 227£109 N/m2. For j¢T j = 100 ±C and hf = 1¹m,

(2.93) implies that (hs)min = 390¹m for R = 100mm and (hs)min = 515¹m for

R = 150mm.

The features of deformation of the ¯lm{substrate system observed here

are indicative of the deformation modes which can be observed. Although

the range of parameter space which has been considered in detail is quite

limited, any departure from a uniformly strained layer can be taken into

account through the net membrane force in the ¯lm in most cases provided

that the ¯lm is thin compared to the substrate. Other modes of deformation

may be found by considering noncircular substrates, materials with di®erent

moduli, ¯lms with gradation in mismatch strain for properties, and other

possibilities.

2.7 Exercises

1. A tungsten silicide (WSi) ¯lm, 0.193 ¹m in thickness, was deposited on a
(100) Si wafer, 200 mm in diameter and 730 ¹m in thickness. The radius of
curvature of the wafer before and after ¯lm deposition was measured to be
{350.4 m and 162.9 m, respectively. If the biaxial modulus of the (100)Si
¯lm is 180.5 GPa, estimate the average ¯lm stress.

2. A simple procedure for determining the biaxial modulus Mf and the ther-
mal expansion coe±cient ®f of a thin ¯lm involves the so-called two-substrate
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method. In this method, a thin ¯lm of the material for which the proper-
ties are to be determined is ¯rst deposited on a substrate with thermal
expansion coe±cient ®s1. This ¯lm{substrate system is then subjected to a
temperature change ¢T and the change in the ¯lm mismatch stress ¢¾m1

which occurs as a result of the temperature change is incurred by recourse
to substrate curvature or x-ray di®raction techniques. Then, the same ¯lm
material is deposited on a substrate of a di®erent material with thermal ex-
pansion coe±cient is ®s2. The change in ¯lm mismatch stress ¢¾m2 for this
system is again inferred for the same temperature change ¢T . Assume that
all materials remain elastic during thermal excursions and that all mater-
ial properties are essentially independent of temperature over the range of
the observations. Derive an expressions for ®f and Mf in terms of ®s1, ®s2,
¢¾m1, ¢¾m2 and ¢T .

3. A thin ¯lm of W is deposited on a Si substrate with an unknown mismatch
stress. When this ¯lm{substrate system is heated from 100 ±C to 300 ±C, it
is estimated by curvature measurement that the ¯lm stress decreases by 120
MPa. Another thin ¯lm of W is now deposited on a GaAs substrate, again
at unknown mismatch stress. When this system is heated from 100 ±C to
300 ±C, the ¯lm stress is observed to increase by 205 MPa. The coe±cients
of thermal expansion of the substrate materials are ®Si = 3:5 £ 10¡6 ±C¡1

and ®GaAs = 6:4 £ 10¡6 ±C¡1. Infer values of biaxial modulus and thermal
expansion coe±cient of W from these experimental observations, assuming
the incremental deformations are elastic and the materials are isotropic.

4. A thin ¯lm made of a new polymeric material is bonded to a metallic sub-
strate. Prolonged exposure to a moist atmosphere causes the polymer to
swell. The moisture intake increases the stress-free volume of the polymer
by 3%. Derive an expression for the biaxial mismatch stress in the polymer
due to this swelling under the assumption that the biaxial modulus Mf is
not a®ected by the swelling.

5. The rationale for the choice of materials used in thermostatic bimetals was
discussed in Section 2.2.3.

(a) Explain why lead cannot be used as one of the two metals in the
bimetallic strip in thermostats?

(b) Derive an expression for the variation of curvature of a brass (90%
Cu{10% Zn){Invar thermostatic bimetal as a function of temperature
change, ¢T . Assume that the brass and Invar layers have the same
thickness.

(c) Discuss why very rapid °uctuations in temperature could a®ect the
ability of the thermostatic bimetals to provide accurate measures of
instantaneous temperature.

6. The variation of curvature as a function of mismatch strain, geometry and
material properties can be analyzed for a general bilayer using the energy
minimization method, Section (2.2), or the local equilibrium method, Sec-
tion (2.4).

(a) Starting with the force and moment balance equations, (2.54), derive
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(2.19) and (2.20), for the bilayer shown in Figure 2.3 for arbitrary
values of hf , hs, Mf , Ms and ²m.

(b) Derive (2.6) and (2.7) by taking the limit hf=hs ! 0 in (2.19){(2.21).

7. In Section 2.6.1, a model bifurcation problem was considered for the depar-
ture from axially symmetric deformation of a circular ¯lm{substrate system
due to increasing mismatch strain in the ¯lm. Consider the same basic prob-
lem except that the shape of the substrate is a square of extent L on a side,
rather than a circle of radius R. The undeformed substrate midplane coin-
cides with the xy¡plane, and the coordinate axes are perpendicular to the
sides of the square.

(a) Assume the displacement ¯eld of the form given by (2.82) and (2.83)
with R2 replaced by L2, and derive a result equivalent to (2.86) to
study bifurcation for the case when the elastic properties of the ¯lm
and the substrate are the same.

(b) Estimate the curvature and mismatch strain at which bifurcation oc-
curs and compare the estimates to the corresponding results (2.87)
and (2.88) for the case of a circular substrate.

8. Consider the special case of the issue studied in Section 2.4.1 when the
¯lm and substrate have spatially uniform and identical elastic properties.
Suppose the ¯lm is subjected to a mismatch strain with through the thickness
variation given by ²m(z).

(a) Show that the general result for curvature given in (2.51) reduces to

∙(hf) = ¡ 6

(hf + hs)2

Z hf

0

²m(³ +
1
2hs) d³

+
12

(hf + hs)3

Z hf

0

(³ + 1
2
hs)²m(³ +

1
2
hs) d³ (2.94)

in this case.
(b) Observation of response as material is added or removed can be used

to investigate a state of residual stress in a solid (Freund 1996). Sup-
pose that curvature ∙(´) has been observed for all values of thickness
´ in the range 0 ∙ ´ ∙ hf . Show that the curvature expression given
in part (a) can then be inverted to yield the variation of mismatch
strain in terms of curvature history as

²m(´+
1
2
hs) =

2
3
(´+hs)∙(´)+

1
6
(´+hs)

2∙0(´)+
1

3

Z ´

0

∙(³) d³: (2.95)
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Stress in anisotropic and patterned films

In the previous chapter, fundamental issues which arise when considering

stress and deformation in ¯lm{substrate systems were examined, with at-

tention restricted to systems for which the materials are isotropic and the

¯lm geometry is continuous. Some ¯lm materials exhibit anisotropy in their

elastic properties. In other cases, an isotropic ¯lm may be patterned on a

small scale in such a way that it gives rise to an apparent anisotropy on

a larger scale. These e®ects can have a signi¯cant in°uence on mechanical

response. Geometric inhomogeneity can arise as a result of ¯lm patterning,

composite ¯lms, island formation, distributed ¯lm cracks, or other circum-

stances. This chapter deals with the role of material anisotropy and geo-

metric nonuniformity in in°uencing stress and deformation in layered solids.

The chapter begins with an overview of elastic anisotropy in crys-

talline materials. Anisotropy of elastic properties in materials with cubic

symmetry, as well as other classes of material symmetry, are described ¯rst.

Also included here are tabulated values of typical elastic properties for a

variety of useful crystals. Examples of stress measurements in anisotropic

thin ¯lms of di®erent crystallographic orientation and texture by recourse

to x-ray di®raction measurements are then considered. Next, the evolu-

tion of internal stress as a consequence of epitaxial mismatch in thin ¯lms

and periodic multilayers is discussed. Attention is then directed to defor-

mation of anisotropic ¯lm{substrate systems where connections among ¯lm

stress, mismatch strain and substrate curvature are presented. A Stoney-

type formula is derived for an anisotropic thin ¯lm on an isotropic substrate.

Anisotropic curvature due to mismatch strain induced by a piezoelectric ¯lm

on a substrate is also analyzed.

Focus is then shifted to the evolution of curvature in layered systems

in response to the introduction of geometric nonuniformity. For this pur-

pose, a detailed derivation is provided for the Stoney-type formula for ¯lms

167
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with a regular array of cracks or ¯lms patterned into thin lines on substrates

where explicit connections are made between curvatures parallel to or nor-

mal to the lines or cracks. These results also facilitate the determination

of volume averaged stress in patterned ¯lm structures directly from curva-

ture experiments. The implications of the analyses presented in the chapter

for curvature and stress evolution in a periodic array of patterned lines or

stripes are evaluated through comparisons with available experimental re-

sults and ¯nite element simulations. Commonly used measurement methods,

such as the substrate curvature method, the x-ray di®raction method and

the micro-Raman spectroscopic technique, for the determination of average

stress in periodically patterned thin ¯lms are described; the advantages and

shortcomings of each method are brie°y summarized.

3.1 Elastic anisotropy

The states of stress and strain in a deformed crystal being idealized as a

continuum are characterized by symmetric second-rank tensors ¾ij and ²ij,

respectively, each comprising six independent components. Hooke's law of

linear elasticity for the most general anisotropic solid expresses each com-

ponent of the stress tensor linearly in terms of all components of the strain

tensor in the form

¾ij = cijkl ²kl; (3.1)

where cijkl is the array of elastic sti®ness constants. Alternately, the inverse

form of Hooke's law is written to express each component of the strain tensor

linearly in terms of all components of the stress tensor as

²ij = sijkl ¾kl; (3.2)

where sijkl is the array of elastic compliance constants. In (3.1) or (3.2), each

of the nine equations for a stress or strain component involves nine material

parameters. Each of the fourth-order tensors cijkl and sijkl comprise 81

components. The symmetry of the stress and strain tensors, that is, ¾ij = ¾ji
and ²ij = ²ji, further imply that the components of the sti®ness tensor must

satisfy cijkl = cijlk = cjikl; likewise, sijkl = sijlk = sjikl. As a consequence,

the number of independent elastic constants is reduced from 81 to 36 in

either case.

The tensor form of the constitutive equation in (3.1) provides a concise

and e®ective statement of Hooke's law for use in theoretical developments.

For purposes of measurement and calculation, however, it is often more con-

venient to adopt a matrix form of the constitutive equation. Such a form is
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suggested naturally by the fact that there are six independent components

of stress, six independent components of strain, and 36 material parameters

representing the relationship between stress and strain. For this purpose,

a contracted notation is commonly introduced (see, for example, Hosford

(1993); Kelly and Groves (1970)) whereby a six-component array ¾i is con-

structed by means of the replacements ¾11 ! ¾1, ¾22 ! ¾2, ¾33 ! ¾3,

¾23 = ¾32 ! ¾4, ¾13 = ¾31 ! ¾5, and ¾12 = ¾21 ! ¾6. A similar contracted

notation for the strain components makes it possible to recast (3.1) into the

form

¾i = cij²j : (3.3)

The one-dimensional strain array is constructed by means of the replace-

ments of ²ij as ²11 ! ²1, ²22 ! ²2, ²33 ! ²3, ²23 = ²32 ! ²4=2, ²13 =

²31 ! ²5=2 and ²12 = ²21 ! ²6=2. Thus, the quantities ²4, ²5 and ²6 repre-

sent components of engineering shear strain; by de¯nition, these are equal

to two times the corresponding components of tensorial shear strain. The

form (3.3) is appealing because of its simplicity, but the tensor character

of Hooke's law has been sacri¯ced to achieve it. The connection between

components of cijkl and cij is evident through comparison of (3.1) with (3.3).

In order to write the inverse relationship of (3.3) as

²i = sij¾j; (3.4)

the de¯nitions of the components sij in terms of the components of sijkl
must be chosen with a numerical factor of 1 whenever both indices of sij are

among 1,2,3 (for example, s22 = s2222), with a numerical factor of 2 whenever

one and only one index of sij is among 1,2,3 (for example, s24 = 2s2223), and

with a numerical factor of 4 whenever neither index of sij is among 1,2,3

(for example, s55 = 4s1313).

The number of independent constants comprising either cij or sij can

be further reduced. This is enforced by requiring that the work done by

the stress to achieve any homogeneous state of deformation from the un-

deformed reference con¯guration is independent of the deformation path

followed in reaching the ¯nal state, or showinnumber of equivalent condi-

tions implying path-independence. This condition implies the existence of

a strain energy density function that serves as a potential function of strain

from which stress can be derived as a conjugate variable for any possible

state of deformation; the existence of a strain energy function assures the

required path-independence of stress work. For a material with a strain en-

ergy density function, both the sti®ness matrix and the compliance matrix

are symmetric 6£6 matrices, that is, cij = cji and sij = sji. In other words,
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each of these matrices involves only 21 independent elastic constants for the

most general anisotropic material behavior consistent with the existence of

a strain energy function.

For crystals with a triclinic structure, which possess only a center of

symmetry and exhibit the most general elastic anisotropy, a complete char-

acterization requires all 21 independent constants. The existence of a higher

degree of crystal symmetry can further reduce the number of independent

elastic constants needed for proper description. In such cases, some elastic

constants may vanish and members of some subsets of constants may be

related to each other in some de¯nite way, depending on the crystal sym-

metry. Finally, it should be noted that, while the total number of material

constants required to characterize a material of a certain class is independent

of the coordinate axes used to represent components of stress or strain, the

values of particular components of cij do depend on the material reference

axes chosen for their representation.

3.2 Elastic constants of cubic crystals

The simplest material symmetry beyond isotropy is cubic symmetry, a prop-

erty of crystals that possess three fourfold axes of rotational symmetry, the

cube axes, and four threefold axes of rotational symmetry, the cube diago-

nals. Alternatively, cubic symmetry may be described as invariance of mate-

rial structure under a translation of a certain distance in any of three mutu-

ally orthogonal directions; these directions are usually identi¯ed as the cube

axes. Consider a cubic material for which the [100], [010] and [001] cube axes

are parallel to the axes of an underlying rectangular x1; x2; x3¡coordinate

system. For this case, it is evident that

c11 = c22 = c33; c12 = c23 = c31; c44 = c55 = c66 (3.5)

All the other elastic constants vanish because of the fourfold rotational sym-

metry of the reference axes. This point can be demonstrated by reasoning

that the remaining constants must vanish so as to avoid introducing a change

in the sign of the shear strain for a given shear stress, merely to account

for rotation. It follows from (3.5) that the elastic response of any cubic

crystal is characterized by three independent elastic constants, and that the
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complete sti®ness matrix is

[cij ] =

2666666664

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

3777777775
; (3.6)

where components are referred to the natural coordinate axes, that is, the

rectangular axes aligned with the cube edges.

Similarly, the components of the compliance matrix are related by

s11 = s22 = s33; s12 = s23 = s31; s44 = s55 = s66 (3.7)

for a material with cubic symmetry; all other components vanish. Values of

elastic sti®ness and compliance constants for a variety of cubic crystals are

listed in Table 3.1.

Unique relationships among the compliance constants and sti®ness

constants for cubic crystals can be derived by considering simple states of

stress and deformation of the crystal. For example, consider a uniaxial

tensile stress ¾1 applied in the direction of the x1¡axis, which is aligned

with one of the cube axes. From (3.3), (3.4) and (3.6), it follows that

²1 = s11¾1; ²2 = s12¾1; ²3 = s12¾1;

¾1 = c11²1 + c12²2 + c12²3: (3.8)

If these relations are to be applied for arbitrary values of ¾1, then elimination

of the strain components implies the condition that

c11s11 + 2c12s12 = 1 : (3.9)

On the other hand, imposition of a hydrostatic tension of magnitude ¾ on

the material results in an extensional strain ² in each of the coordinate

directions, so that

² = (s11 + 2s12)¾ and ¾ = (c11 + 2c12)² : (3.10)

If strain is eliminated from these equations, and the resulting expression is

required to be valid for arbitrary ¾, it follows that

(s11 + 2s12)(c11 + 2c12) = 1: (3.11)

The two equations (3.9) and (3.11) can be solved for s11 and s12 in terms of
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c11 and c12 to yield

s11 =
c11 + c12

(c11 ¡ c12) ¢ (c11 + 2c12)
; s12 =

¡c12
(c11 ¡ c12) ¢ (c11 + 2c12)

: (3.12)

Similarly, if the cubic crystal is subjected only to a pure shear stress ¾4, it

is apparent from (3.3) and (3.6) that

¾4 = c44²4 = c44s44¾4 ) s44 =
1

c44
: (3.13)

Together, (3.12) and (3.13) provide relationships between the three indepen-

dent constants of the sti®ness matrix sij and the three independent constants

of the compliance matrix cij; these provide relationships between alternate

representations of the response of a cubic material.

3.2.1 Directional variation of effective modulus

In thin ¯lms and multilayers which have cubic symmetry due to crystal

structure, geometrical texturing or some other origin, it is of interest to ¯nd

an e®ective elastic modulus that is identi¯ed with a speci¯c crystallographic

or material direction within the ¯lm. The effective elastic modulus associ-

ated with a particular direction in the material is de¯ned as the ratio of the

magnitude of a uniaxial stress to the magnitude of the resulting extensional

strain in that direction. In this section, a general expression is derived for

the e®ective elastic modulus for uniaxial loading along an arbitrary crystal-

lographic direction de¯ned by its Miller indices [hkl]. The uniaxial stress is

denoted by ¾hkl and the corresponding e®ective modulus is denoted by Ehkl.

Suppose that a cubic crystal is subjected to a uniaxial tensile stress

¾hkl along the crystallographic direction [hkl]. The direction cosines of the

oriented line represented by [hkl], with respect to the underlying rectangular

x1x2x3¡coordinate axes, are denoted by A, B and C, respectively; in terms

of the Miller indices,

A =
hp

h2 + k2 + l2
; B =

kp
h2 + k2 + l2

; C =
lp

h2 + k2 + l2
:

(3.14)

From the stress transformation rules consistent with the tensorial character

of stress, it follows that the normal and shear stress acting in the coordinate

directions are related to ¾hkl by

¾1 = A2¾hkl; ¾2 = B2¾hkl; ¾3 = C2¾hkl;
¾4 = ¾23 = BC¾hkl; ¾5 = ¾31 = CA¾hkl; ¾6 = ¾12 = AB¾hkl: (3.15)
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Table 3.1. Elastic constants for cubic crystals at room temperature.

Crystal Materiala c11 c44 c12 s11 s44 s12 AR
structure (in units of GPa) (in units of GPa−1 × 103)
Face- Ag 124.0 46.1 93.4 22.86 21.69 —9.82 3.01
centered Al 107.3 28.3 60.9 15.82 35.36 —5.73 1.22
cubic Au 192.9 41.5 163.8 23.55 24.10 —10.81 2.85

Cu 168.4 75.4 121.4 15.00 13.26 —6.28 3.21
Ir 580.0 256.0 242.0 2.29 3.91 -0.07 1.51
Ni 246.5 124.7 147.3 7.34 8.02 —2.74 2.51
Pb 49.5 14.9 42.3 94.57 67.11 —43.56 4.14
Pd 227.1 71.7 176.0 13.63 13.94 —5.95 2.81
Pt 346.7 76.5 250.7 7.34 13.07 —3.08 1.59

Body- Cr 339.8 99.0 58.6 3.10 10.10 —0.46 0.70
centered Fe 231.4 116.4 134.7 7.56 8.59 —2.78 2.41
cubic K 4.14 2.63 3.31 833.0 380.0 —370.0 6.34

Li 13.5 8.78 11.44 332.8 113.9 —152.7 8.52
Mo 440.8 121.7 172.4 2.91 8.22 —0.818 0.91
Na 6.15 5.92 4.96 581.0 168.9 —259.4 9.95

Nb (Cb) 240.2 28.2 125.6 6.5 35.44 —2.23 0.49
Ta 260.2 82.6 154.5 6.89 12.11 —2.57 1.56
V 228.0 42.6 118.7 6.82 23.5 —2.34 0.78
W 522.4 160.8 204.4 2.45 6.22 —0.69 1.01

Diamond C 949.0 521.0 151.0 1.1 1.92 —1.51 1.31
cubic Ge 128.4 66.7 48.2 9.80 15.0 —2.68 1.66

Si 166.2 79.8 64.4 7.67 12.54 —2.14 1.57

Compounds GaAs 118.8 59.4 53.7 11.72 16.82 —3.65 1.82
GaP 141.2 70.5 62.5 9.73 14.19 —2.99 1.79
InP 102.2 46.0 57.6 16.48 21.74 —5.94 2.06
KCl 39.5 6.3 4.9 26.0 158.6 —2.85 0.36
LiF 114.0 63.6 47.7 11.65 15.71 —3.43 1.92
MgO 287.6 151.4 87.4 4.05 6.6 —0.94 1.51
NaCl 49.6 12.9 12.4 22.4 77.5 —4.48 0.69
TiC 500.0 175.0 113.0 2.18 5.72 —0.40 0.90

a Data from G. Simmons and H. Wang, Single crystal elastic constants and calculated aggregate
properties: A handbook, Second Edition, Massachusetts Institute of Technology Press, Cam-
bridge, MA, 1970, where complete references to original sources of these data can be found.
The axes of reference are taken parallel to the cube axes of the crystals. The reported values
can vary considerably as a result of differences in crystal growth methods, chemical purity,
defect content, and testing methods.

From (3.4) it follows that the corresponding strains are

²1 =
h
A2s11 + B2s12 + C2s12

i
¾hkl; ²4 = [BCs44]¾hkl;

²2 =
h
A2s12 + B2s11 + C2s12

i
¾hkl; ²5 = [CAs44]¾hkl; (3.16)

²3 =
h
A2s12 + B2s12 + C2s11

i
¾hkl; ²6 = [ABs44]¾hkl:

The component transformation rules consistent with the tensorial character

of strain can then be used to represent the component of strain in the [hkl]
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direction as

²hkl =
h
A2²1 + B2²2 + C2²3 + BC²4 + CA²5 +AB²6

i
¾hkl (3.17)

=
³
A4 + B4 + C4

´
s11 +

h³
B2C2 + C2A2 +A2B2

´
(2s12 + s44)

i
¾hkl:

This representation can be simpli¯ed through the use of trigonometric

identities to yield

1

Ehkl
=

²hkl
¾hkl

= s11 +
(2s12 ¡ 2s11 + s44) ¢

¡
k2l2 + l2h2 + h2k2

¢
(h2 + k2 + l2)2

: (3.18)

The maximum and minimum values of the e®ective elastic modulus, from

among all possible line orientations in a cubic crystal, are found to exist for

orientations along the h100i and h111i directions, respectively. The extreme

values and their ratio are

E100 =
1

s11
; E111 =

3

s11 + 2s12 + s44
;

E111
E100

=
3s11

s11 + 2s12 + s44
: (3.19)

The ratio (3.19)3 provides a measure of the degree of departure from isotropy

in any particular cubic material. The value of the ratio may be either greater

than or less than unity; E111 > E100 for some cubic materials, such as Al,

Cu, Si, Fe and Ni, while the reverse is true for other cubic materials, such

as Cr, Mo and Nb.

The modulus Ehkl corresponding to any particular orientation [hkl]

can also be expressed in terms of the extreme values E100 and E111 for cubic

materials by rewriting (3.18) as

1

Ehkl
=

∙
1

E100

¸
+

(
3
¡
h2k2 + k2l2 + l2h2

¢
(h2 + k2 + l2)2

¢
∙

1

E111
¡ 1

E100

¸)
: (3.20)

3.2.2 Isotropy as a special case

For an isotropic crystal, Ehkl in (3.18) is independent of orientation. This is

the case if the second term on the right side of (3.18) is independent of line

orientation or, equivalently, if the ratio (3.19)3 is equal to 1. Either condition

is assured if s44 = 2 (s11 ¡ s12). Equivalently, the special case of isotropy

of a cubic material can be expressed in terms of components of the sti®ness

matrix cij as the condition that 2c44 = (c11 ¡ c12). The degree of departure

from isotropy in the response of a cubic material can be characterized by
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the anisotropy ratio AR in either of the equivalent forms

AR =
2c44

c11 ¡ c12
; or AR =

2 (s11 ¡ s12)

s44
: (3.21)

Note that AR = 1 for an isotropic crystal. The physical signi¯cance of this

ratio is that it represents a measure of the relative response of cubic crystals

to two di®erent types of shear strain: c44 is an indicator of shear resistance

in the <100> directions on f100g planes, whereas the quantity (c11¡ c12)=2

is an indicator of shear resistance in the <110> directions on f110g planes.

Values of anisotropy ratios for various cubic crystals are listed in Table 3.1.

Among cubic metals, W is essentially isotropic and Al is very close to being

so. Many materials listed in Table 3.1 have anisotropy ratios which depart

signi¯cantly from unity.

Elastic deformation in isotropic materials is fully characterized in

terms of two elastic constants, such as elastic modulus E and Poisson's

ratio º, or in terms of the Lam¶e constants, ¹ (the shear modulus) and ¸.

For an isotropic material, the various elastic constants are related by

E =
1

s11
; º = ¡s12

s11
; s12 = ¡ º

E
;

¸ = c12; ¹ = c44 =
1

s44
=

1

2
(c11 ¡ c12) =

1

2 (s11 ¡ s12)
;

¹ =
E

2(1 + º)
; ¸ =

ºE

(1 + º)(1¡ 2º)
: (3.22)

3.3 Elastic constants of non-cubic crystals

Five elastic constants are required to characterize the elastic response of a

material with hexagonal symmetry. A convenient material coordinate frame

in this case is a rectangular coordinate system with the x3¡axis aligned with

the c¡axis of the material, which is the axis with respect to which the ma-

terial has sixfold rotational invariance. The x1¡direction and x2¡direction

can then be chosen to coincide with any pair of orthogonal axes in the basal

plane so as to form a right-handed coordinate system. The ¯ve elements of

the matrix de¯ning elastic response can be chosen to be c11, c33, c44, c12 and

c13. Several other elements can be expressed in terms of these according to

c22 = c11 ; c55 = c44 ; c23 = c13 ; c66 =
1
2(c11 ¡ c12) (3.23)

and all other elements of cij vanish for hexagonal symmetry. The compliance

constants sij are related to the sti®ness constants cij of the hexagonal crystal
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by

s11 =
c33c11 ¡ c213£

c33 (c11 + c12)¡ 2c213
¤
(c11 ¡ c12)

; s66 = 2 (s11 ¡ s12) ;

s33 =
c11 + c12

[c33 (c11 + c12)]¡ 2c213
; s13 = ¡ c13£

c33 (c11 + c12)¡ 2c213
¤ ;

s12 =
¡c33c12 + c213£

c33 (c11 + c12)¡ 2c213
¤
(c11 ¡ c12)

; s44 =
1

c44
: (3.24)

Table 3.2 lists the room temperature elastic sti®ness constants of some com-

monly encountered hexagonal crystals. The corresponding compliance con-

stants are easily determined from (3.24).

For materials with orthorhombic symmetry (or orthotropic symme-

try), there are three mutually orthogonal axes, each of two-fold rotational

symmetry. Translation of the material in the direction of any of these axes

leaves the material behavior unaltered, but the translation distances required

to recover the same lattice in crystalline materials are distinct, in general.

Nine independent constants (c11; c22; c33; c44; c55; c66; c13; c23; c12) are re-

quired to specify the elastic response of a general orthorhombic material.

For a material in which one of the three symmetry axes has fourfold rota-

tional symmetry (or two of the translational invariance distances are equal),

the number of independent constants is reduced to six; this is achieved by

requiring that c22 = c11, c55 = c44 and c23 = c12, for example.

Elastic constants of bulk crystalline materials are commonly measured

by means of the ultrasound method where sound velcities in speci¯c crys-

tallographic orientations are monitored ((?)). For example, the case of a

cubic crystal for which the longitudinal wave speed along the [100] direc-

tion is
p
c11=½, where ½ is the density of the crystal. Likewise, the shear

wave speed along the [100] direction is
p
c44=½. The speed of the longitu-

dinal wave along the [111] direction is
p
c11 + 4c44 + 2c12=3½, from which

the elastic constant c12 can be determined. Other techniques have been

developed in recent years to measure the elastic constants of thin ¯lms on

substrates. For example, line-focus acoustic microscopy (LFAM) senses the

velocity of a surface acoustic wave (SAW) on an elastic material (?) from

which the elastic constants can be extracted.

3.4 Elastic strain in layered epitaxial materials

If two single crystals share a plane interface, and if every boundary atom on

one side of the interface occupies a natural lattice site of the crystal on the

other side, then the interface is said to exhibit epitaxial bonding, as described
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Table 3.2. Elastic constants for hexagonal crystals.

Materiala c11 c33 c44 c12 c13 Ref.
(in units of GPa)

Be 292.3 336.4 162.5 26.7 14.0 a
C (graphite) 1160.0 46.6 2.3 290.0 109.0 b

Cd 115.8 51.4 20.4 39.8 40.6 c
Co 307.0 358.1 78.3 165.0 103.0 d
Hf 181.1 196.9 55.7 77.2 66.1 e
Mg 59.7 61.7 16.4 26.2 21.7 d
Ti 162.4 180.7 46.7 92.0 69.0 e
Zn 161.0 61.0 38.3 34.2 50.1 d
Zr 143.4 164.8 32.0 72.8 65.3 e
ZnO 209.7 210.9 42.5 121.1 105.1 f

a For the results shown in this table, the x3 axis of reference is taken parallel to the c-axis and
with the x1 and x2 reference axes taken on the basal (0001) plane of the crystal. All data,
which represent room temperature elastic properties, are taken from the list provided in Kelly
and Grove (1970). Individual references to the data are: a J.F. Smith and C.L. Arbogast, J.
Appl. Phys., 31, p. 99 (1960). b G.B. Spence, Proc. Fifth Conference on Carbon, 2, p. 531,
Pergamon Press (1961). c C.W. Garland and J. Silverman, Phys. Rev., 119, p. 1218 (1960).
d H.B. Huntington, Solid State Phys., 7, p. 213 (1958). e E.S. Fisher and C.J. Renken, Phys.
Rev., 135A, p. 482 (1964). f T.B. Bateman, J. Appl. Phys., 33, p. 3309 (1962).

in Section 1.4.1. In the most common situation, the two crystals belong to

the same crystal class, for example, diamond cubic or zinc blende, and have

a common crystallographic orientation with respect to the interface plane.

In epitaxial growth of a thin ¯lm on a substrate, the substrate crystal is used

as a growth template and the ¯lm material is deposited atom by atom on

the surface at a temperature su±ciently high to permit the deposited atoms

to seek out the positions that are most favorable energetically, presumably

lattice sites. If this occurs in a layer by layer fashion, then the ¯lm becomes a

perfect crystal that continues the structure of the substrate. If the deposited

material is the same as the substrate material, then the process is called

homoepitaxy; if the materials are di®erent the process is called heteroepitaxy.

An interface without extended crystal defects is often described as being fully

coherent; if the interface incorporates some extended defects it is described

as being partially coherent.

In the case of heteroepitaxy, the natural or stress-free lattice spacing

of the ¯lm material af in some direction along the interface is di®erent from

the natural lattice parameter of the substrate as in that direction, in general.

As a result, the ¯lm is said to have a lattice mismatch with respect to the

substrate in that direction with the magnitude of the mismatch represented
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Fig. 3.1. Illustrations of two epitaxial multilayers comprising alternating layers of
materials identi¯ed as ¯lm `f' and substrate `s' materials for convenience. The
multilayers are chosen to be symmetric to avoid overall bending of the structures
and to each contain ¯lm material of total thickness Hf and substrate material of
total thickness hs. Otherwise, the arrangement of layers is arbitrary. For lattice
mismatch ²m, the elastic mismatch strains are given in (3.28).

by the parameter

²m =
as ¡ af

af
: (3.25)

If the ¯lm thickness hf , which is assumed to be uniform for the time being,

is very small compared to the substrate thickness hs, then the elastic mis-

match is accommodated entirely within the ¯lm. The result is that the ¯lm

is subjected to a uniform extensional elastic strain in the direction being

considered, and that the magnitude of that elastic strain is ²m. It is impor-

tant to notice the distinction between lattice mismatch and elastic strain

that results from mismatch; the former is a system parameter independent

of any particular con¯guration, whereas the latter is the actual elastic strain

¯eld due to the presence of lattice mismatch. In more complex con¯gura-

tions, the mismatch elastic strain can be a spatially nonuniform ¯eld while

the lattice mismatch is simply a number. If the crystal structure is such that

²m is the lattice mismatch in orthogonal directions in the interface, then the

mismatch elastic strain of the thin ¯lm is equi-biaxial and of magnitude ²m.

The generation of mismatch strain due to lattice mismatch is illustrated

schematically in Figure 1.14.

To expand on the general idea of lattice mismatch and the elastic

mismatch strain induced by it, consider a multilayer structure comprising

alternating layers of cubic crystals. One material will be designated as

the ¯lm material and the other as the substrate material, although these

terms are now simply identi¯ers rather than literal descriptors. Two such

structures are shown in Figure 3.1 where the layering di®ers between the

two cases but the total amount of each material is the same. The layering

is chosen with re°ective symmetry with respect to the midplane in order to
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avoid the complications of bending of the structure in the presence of lattice

mismatch. No externally applied forces or moments act on the structure,

and edge e®ects are considered to be remote and negligible. The lattice

mismatch of the ¯lm material with respect to the substrate material is ²m.

However, neither material supports an elastic mismatch strain equal to ²m,

in general.

Denote the equi-biaxial mismatch elastic strain in the ¯lm material by

²f and in the substrate by ²s. Compatibility of deformation requires that

²f ¡ ²s = ²m: (3.26)

The equi-biaxial stress associated with ²f and ²s are ¾f = Mf²f and ¾s =

Ms²s, respectively, where Mf and Ms are the appropriate biaxial moduli

for the materials at hand. Equilibrium requires that the net force on any

cross-section must be zero, so that

Mf²fhf +Ms²shs = 0: (3.27)

The net bending moment on any section vanishes due to symmetry. To-

gether, the two conditions (3.26) and (3.27) imply that

²f = ²m
hsMs

hfMf + hsMs
; ²s = ¡²m

hfMf

hfMf + hsMs
: (3.28)

Note that ²f ! ²m as hf=hs ! 0, so that the thin ¯lm limit is recovered,

and that ²s ! ¡²m as hf=hs ! 1, which provides the proper thin substrate

limit. The common lattice parameter aint shared by the two materials in

this con¯guration is intermediate between af and as, and it has the value

aint = af (1 + ²f) = as (1 + ²s) : (3.29)

Evidently, aint ! as as ²s ! 0 and aint ! af as ²f ! 0, as expected.

The in-plane extensional strain in the thin ¯lm layers are given by

(3.28). The extensional strain in the direction perpendicular to the inter-

faces, however, depend on their crystallographic orientation and anisotropy,

as will be illustrated in the next section. If the material behavior is assumed

to be isotropic, then these extensional strains in the z¡direction, commonly

denoted ²zz, in the two materials are

²⊥f = ¡ 2ºf
1¡ ºf

²f ; ²⊥s = ¡ 2ºs
1¡ ºs

²s: (3.30)

It is this strain component that is commonly detected by x-ray di®raction

observations of thin ¯lm deformation. Note that aint refers only to the lattice

spacing in a direction parallel to the interface, and that the lattice spacing

perpendicular to the interface has a di®erent value. In general, the spacing
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of lattice planes that are parallel to the interface, which is measured in a

direction perpendicular to the interface, is

a⊥f = af
³
1 + ²⊥f

´
; a⊥s = as

³
1 + ²⊥s

´
: (3.31)

3.5 Film stress for a general mismatch strain

In this section, the question of ¯lm stress in an anisotropic ¯lm is addressed

for cases in which the mismatch strain may be more general than equi-

biaxial strain and in which the ¯lm anisotropy may be quite general. The

anisotropy can arise from single crystal behavior, ¯lm material inhomogene-

ity or patterning, or other e®ect. For example, consider the case of a single

crystal thin ¯lm deposited epitaxially on the plane surface of a relatively

thick crystalline substrate. A rectangular coordinate system is introduced

in this con¯guration with its origin at a point on the ¯lm-substrate interface.

The axes of this coordinate system, which will be referred to as the global

coordinate system, are oriented so that the interface is the x1x2¡plane and

the x3¡axis extends into the ¯lm.

The mismatch strain is that strain which must be imposed on the

¯lm material in order to bring it into perfect atomic registry with the unre-

strained substrate. Because this involves straining only in directions parallel

to the interface, the speci¯cation of mismatch strain involves only the com-

ponents of ²
(m)
11 , ²

(m)
22 and ²

(m)
12 with respect to the global coordinate frame.

The magnitudes of these three components are customarily given in terms of

relative lattice dimensions, in the case of epitaxy, or in terms of coe±cients

of thermal expansion and temperature change, in the case of thermal strain.

In any case, three strain components are presumed to be known at the out-

set. The ¯lm is very thin compared to the substrate, so that the strain in

the ¯lm is ²
(m)
ij after it is bonded to the substrate, with three of the six

independent components being known. The mismatch strain may depend

on position through the thickness of the ¯lm, but this possibility will not be

taken into account explicitly in the course of the following discussion.

The surface of the ¯lm at x3 = hf is traction-free, so that

¾
(m)
33 = ¾

(m)
13 = ¾

(m)
23 = 0: (3.32)

on that surface for any mismatch strain. If the ¯lm is invariant under trans-

lation in any direction parallel to the interface (edge e®ects are being ne-

glected), it follows immediately that these three stress components are zero

everywhere throughout the ¯lm, as discussed in Section 2.4. Therefore,

in addition to three components of mismatch strain being known a priori,
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three components of mismatch stress ¾
(m)
ij are also known. These observa-

tions are based only on geometrical invariance under lateral translation, and

the implications are valid for any orientation of the (possibly anisotropic)

material.

3.5.1 Arbitrary orientation of the film material

Suppose that the properties of the ¯lm material are given with respect to

some 'natural' rectangular x∗1x∗2x∗3¡coordinate system referred to the mate-

rial itself. For example, the natural coordinate axes might be the cube edge

axes for a material with cubic symmetry, or they might be normal to the

planes of re°ective symmetry for an orthotropic material. In any case, the

elastic sti®ness properties of the material are given by the components c∗ij,
where the star `∗' is used here and elsewhere to indicate that the material

constants are referred to the material coordinate frame. The coordinates

at a point in a natural material when referred to the material coordinate

system x∗i are linearly related to the coordinates of the same physical point

when referred to the underlying global coordinate system xi by

x∗k = Qkixi; (3.33)

where the ki¡component of Qki is the direction cosine of the x∗k¡axis with

respect to the xi¡axis. If ei and e
∗
i are unit vectors aligned with the coor-

dinate axes in the global frame and the material frame, respectively, then

Qki = e∗k ¢ ei. The elements of Qki are the components of a rotation ten-

sor with the property that QijQkj = ±ik, where ±ik is the identity matrix.

Once the two coordinate systems are speci¯ed, the components of Qij can

be determined.

The components of the strain tensor, which are ²
(m)
ij when referred

to the global coordinate system, can then be expressed with respect to the

material coordinate system as

²
∗(m)
ij = Qik²

(m)
kl Qjl (3.34)

In the natural material coordinate system, the contracted notation whereby

²
∗(m)
1 ; : : : ; ²

∗(m)
6 = ²

∗(m)
11 ; : : : ; ²

∗(m)
12 is merely an alternative way to represent

the mismatch strain. It follows that the corresponding mismatch stress, also

in contracted notation, is

¾
∗(m)
i = c∗ij²

∗(m)
j : (3.35)

In light of (3.34) through (3.36), the components of the full stress tensor
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¾
∗(m)
ij referred to material coordinates can then be reconstructed from the

six components in contracted notation as

¾
∗(m)
ij =

2664 ¾
∗(m)
1 ¾

∗(m)
6 ¾

∗(m)
5

¾
∗(m)
6 ¾

∗(m)
2 ¾

∗(m)
4

¾
∗(m)
5 ¾

∗(m)
4 ¾

∗(m)
3

3775 : (3.36)

Finally, the components of the stress tensor ¾
(m)
ij in the global coordinate

system are given by

¾
(m)
ij = Qki¾

∗(m)
kl Qlj : (3.37)

This provides an expression for the six independent components of mismatch

stress in terms of the six independent components of mismatch strain in the

global coordinate system. At this point, only three components of ²
(m)
ij are

known. However, the conditions (3.32), when applied to (3.37), provide three

linear equations for ²
(m)
33 , ²

(m)
13 and ²

(m)
23 in terms of the known components

²
(m)
11 , ²

(m)
22 and ²

(m)
12 . Once these linear equations are solved, and the results

are substituted back into (3.37), the mismatch stress is known completely.

It is possible to express the mismatch stress in term of mismatch

strain for general anisotropy without reference to the substrate because the

issue has been pursued under the same set of assumptions that underlie the

derivation of the Stoney formula as outlined in Section 2.1. Recall the earlier

assumptions that the ¯lm is very thin compared to the substrate and that

the change in ¯lm strain associated with curvature of the substrate is small

compared to the mismatch strain itself. Under these conditions, the ¯lm

strain and ¯lm properties determine the stress which results in substrate

curvature. The details of the resulting curvature do indeed depend on the

properties of the substrate, and this issue will be taken up in Section 3.7.

Alternatively, the description of material properties which is known a

priori in the material coordinate system could be transformed into the global

coordinate system. The sequence of steps that accomplish this transforma-

tion are as follows: c∗ijkl is constructed from the components of c∗ij, then cijkl
is determined from it by the rules for transformation of components of the

tensor under coordinate transformations according to

cijkl = QmiQnjQpkQqlc
∗
mnpq (3.38)

and cij is constructed from this result. With this result in hand, the expres-

sion of Hooke's law in contracted notation referred to the global coordinate

system is

¾
(m)
i = cij²

(m)
j : (3.39)
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Once again, it is possible to determine mismatch stress from the three known

components of ²
(m)
i and from the conditions that ¾

(m)
3 = ¾

(m)
4 = ¾

(m)
5 = 0.

The reason that these approaches appear to be cumbersome is that ¾
(m)
i , ²

(m)
i

and cij, representations chosen for their convenience for calculation and ease

of interpretation rather than their underlying mathematical structure, are

not components of tensors. In particular, their components do not transform

under transformation of coordinate systems as do the components of tensors.

Consequently, before components of any physical quantity represented by

a tensor of any order can be transformed from one coordinate system to

another, the array must be put into its bona fide tensor form.

As a simple illustration, consider a thin ¯lm of cubic material de-

posited on a planar substrate surface. Furthermore, suppose that the cube

axes coincide with the axes of the global coordinate system. In other words,

the material directions [100], [010] and [001] coincide with the x1¡axis, the

x2¡axis and the x3¡axis in the global coordinate system. Then Qij = ±ij,

the identity matrix. The mismatch strain is assumed to be equi-biaxial ex-

tensional strain so that ²
(m)
11 = ²m, ²

(m)
22 = ²m and ²

(m)
12 = 0. The mismatch

strain is then

²
(m)
i =

n
²m; ²m; ²

(m)
33 ; ²

(m)
23 ; ²

(m)
13 ; 0

o
(3.40)

when referred to either the global or material coordinate axes. It follows

that the mismatch stress is given by

¾
(m)
i = cij²

(m)
j (3.41)

The vanishing of the three stress components according to (3.32) implies

that

c12²m + c12²m + c11²
(m)
33 = 0

c44²
(m)
23 = 0 ; c44²

(m)
13 = 0; (3.42)

from which it follows that

²
(m)
33 = ¡2c12

c11
²m ; ²

(m)
13 = ²

(m)
23 = 0: (3.43)

These results, which generalize the corresponding results for isotropy given

in (3.30), are then substituted back into (3.41) to ¯nd that

¾
(m)
12 = 0 ; ¾

(m)
11 = ¾

(m)
22 =

Ã
c11 + c12 ¡ 2c212

c11

!
²m: (3.44)

Thus, a cubic material that has its cube axes aligned with the global coor-

dinate axes and that is subjected to an equi-biaxial mismatch strain carries



184 Stress in anisotropic and patterned films

an equi-biaxial mismatch stress. The response is isotropic in the plane of

the interface with an effective biaxial modulus in the plane with normal in

the (001) material direction of

M(001) =
¾m
²m

=

Ã
c11 + c12 ¡ 2c212

c11

!
: (3.45)

3.5.2 Example: Cubic thin film with a (111) orientation

Suppose that a thin ¯lm of a cubic material is deposited on a substrate as a single
crystal, oriented so that its (111) crystallographic plane is parallel to the substrate
surface. The elastic constants of the material are c¤ij in a coordinate system aligned
with the cube axes of the material. A global coordinate system is introduced with
the x3¡axis normal to the ¯lm-substrate interface, as in Section 3.5.1. In this

frame, the known components of mismatch strain are ²
(m)
11 = ²

(m)
22 = ²m, ²

(m)
12 = 0.

Determine

(a) the remaining components of ²
(m)
ij which are not dictated by the constraint

of epitaxy,

(b) all components of mismatch stress ¾
(m)
ij , and

(c) the e®ective biaxial modulus, sayM(111), for this orientation and the imposed
mismatch strain.

Solution:

The approach outlined in Section 3.5 will be followed to solve this problem.
For de¯niteness, suppose that the material x¤

1x
¤
2x

¤
3¡coordinate system is oriented

so that e¤1 ¢e2 = 0 and that e¤1 ¢e3 = e¤2 ¢e3 = e¤3 ¢e3 = 1=
p
3; it follows immediately

that e¤1 = e1
p

2=3 + e3=
p
3. From the geometry of the con¯guration, it is evident

that the other unit vectors must be of the form e¤2 = ¡pe1 + qe2 + e3=
p
3 and

e¤3 = ¡pe1 ¡ qe2 + e3=
p
3, where p and q are positive numbers to be determined.

The orthogonality conditions e¤2 ¢ e¤1 = 0 and e¤2 ¢ e¤3 = 0 then the yield the values

p = 1=
p
6 and q = 1=

p
2. With the unit vectors in material coordinate directions

known, the transformation matrix Qki is calculated to be

Qki =

266664
p

2=3 0 1=
p
3

¡1=
p
6 1=

p
2 1=

p
3

¡1=
p
6 ¡1=

p
2 1=11

p
3

377775 (3.46)

(a) With the coordinate transformation known between global coordinates and
material coordinates, the solution proceeds according to the steps outlined in
Section 3.5.1. The expressions produced can be somewhat lengthy, but the
procedure is straightforward and ideally suited for symbolic computation.
The strain tensor in material coordinates can be determined from (3.34),

from which the form ²
¤(m)
i in contracted notation can be determined; for
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example, the ¯rst component is ²
¤(m)
1 = 1

3

³
2
p
2 ²

(m)
13 + ²

(m)
33 + 2²m

´
. The

mismatch stress components ¾
¤(m)
i in contracted notation follow from (3.35),

whereupon the corresponding stress tensor referred to material coordinates
can be calculated according to (3.36); the 11-component of this tensor is
found to be

¾
¤(m)
11 =

1

3

h
2c¤12

³
¡
p
2 ²

(m)
13 + ²

(m)
33 + 2²m

´
+ c¤11

³
2
p
2 ²

(m)
13 + ²

(m)
33 + 2²m

´i
(3.47)

for example, where the elastic constants c¤ij are written with a superposed ¤
to make clear that the components are referred to the material coordinate
frame rather than the global frame. The components of mismatch stress
in global coordinates are then given by (3.37). Recall that three particular
components of stress are required to vanish in all cases according to (3.32);
in the present case, this requires that

¾
(m)
33 = 1

3

h
4c¤44(²

(m)
33 ¡ ²m) + c¤11(²

(m)
33 + 2²m) + 2c¤12(²

(m)
33 + 2²m)

i
= 0

¾
(m)
13 = 2

3
(c¤11 ¡ c¤12 + c¤44)²

(m)
13 = 0 (3.48)

¾
(m)
23 = 2

3
(c¤11 ¡ c¤12 + c¤44)²

(m)
23 = 0:

These equations can be solved for the components of ²
(m)
ij which are not

speci¯ed by the constraint of epitaxy, with the result that

²
(m)
33 = ¡2(c¤11 + 2c¤12 ¡ 2c¤44)²m

c¤11 + 2c¤12 + 4c¤44
;

²
(m)
13 = 0 ; ²

(m)
23 = 0: (3.49)

(b) If the strain components (3.49) are substituted into the expression for mis-

match stress ¾
(m)
ij , then the mismatch stress is known in terms of ²m. The

full array of mismatch stress components is

¾
(m)
ij =

6(c¤11 + 2c¤12)c
¤
44

c¤11 + 2c¤12 + 4c¤44

"
²m 0 0
0 ²m 0
0 0 0

#
: (3.50)

Note that the fact that all shear stress components vanish is a result of the
calculation; it was not presumed to be true at the outset.

(c) It is evident from (3.50) that the mismatch stress in the ¯lm is invariant
under rotation of the material about the particular f111g direction that is
normal to the interface. In other words, the material appears to be trans-
versely isotropic with e®ective biaxial modulus

M(111) =
6(c¤11 + 2c¤12)c

¤
44

c¤11 + 2c¤12 + 4c¤44
(3.51)

in the plane of the interface. The equi-biaxial mismatch stress is ¾m =
M(111)²m. It is readily con¯rmed that, for the special case of isotropy of the

¯lm material with c¤44 = 1
2 (c

¤
11 ¡ c¤12), the biaxial modulus reduces to the

form E=(1¡ º).
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3.6 Film stress from x-ray diffraction measurement

X-ray di®raction is a readily available experimental method that can be

used to infer values of stress in thin crystalline ¯lms on substrates. With

this method, the normal spacing dhkl between adjacent crystallographic

planes within a family of planes with indices (hkl) is determined by means

of Bragg's law in the form

dhkl =
n¸X
2 sin µ

; (3.52)

where ¸X is the wavelength of the x-ray beam incident on the ¯lm and

µ is the angle of incidence and re°ection, as illustrated in Figure 3.2(a).

Measurement is based on the ¯rst-order re°ected beam, so that n = 1 in

(3.52). Typically, the intensity I(µ) of the scattered x-ray beam is monitored

as a function of 2µ, as indicated in Figure 3.2(b). For a crystal with low

defect density, periodicity of the material results in fairly narrow intensity

peaks in the scattered x-ray ¯eld at angles at which constructive interference

occurs. The position 2£ of the ¯rst order peak in the I(µ) versus 2µ plot is

used to determine dhkl from values of ¸X and £ according to (3.52) (Cullity

1978). This measured value is commonly identi¯ed as the `d¡spacing' for

the crystallographic direction represented by (hkl).

Fig. 3.2. Schematic showing (a) the re°ection of x-rays by crystallographic planes,
and (b) a plot of the intensity of x-ray beams versus 2µ.

3.6.1 Relationship between stress and d¡spacing
Consider an isotropic ¯lm on a substrate for a case in which the equi-biaxial

mismatch stress ¾m and the corresponding mismatch strain ²m are to be



3.6 Film stress from x-ray diffraction measurement 187

estimated by recourse to d-spacing measurements involving x-ray di®raction.

The state of strain in the thin crystalline ¯lm on its substrate alters the

interplanar spacing of a particular family of planes from the value in an

unstressed crystal, say d0; see Figures 3.3(a) and (b). Thus, the di®erence in

d-spacings of crystallographic planes within a family between the strained

and unstrained states of a thin ¯lm, as determined by x-ray di®raction,

provides a measure of the elastic strain components in the ¯lm.

� � � 	 � � �  � � � � � � 	 � � � �  � � � � � 	 �  � � � � � � 	 � � � �  � �

� &

Fig. 3.3. Schematic showing d-spacings between crystallographic planes in (a) an
unstressed crystal and (b) the same crystal subjected to an equi-biaxial mismatch
stress ¾m.

Based on the discussion in Sections 2.1 and 3.5, the nonzero compo-

nents of stress in the ¯lm, with reference to the x1x2x3¡coordinate system

shown in Figure 3.3, are ¾
(m)
11 = ¾

(m)
22 = ¾m. The corresponding nonzero

strain components are

²
(m)
11 = ²

(m)
22 = ²m =

¾m
Mf

; ²
(m)
33 = ¡ 2ºf

1 + ºf
²m = ¡2ºf

Ef
¾m: (3.53)

This provides a relationship between the mismatch stress ¾m and the out-of-

plane strain ²
(m)
33 in the ¯lm. Referring to Figure 3.3, the extensional elastic

strain normal to the plane of the ¯lm, expressed in terms of the d¡spacings

in the deformed and unformed states, is

²
(m)
33 =

dhkl ¡ d0
d0

: (3.54)

Note that calculation of ²
(m)
33 using this equation presumes a knowledge of

the reference d-spacing value d0 of the ¯lm in the unstressed state. Equa-

tions (3.53) and (3.54) together yield the mismatch stress in the ¯lm in terms

of the measured d-spacing as

¾m = ¡ Ef
2ºf

µ
dhkl ¡ d0

d0

¶
: (3.55)

A tensile mismatch stress in the ¯lm implies that ¾m > 0 and, therefore,

²
(m)
33 < 0.
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The same line of reasoning applies for the case of an anisotropic mate-

rial supporting and equi-biaxial extensional mismatch strain and zero shear

strain. Consider a cubic single crystal thin ¯lm with a (001) ¯lm-substrate

interface plane. The mismatch strain and mismatch stress in this ¯lm can

be estimated using x-ray di®raction measurements along with (3.43) and

(3.45) by noting that

²m = ¡ c11
2c12

µ
d001 ¡ d0

d0

¶
;

(3.56)

¾m = ¡ c11
2c12

Ã
c11 + c12 ¡ 2c212

c11

! µ
d001 ¡ d0

d0

¶
:

Similar expressions can be obtained for a cubic thin ¯lm with a (111) for

¯lm-substrate interface orientation using (3.49) and (3.51).

A homogeneous strain in a ¯lm gives rise to a sharp peak in the in-

tensity of the x-ray beam at the Bragg angle; see Figure 3.2. However, if

the mismatch strain distribution in the ¯lm is spatially inhomogeneous, lo-

cal gradients in strain within the region sensed by the incident x-ray beam

would cause x-ray peak broadening, resulting in a more di®use intensity plot

in Figure 3.2(b) (Murakami (1978); Murakami (1982)).

Grazing incidence x-ray scattering is a particular application of the

x-ray di®raction method for stress measurement whereby the incident x-ray

beams are made to impinge on the ¯lm surface at a very low angle of in-

cidence, or at a grazing angle of incidence, typically 0.2 degrees. This low

angle of incidence results in re°ection of the x-rays out of the ¯lm rather

than penetration into the ¯lm. By varying the grazing angle, strain over

di®erent depths can be sampled by the x-rays. This method a®ords the pos-

sibility of measuring the d-spacings of planes that are oriented normally to

the ¯lm{substrate interface, whereby the mismatch strain can be measured

directly (Doerner and Brennan 1988).

3.6.2 Example: Stress implied by measured d¡spacing
The residual strains in an aluminum ¯lm, 1 ¹m in thickness, on a Si substrate,
550 ¹m thick and 200 mm in diameter, were studied by x-ray di®raction. It was
found that the d-spacing of crystallographic planes in the ¯lm, which were oriented
parallel to the plane of the ¯lm, decreased by 0.054%, compared to the situation
when the ¯lm was stress-free.

(a) If the ¯lm is assumed to be elastically isotropic, ¯nd the equi-biaxial mis-



3.6 Film stress from x-ray diffraction measurement 189

match stress and mismatch strain in the ¯lm. The elastic modulus and
Poisson ratio of the ¯lm are 70GPa and 0.33, respectively.

(b) Repeat the calculation assuming that the aluminum ¯lm has (001) texture.

Solution:

(a) From the observation that the d-spacing of crystallographic planes in the
¯lm, which were oriented parallel to the plane of the ¯lm, decreased by

0.054%, it follows that ²
(m)
33 = ¡0:00054. From (3.54), it follows that the

mismatch stress in the ¯lm is determined to be

¾m = ¡ Ef

2ºf
²
(m)
33 = 57:3MPa: (3.57)

The equi-biaxial mismatch strain in the ¯lm is

²
(m)
11 = ²

(m)
22 = ¾m

1¡ ºf
Ef

= 0:00055: (3.58)

(b) From (3.56)1, the mismatch strain in the ¯lm with the (100) texture is
written as

²m = ¡ c11
2c12

²
(m)
33 : (3.59)

Noting from Table 3.1 that c11 = 107.3 GPa and c12 = 60.9 GPa for alu-
minum, it follows that ²m = 0:00047. Substituting the values of c11 and c12
into (3.45), the biaxial modulus of the aluminum ¯lm with the (001) texture
is found to be 99.1 GPa. This result, in conjunction with (3.56)2, provides
the mismatch stress in the ¯lm as ¾m = 47:2MPa.

3.6.3 Stress-free d¡spacing from asymmetric diffraction

The foregoing discussion deals with situations in which the family of di®ract-

ing plane is parallel to the ¯lm-substrate interface plane so that the incident

and re°ecting beams of x-rays are symmetrically oriented with respect to

the normal to the ¯lm surface, as shown in Figure 3.2(a). The measurement

of change in d-spacing from this symmetric di®raction leads to the determi-

nation of a single component of extensional strain in the ¯lm, namely ²
(m)
33 .

The other components both strain and stress are the thin ¯lm, as shown

in (3.53) through (3.56). Such an approach presumes a priori knowledge

of the unstressed or reference d-spacing value d0 of the di®racting plane.

Although values of d0 are available in the literature for commonly used bulk

crystals, it may be necessary in some situations to determine values of d0 for

thin ¯lms experimentally ((Clemens and Bain 1992); (Cornella et al. 1997)).

For example, variations in composition and impurity content arising from

variations in ¯lm deposition methods, di®usion, interfacial reactions or en-

vironmental interactions can cause the unstrained lattice spacings for thin
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¯lms to di®er markedly from those determined for bulk materials. In addi-

tion, some materials are available only in thin ¯lm form, in which case d0
values may not be available in the literature. It is necessary to determine

the evolution of ¯lm stress as a function of temperature in some instances,

and values of d0 as functions of temperature are not commonly available for

many materials. In addition, lattice spacing values for unstressed crystals

are usually determined from known elastic constants. For some thin ¯lm

materials, such estimates of elastic properties may not be readily available

at the temperature of interest. Finally, the ability to determine d0 at di®er-

ent temperatures through x-ray di®raction would also provide a means to

estimate the coe±cient of thermal expansion of the ¯lm without the need to

isolate the ¯lm from its substrate and without information about the elastic

properties of the ¯lm.
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Fig. 3.4. Schematic diagram showing a family of di®racting crystallographic planes
in a ¯lm. The planes are oriented so that their normal vector, or scattering vector,
is at an angle Ã with respect to the normal to the ¯lm-substrate interface surface.
The projection of the re°ecting plane normal vector onto the plane of the interface
is oriented at an angle Ã with respect to the x1¡axis. The incident and re°ected
x-ray beams are both inclined at an angle µ with respect to the re°ecting planes,
as in Figure 3.3.

Nonsymmetric x-ray di®raction is an experimental technique that can

be used to infer values of mismatch strain in a thin ¯lm by monitoring

the intensity of x-rays di®racted from planes that are not parallel to the

¯lm{substrate interface. Figure 3.4(a) schematically shows a thin ¯lm on a

substrate where the normal to the ¯lm-substrate interface plane is oriented

at an angle Ã with respect to the normal to the di®racting planes; the unit

vector normal to the distracting planes is commonly known as the scattering

vector. The extensional strain in the direction of the scattering factor is

denoted by ²ψ. This strain can be determined for any value of Ã in terms of

the strain components referred to the coordinate axes, using the coordinate

transformation procedure described in Section 3.5.1.
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Consider once again a thin ¯lm with equi-biaxial mismatch strain

²
(m)
11 = ²

(m)
22 = ²m in the plane of the ¯lm-substrate interface, out-of-plane

extensional strain ²
(m)
33 and zero shear strain everywhere. In this case, the

extensional strain in the direction of the scattering vector is related to the

strain components in the coordinate directions according to

²ψ = ²m sin2 Ã + ²
(m)
33 cos2 Ã = ²

(m)
33 +

³
²m ¡ ²

(m)
33

´
sin2 Ã : (3.60)

Alternatively, this same strain can be expressed in terms of the d¡spacing

values of the di®racting planes as

²ψ =
dψ ¡ d0

d0
; (3.61)

where, for convenience, the deformed spacing of the particular family of

planes being interrogated is here are denoted by dψ rather than by dhkl.

The two expressions (3.60) and (3.61) can be combined to yield an expres-

sion for the measured the spacing of strained ¯lm in terms of other system

parameters as

dψ = d0
³
1¡ ²

(m)
33

´
+ d0

³
²m ¡ ²

(m)
33

´
sin2 Ã : (3.62)

Suppose that the ¯lm material is an isotropic elastic material, so that

the relationships between mismatch strain and mismatch stress noted in

(3.53) apply. In this case, (3.62) takes the form

dψ = d0 ¡ 2ºf
Ef

¾md0 +
1 + ºf
Ef

¾md0 sin2 Ã : (3.63)

If d0 and the elastic constants of the ¯lm material would be known, it follows

that the mismatch stress ¾m could be inferred from a measurement of dψ by

means of this expression. Note that there is some direction in the material,

say Ã0 de¯ned by

sin2 Ã0 =
2ºf

1 + ºf
; (3.64)

for which the extensional strain ²ψ is zero or for which dψ = d0. This is not

the direction of the scattering vector in general, nor is it the orientation of

any member of the family of di®racting planes.

The expression (3.63) can be used for the determination of thin ¯lm

stress without a priori knowledge of either stress-free d¡spacing of the set

of crystallographic planes being interrogated or the elastic constants of the

¯lm material. The procedure exploits the linear relationship between dψ
and sin2 Ã that was identi¯ed in (3.63), and it requires that measurements
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be made for two di®erent values of mismatch stress; the magnitudes of mis-

match stress are unknown in both cases. Implementation of the procedure

requires the measurement of d¡spacings for two di®erent members of the

same family of crystallographic planes, say members with scattering vector

orientations Ã1 and Ã2 which yield d¡spacing values of dψ1 and dψ2, re-

spectively. This same measurement must be done for two di®erent values of

unknown mismatch stress, say ¾
(1)
m and ¾

(2)
m . These four measurements of

d¡spacing at di®erent stress levels are su±cient to determine the two coef-

¯cients in the linear relationship between dψ and sin2 Ã for the two stress

levels. The key observation is that, due to the linearity of material response,

the direction Ã0 of zero extensional strain will be the same for the two stress

magnitudes. Consequently, if the two linear relationships obtained from the

measurements are shown in a graph, the intersection of the two lines de¯nes

the value of d0. This is illustrated in Figure 3.5. Cornella et al. (1997) have

demonstrated the use of this method for the determination of stress-free d-

spacing in 500 nm thick Al and Au ¯lms on relatively thick Si substrates.

The experimental scatter in the measured d0 values was as small as 0.121%

for Al and 0.189% for Au, and the measured values compared well with

known literature values. It is emphasized that the two lines used to deter-

mine the value of d0 must result from measurements based on members of

the same family of crystallographic planes.

If the thin ¯lm with an equibiaxial extensional mismatch strain and

zero shear mismatch strain is an anisotropic crystal with (001) orientation,

the strain ²ψ given in (3.60) can be rewritten in terms of the single crystal

elastic constants, using (3.22) and (3.41){(3.44), as

²ψ =
dψ ¡ d0

d0
= (s11 ¡ s12) ¾m sin2 Ã + 2s12¾m : (3.65)

Similarly, the results presented in Section 3.5.2 can be used to show that,

for a cubic ¯lm with a (111) orientation,

²ψ =
dψ ¡ d0

d0
= ¾m

(
2s11 ¡ s44 + 4s12

3
+

s44 sin
2 Ã

2

)
: (3.66)

In all cases, there is a particular orientation in the ¯lm with respect to the

plane of the ¯lm-substrate interface for which the extension will strain is

zero, as is evident from (3.62) which does not involve material constants.

Since the nonsymmetric di®raction method also facilitates determina-

tion of interplanar spacing as a function of sin2 Ã at di®erent temperatures,

the coe±cient of thermal expansion of the ¯lm can also be determined with-

out removing the ¯lm from the substrate or without knowledge of the elastic



3.6 Film stress from x-ray diffraction measurement 193

� � � " �

! ! ' " ! ' # ! ' $ ! ' % &

� � � " � & � � � " � "

� 	&

&
� �

� 	&
"

� �

� 	"

"
� �

� 	"

&
� �

!�

� 	&
��

� 	"
���

�
�


�
�
��
�

Fig. 3.5. Schematic illustration of the determination of stress-free d-spacing d0 for
a given family of crystallographic planes in thin ¯lms subjected to equi-biaxial
mismatch stress. The procedure is based on the linear dependence of dÃ on sin2 Ã
established in (3.63),(3.65) or (3.66) and the measurement of d¡spacings for two
members of a given family of crystallographic planes, each at two unknown values of
stress. The discrete points represent the data from which the construction proceeds.

properties of the ¯lm material. This technique has been used by Kraft and

Nix (1998) to determine the thermal expansion coe±cient of a polycrys-

talline Al ¯lm with (111) ¯ber texture on a relatively thick Si substrate.

They measured the d-spacing values of two scattering vectors for the f422g
family of planes. The two data points so obtained for both tensile and com-

pressive mismatch stress in the ¯lm provide the two intersecting dψ versus

sin2 Ã lines at each temperature at which x-ray di®raction measurements

are made. Determination of d0 from the point of intersection of the two

lines obtained for each temperature then provides the coe±cient of thermal

expansion as a function of temperature. The choice of this particular family

of planes by Kraft and Nix (1998) was dictacted by the consideration that

di®erent f422g planes can be identi¯ed at di®erent angles to the normal to

the plane of the ¯lm.

The results for characterizing stress in elastically anisotropic cubic

single crystal ¯lms presented in Section 3.5 and in this section can also be

adapted, under appropriate conditions, for textured polycrystalline ¯lms.

An equi-biaxial mismatch strain in the (001) or (111) textured thin ¯lm of

a cubic crystal results in an equi-biaxial mismatch stress. Because the re-

sponse is transversely isotropic, the biaxial moduli derived for cubic crystals

of these orientations can also be used to characterize polycrystalline thin
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¯lms with perfect (001) or (111) ¯ber textures. However, a thin ¯lm of a

cubic crystal oriented with its [011] axis perpendicular to the ¯lm-substrate

interface plane does not exhibit transverse isotropy. Consequently, single

crystal elastic response cannot be directly adapted to characterize polycrys-

talline ¯lms with (011) ¯ber texture.

3.6.4 Example: Determination of reference lattice spacing

A thin ¯lm of a polycrystalline fcc metal with f111g ¯ber texture was deposited
onto a relatively thick Si substrate. Nonsymmetric x-ray di®raction measurements
showed that the (242) and (24¹2) planes had d¡spacing values of 0.8268 and 0.8274
ºA, respectively. The thin ¯lm material is known to be nearly isotropic. The elastic
modulus and Poisson ratio of the ¯lm material are 70 GPa and 0.33, respectively.

(a) Determine the orientation Ã0 in which extensional strain is zero.

(b) Determine the equibiaxial mismatch stress ¾m and the strain ²
(m)
33 normal to

the plane of the ¯lm.

Solution:

(a) Let Ã1 denote the angle between the normal to the (242) plane, or equiva-
lently, the normal to (121) plane and the normal to the plane of the ¯lm,
which is along the [111] direction. From the geometry of the fcc crystal,

cosÃ1 =
1p
6
[121] ¢ 1p

3
[111] = 0:943 ) Ã1 = 19:44±: (3.67)

Similarly the angle Ã2 between the normal to the (24¹2) plane, or equivalently,
the normal to (12¹1) plane and the [111] direction is found from geometry as

cosÃ2 =
1p
6
[12¹1] ¢ 1p

3
[111] = 0:471 ) Ã2 = 61:9±: (3.68)

Because the ¯lm material can be considered elastically isotropic with Poisson
ratio ºf = 0:33, the orientation of zero extensional strain can be determined
from (3.64) to be

sin2 Ã0 =
2ºf

1 + ºf
= 0:496 ) Ã0 = 44:7±: (3.69)

(b) The equation of the straight line representing the linear variation of dÃ with

sin2 Ã is given in (3.62). Inserting the dÃ values of 0.8268 ºA and 0.8274 ºA

for sin2 Ã1 = 0.11 and sin2 Ã2 = 0.778, resepctively, it is readily seen that

d0(1¡²
(m)
33 ) = 0.8267 ºA and that d0(²m¡²

(m)
33 ) = 0.8276 ºA. For the particular

case of sin2 Ã = sin2 Ã0 = 0.496, the reference spacing of planes in the f422g
family is d0 = 0.8271 ºA. The equibiaxial mismatch strain and mismatch
stress in the ¯lm, respectively, are then

²m = 6£ 10¡4; ¾m =
Ef

1¡ ºf
²m = 62:7MPa: (3.70)
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The strain component normal to the ¯lm-substrate interface plane is

²
(m)
33 = ¡5£ 10¡4: (3.71)

3.7 Substrate curvature due to anisotropic films

For all of the cases of substrate curvature induced by ¯lm stress that were

considered in Section 2.1, it was assumed that both the ¯lm and substrate

materials were isotropic. This provided a basis for a relatively transparent

discussion of curvature phenomena and it led to results which have proven

to be broadly useful. However, there are situations for which some un-

derstanding of the in°uence of material anisotropy of the ¯lm material or

the substrate material, or perhaps of both materials, is important to know.

Therefore, in this section, representative results on the in°uence of material

anisotropy on substrate curvature are included. Results are established for

two particular curvature formulas. In the ¯rst case, the ¯lm is presumed

from the outset to be very thin compared to the substrate. Furthermore,

the substrate is assumed to be isotropic and the ¯lm is considered to be

generally anisotropic. In the second case discussed, no restriction is placed

on the thickness of the ¯lm relative to the substrate, but both materials

are assumed to be anisotropic. However, to obtain expressions for curva-

ture which are not too complex to be interpretable, attention is limited to

cases for which both the ¯lm and substrate materials are orthotropic, that

their axes of orthotropy aligned with each other and that one axis of or-

thotropy of each material is normal to the ¯lm-substrate interface. There

is no connection between the values of orthotropic elastic constants of the

two materials. Consideration of these two cases illustrates the most use-

ful approaches for anisotropic materials; generalizations for cases of greater

complexity are evident.

3.7.1 Anisotropic thin film on an isotropic substrate

Certain key features of the analysis of curvature in Section 2.1 leading to the

classic Stoney formula (2.7) when hf ¿ hs can be used to great advantage

in the case of an anisotropic stress ¯lm bonded to a substrate. Among these

features is that it is only the resultant membrane force in the ¯lm prior

to substrate deformation which contributes to substrate curvature. Any

through-the-thickness variation of the ¯lm stress giving rise to this force
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resultant is of secondary importance. A second feature is that the defor-

mation due to curvature is su±ciently small so that the magnitude of the

resultant force is essentially unaltered by the deformation of the substrate

associated with curvature. This feature implies that the curvature of the

substrate midplane can be calculated directly from the moment of this force

resultant (or, more precisely, from the moment of the force resultant which

negates the membrane force in the ¯lm) acting through the moment arm

of length hs=2, knowing only the elastic properties of the substrate. The

overall bending resistance is not in°uenced to a signi¯cant degree by the

presence of the ¯lm and, as a consequence, the elastic properties of the ¯lm

material do not enter the calculation directly. This is the advantage of the

Stoney formula; the same features were exploited in Section 2.1.

� $

� �

� "
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Fig. 3.6. Schematic diagram of a thin ¯lm bonded to the surface of a substrate.
The ¯lm thickness hf is much less than the thickness hs of the substrate. Due
to an elastic mismatch strain in the ¯lm, a membrane force per unit length must
be imposed around the periphery of the ¯lm to balance the internal stress due to
mismatch without deforming the substrate. Relaxation of this arti¯cial membrane
force resultant to render the edge free of applied moment induces curvature in the
substrate.

To pursue this idea for the case of an anisotropic ¯lm, suppose for

purposes of simplicity that the substrate is isotropic. Furthermore, suppose

that the ¯lm is subjected to a mismatch strain with respect to the unde-

formed substrate. Following the discussion of Section 3.5, the mismatch

strain is conveniently expressed with respect to the global coordinate axes

shown in Figure 3.6 by the strain components ²
(m)
1 , ²

(m)
2 and ²

(m)
6 in the con-

tracted notation introduced there. These are the two in-plane extensional

strain components (²
(m)
11 and ²

(m)
22 in the full strain matrix) and the in-plane

shear strain component (2²
(m)
12 in the full strain matrix). Both the elastic

constants of the ¯lm and the mismatch strain may vary with coordinate

x3 through the thickness of the ¯lm. An expression for the corresponding

¯lm mismatch stress components ¾
(m)
1 , ¾

(m)
2 and ¾

(m)
6 , also in contracted
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notation, in terms of ¯lm elastic properties and mismatch strain is given

in (3.39). The resultant force due to this stress, per unit length along the

edge of the ¯lm prior to deformation of the substrate, is then given by the

components

fi =

Z (hs/2)+hf

hs/2
¾
(m)
i (x3) dx3: i = 1; 2; 6 (3.72)

If the substrate is to be maintained in a stress-free state, the components

f1 and f2 must act on ¯lm edges de¯ned by planes normal to the x1 and x2
directions, respectively, while the component f6 represents the shear force

inducing shear deformation between these two directions. If the ¯lm material

is homogeneous and if the mismatch strain is uniform through the thickness

then the integrands in (3.72) are independent of x3 and the force expressions

reduce to fi = ¾
(m)
i hf . Furthermore, if the ¯lm material is isotropic and the

mismatch is equi-biaxial with ²
(m)
1 = ²

(m)
2 = ²m, then both f1 and f2 reduce

to the same value f = Mfhf²m as de¯ned in (2.9). The component f6 is zero

in this case.

The resultant forces f1, f2 and f6 distributed along the ¯lm edges

with magnitudes given in (3.72) are shown in the schematic diagram in

Figure 3.6. Curvature of the substrate is induced upon relaxation of the

arti¯cially imposed force resultants. For example, relaxation of the force

f1 is equivalent to imposition of a compressive force resultant of magnitude

f1 along the edge of the substrate midplane plus a bending moment per

unit length along the midplane edge of magnitude 1
2hsf1. Examination of

the substrate response leads to dependence of the components of curvature

in the coordinate directions in Figure 3.6 on the mismatch force resultant

components in the form

∙1 =
6(f1 ¡ ºsf2)

Esh2s
; ∙2 =

6(f2 ¡ ºsf1)

Esh2s
;

∙6 = (1¡ ºs)
6f6
Esh2s

:

(3.73)

Here, ∙6 represents the twist of the substrate midplane, which was intro-

duced in Section 2.6.2. These three parameters characterize the transverse

midplane de°ection of the substrate, which has the form u3(x1; x2; 0) =
1
2∙1x

2
1 + ∙6x1x2 +

1
2∙2x

2
2 with respect to a plane tangent to the curved sub-

strate at the point x1 = x2 = 0. Although the con¯guration is illustrated for
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a rectangular substrate in Figure 3.6, the curvature results are independent

of the shape of the substrate.

It is interesting to note that, under any circumstances for which f1 =

f2, the two curvature expressions both reduce to the Stoney formula (2.7).

It should also be noted that the expressions in (3.73) are exact up to terms

of order hf=hs. No approximations are involved in obtaining them other

than those which follow directly from the restriction to situations for which

hf=hs ¿ 1. The expressions in (3.73) turn out to be useful for extracting

information about patterned ¯lm con¯gurations, as opposed to laterally ho-

mogeneous ¯lms, from curvature observations. The expression (3.72) makes

clear that fi can be viewed as a through-the-thickness average of the stress

component ¾i(z) in the ¯lm, say h¾ii = fi=hf , where the angle brackets

denote a value averaged over some material volume. With this point of

view, the expressions (3.73) provide a relationship between substrate cur-

vature and average ¯lm stress. This idea is developed more completely in

the Section 3.10 for ¯lms which are not uniform in thickness or which are

cracked.

3.7.2 Aligned orthotropic materials

The physical system considered in this section is again a plate-like con¯gu-

ration depicted in Figure 3.7 with total thickness much less than the lateral

dimensions. The con¯guration consists of a substrate of uniform thickness

hs on which there is bonded a ¯lm of thickness hf . Both the substrate and

the ¯lm are assumed to be elastic and to have orthotropic symmetry, with

the axes of orthotropy of the ¯lm and substrate being aligned. The origin

of coordinates lies in the midplane of the substrate, and the x3¡direction

is normal to the interface; the x1¡ and x2¡axes lie in the midplane and

are parallel to the axes of orthotropy. The substrate is homogeneous and

its midplane would be °at in the absence of any applied loading. On the

other hand, an elastic mismatch in extensional strain in the directions of

orthotropy is assumed to be present in the ¯lm. This mismatch strain has

components ²
(m)
k in contracted notation, k = 1; 2, which vary in an arbitrary

way through the thickness but which are laterally uniform. The elastic con-

stants in the ¯lm, say the sti®ness components cfij(x3), can also vary in an

arbitrary way through the ¯lm thickness. The mismatch strain and elas-

tic constants may vary discontinuously with x3 to represent a multilayer

structure, or they may vary continuously to represent a graded layer.

All mechanical ¯elds are referred to the underlying rectangular co-

ordinate system; see Figure 3.7. The remote lateral edges of the con¯g-
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Fig. 3.7. Schematic diagram of a thin ¯lm bonded to the surface of a substrate.
Both the ¯lm and substrate are assumed to be elastically orthotropic with axes of
orthotropy aligned with the coordinate directions.

uration are free of applied loading, in the sense that the resultant force,

resultant bending moment and resultant twisting moment, all measured per

unit length along the edge of the substrate midplane, are zero on the lateral

faces. Other details of the mechanical ¯elds very close to the lateral edges

are ignored. The conditions imposed on the mechanical ¯elds everywhere

except near the remote edges by the requirements of equilibrium, material

behavior and geometric compatibility are now determined. The main result

to be extracted is the relationship between the mismatch strain in the ¯lm

and the curvature of the substrate.

Symmetry and invariance arguments were invoked in Section 3.5 to

conclude that

¾3 = ¾4 = ¾5 = 0 (3.74)

throughout the system, in contracted notation for stress components. The

invariance property also implies that the remaining stress components are

independent of x1 and x2. In view of the absence of any remotely applied

resultant force or bending moment on the edge of the con¯guration, it follows

that the resultant force and bending moment must vanish on any interior

cross-section as well, so thatZ (hs/2)+hf

−hs/2
¾k(x3) dx3 = 0 ;

Z (hs/2)+hf

−hs/2
x3¾k(x3) dx3 = 0 ; k = 1; 2

(3.75)

The shear stress component ¾6 also vanishes in this case due to the assumed

symmetry of the con¯guration and the absence of a mismatch in shear strain.

The total strain ¯eld in the system is not compatible, in general, due

to the mismatch. However, the incompatibility is represented explicitly by

the mismatch strain ²
(m)
k , which is the elastic strain which must be imposed

on the ¯lm material to fully counteract the incompatibility. The total strain

minus the mismatch strain is compatible, from which it follows that the
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total strain components necessarily have the form

²k(x3) = ²
(m)
k (x3)¡ x3∙k + ²

(o)
k ; k = 1; 2 (3.76)

where ²
(o)
k are the in-plane extensional strain components of the substrate

midplane x3 = 0, ∙k are the curvature components of the midplane surface

in the x and y directions for k = 1 and 2, respectively, and the mismatch

strain vanishes in the substrate.

The response of the material is linearly elastic with orthotropic sym-

metry, so that

¾i(x3) = cIij(x3)²j(x3) ; i; j = 1; 2 (3.77)

where

cI11 = c11 ¡ c213=c33 ; cI22 = c22 ¡ c223=c33 ; cI12 = c12 ¡ c13c23=c33 (3.78)

are the plane stress compliances which account for the fact that ²3 = ¡(c13²1+

c23²2)=c33 as a result of ¾3 = 0. In writing (3.77), it is assumed that the

sti®ness is cij = csij when ¡1
2hs < x3 < 1

2hs or cij = cfij when 1
2hs < x3 <

1
2hs + hf .

The stress in (3.77) is next expressed in terms of ∙k and ²
(o)
k by means

of (3.76). A consequence of imposing the equilibrium conditions (3.75) on

the resultant is a set of linear algebraic equations for the curvature and the

strain of the substrate midplane,

J011(²
(m)
1 ) + ²

(o)
1 J011(1)¡ ∙1J

1
11(1) + J012(²

(m)
2 ) + ²

(o)
2 J012(1)¡ ∙2J

1
12(1) = 0

J111(²
(m)
1 ) + ²

(o)
1 J111(1)¡ ∙1J

2
11(1) + J112(²

(m)
2 ) + ²

(o)
2 J112(1)¡ ∙2J

2
12(1) = 0

(3.79)

J012(²
(m)
1 ) + ²

(o)
1 J012(1)¡ ∙1J

1
12(1) + J022(²

(m)
2 ) + ²

(o)
2 J022(1)¡ ∙2J

1
22(1) = 0

J112(²
(m)
1 ) + ²

(o)
1 J112(1)¡ ∙1J

2
12(1) + J122(²

(m)
2 ) + ²

(o)
2 J122(1)¡ ∙2J

2
22(1) = 0;

where

Jnij(g) =

Z (hs/2)+hf

−hs/2
xn3 c

I
ij(x3)g(x3) dx3 ; i; j = 1; 2 (3.80)

for any function g(x3). Thus, given the mismatch strain distribution ²
(m)
k (x3),

which is identically zero in the substrate, and the material parameters

cij(x3), the system of equations (3.79) can be solved for substrate curva-

ture components ∙1 and ∙2. While the expressions (3.79) appear to be

complicated, they are quite simple in most cases of interest, in the sense
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that all details can be extracted by evaluation of a few integrals in terms of

elementary functions.

This approach can be generalized to account for more complex geo-

metrical arrangements of the layers or for other material symmetries. The

essential features of the approach are the limitation to small de°ections and

the translational invariance of the con¯guration in any direction parallel to

the substrate midplane. If the substrate is absent, that is, if hs=hf ! 1, the

role played by the substrate midplane in the above discussion is naturally

assumed by the plane face x3 = 0 of the remaining ¯lm.

If the ¯lm and substrate materials are homogeneous and isotropic,

then

cf11 =
(1¡ ºf)Ef

(1 + ºf)(1¡ 2ºf)
; cf22 = cf33 = cf11

(3.81)

cf12 =
ºfEf

(1 + ºf)(1¡ 2ºf)
; cf13 = cf23 = cf12

for the ¯lm material, and similarly for the substrate material. If the mis-

match strain is also equi-biaxial so that ²
(m)
1 = ²

(m)
2 = ²m, a constant, then

solution of the system of equations (3.79) again yields the curvature ex-

pression in (2.19) for both ∙1 and ∙2. In addition, if the ¯lm is also very

thin with respect to the substrate, then the Stoney expression in (2.7) is

recovered for this case.

3.8 Piezoelectric thin film

Piezoelectricity is a physical e®ect exhibited by crystals that are electrically

neutral, but that do not have a center of re°ective symmetry in crystal

structure. The essential property of a point of re°ective symmetry is that

for each atomic position in the crystal lattice there is a matching atomic

position at a point that is directly opposite the ¯rst with respect to the

point of symmetry; this second position is at a same distance from the point

of symmetry as the ¯rst. For example, the face-centered cubic structure

has a point of re°ective symmetry at the geometrical center of the unit cell

whereas the cubic zinc blende structure does not have a center of symmetry.

When a stress is applied to such a crystal, it may become electrically

polarized as a result of a charge separation on the atomic level, leaving

unbalanced net charges of opposite sign on opposite faces of the crystal.

A closely related phenomenon, which is known as the piezoelectric effect,

is the production of mechanical strain when such a crystal is subjected to
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an electric ¯eld. Reversal of the ¯eld direction results in a reversal of the

induced strain, and the relationship between ¯eld strength and strain is

linear for strains as large as 0.01 for some materials. This e®ect, as well as

the closely related e®ect of electrostriction, are central to the development of

modern electromechanical sensors, actuators and other devices. The issue

addressed brie°y here is the generation of mismatch strain in a thin ¯lm

system through the piezoelectric e®ect.

3.8.1 Mismatch strain due to an electric field

Phenomenologically, the relationship between imposed electric ¯eld Ei on a

crystal and corresponding strain ²ij induced in the crystal is of the form

(Auld 1973)

²ij = bijkEk (3.82)

where bijk is the array of piezoelectric constants. The physical dimensions

of the components of electric ¯eld are energy/(length£electric charge) so

that the physical dimensions of the components of bijk are (length£electric

charge/energy). For example, if electric ¯eld strength is expressed in units of

J/coulomb¢m then the components of bijk are expressed in units of coulomb/N.

Symmetry of the strain array ²ij under interchange of its indices implies that,

of the 27 components of bijk, only 18 can be independent. Material sym-

metry reduces the number of independent components further for most real

crystals. The array of constants bijk represents the components of a tensor,

so that these components transform as tensor components between di®erent

sets of mutually orthogonal rectangular coordinate axes, as illustrated for

the case of the stress tensor in (3.37).

For purposes of calculation for a given orientation of the material with

respect to some underlying rectangular coordinate system, the reduced ma-

trix representation of the relationship (3.82) is again found to be convenient,

following the convention adopted in Section 3.1. As before, the cost of this

convenience is that the tensor character of the arrays representing physical

quantities is lost. A reduced form of (3.82) is

²i = bikEk ; i = 1; : : : ; 6; (3.83)

where the same symbols are used for the reduced matrix quantities as were

used for the tensor representations. The interpretation of the symbols should

be evident from the context, and no confusion should result from this prac-

tice.

The reduced piezoelectric matrix bik is a 6£ 3 matrix. For a triclinic
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crystal, all 18 elements are required for a complete description of the ma-

terial, in general. For a tetragonal crystal, such as barium titanate or lead

zirconate-titanate (PZT), only seven components are nonzero and these are

speci¯ed by four independent constants according to

b31 = b32; b33; b15 = b24; b14 = ¡b25: (3.84)

This representation presumes that the c¡axis is aligned with the x3¡direction.

For a cubic crystal, such as gallium arsenide, only three components of the

piezoelectric matrix are nonzero, and these are speci¯ed in terms of a single

constant according to

b14 = b25 = b36: (3.85)

It is presumed that the cube axes are aligned with the rectangular coordinate

axes in this case.

Suppose that the piezoelectric thin ¯lm is bonded to an isotropic

elastic substrate that does not exhibit piezoelectric behavior. If this ¯lm-

substrate system is exposed to an electric ¯eld Ek, then the ¯lm material will

tend to undergo the stress-free strain speci¯ed by (3.83). However, the ¯lm

is constrained from deforming freely by the substrate. As a result, a stress is

generated in the ¯lm, and this stress may result in a detectable curvature of

the substrate. If the x3¡axis is normal to the ¯lm-substrate interface then

the components of mismatch strain in the ¯lm are, in reduced notation,

²
(m)
1 = ¡b1kEk; ²

(m)
2 = ¡b2kEk; ²

(m)
6 = ¡b6kEk: (3.86)

Once the components of mismatch strain are known, the mismatch stress

can be established as in Section 3.5. For a thin ¯lm, the curvature and twist

of the substrate follow from (3.73).

3.8.2 Example: Substrate curvature due to an electric field

In a transducer for use in a hearing aid, a PZT ¯lm of thickness hf = 5¹m is
deposited on a polysilicon substrate of thickness hs = 150¹m. The tetragonal
¯lm is prepared with its c¡axis coincident with the x3¡axis of the system coor-
dinate frame, which is perpendicular to the ¯lm-substrate interface. The array of
piezoelectric parameters for the PZT ¯lm material is

bik =

2666664
0 0 ¡60
0 0 ¡60
0 0 152
0 440 0

440 0 0
0 0 0

3777775£ 10¡12 coulomb/N: (3.87)
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(a) An electric ¯eld of magnitude 106 volts/m¢coulomb is applied along the
x1¡axis. Determine the mismatch strain induced in the ¯lm.

(b) Suppose that an electric ¯eld of the same magnitude as in part (a) is applied,
but this time along the x3¡axis. Determine the mismatch strain induced in
the ¯lm for this case.

(c) For the case described in part (b), estimate the radius of curvature in the
substrate due to the mismatch strain in the ¯lm.

Solution:

(a) In this case, E1 = 106 N/coulomb and E2 = E3 = 0. Then, from (3.86),

it follows that ²
(m)
1 = ²

(m)
2 = ²

(m)
6 = 0. Consequently, no mismatch strain

with respect to the substrate is developed in the ¯lm. The strain component
²5 = b51E1 takes on the value 0.00044, but this strain can develop freely
without constraint from the substrate.

(b) In this case, E1 = E2 = 0 and E3 = 106 volts/m¢coulomb. It follows from
(3.86) that

²
(m)
1 = ²

(m)
2 = b13E3 = ¡60£ 10¡6; ²

(m)
6 = b63E3 = 0: (3.88)

The ¯lm tends to contract along the interface but is not able to do so because
of the substrate. Consequently, a state of equi-biaxial tensile mismatch strain
develops in the ¯lm with respect to the substrate.

(c) The in-plane biaxial modulus for PZT is approximatelyMf = 6:1£1011 N/m2.
Thus, the membrane force in the fully constrained ¯lm is

f = ²
(m)
1 hfMf = 183N/m (3.89)

According to the Stoney formula (2.7), the substrate curvature is given in
terms of this force, the biaxial modulus of the substrate and the thickness of
the substrate. The biaxial modulus is approximately Ms = 76£109 N/m2 for
polysilicon. The resulting estimate of radius of curvature is ∙¡1 = 1:56m.

3.9 Periodic array of parallel film cracks

The discussion up to this point has focused on the relationship between the

curvature of an elastic substrate and the stress in a single layer or multilayer

¯lm in which the mismatch is invariant under any translation parallel to the

interface. The ¯lms considered have also been continuous and of uniform

thickness over the entire ¯lm{substrate interface. Within the range of small

de°ections, such an equi-biaxial ¯lm stress induces a spherical curvature in

the substrate midplane, except very near the edge of the substrate. What

is the deformation induced in the substrate if such a ¯lm does not have

uniform thickness or if the mismatch stress varies with position along the

interface? This question is addressed in this section for the cases when the

nonuniformity in mismatch stress or thickness varies periodically along the
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Fig. 3.8. Examples of ¯lm/substrate con¯gurations for which the ¯lm is not uniform
but instead has structure which is periodic along the interface, with the spatial
period being p in each case.

interface, either in one direction or in orthogonal directions, and when the

characterizing dimensions of the periodic variation are small compared to

the substrate thickness hs in some sense.

Examples of such nonuniformly strained ¯lms are illustrated in Fig-

ure 3.8. Cracks may form in a ¯lm in tension, and Figure 3.8(a) shows

the case where a single periodic array of parallel cracks has formed, with

the crack planes being perpendicular to the interface and with crack length

being equal to the ¯lm thickness. Any curvature in the substrate due to

mismatch stress in the ¯lm prior to cracking will be altered by the for-

mation of the cracks. The mechanics of formation of such cracks will be

discussed in Chapter 5. Figure 3.8(b) suggests a situation where the °at

surface of a strained semiconductor ¯lm of uniform thickness is thermody-

namically unstable, and the free surface evolves into a periodic pro¯le over

time as a result of surface di®usion of material or evaporation/condensation,

for example. Eventually, the valleys in the pro¯le may reach the substrate,

forming isolated islands of ¯lm material as will be discussed in Chapter 8.

The third example is motivated by the idea that a means of assessing the

reliability of metal interconnect lines is to form many parallel lines on the

surface of a semiconductor wafer as depicted in Figure 3.8(c). Stress in the

patterned lines during temperature excursions can be measured by means

of substrate curvature methods.
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The three con¯gurations in Figure 3.8 are representative of systems

being considered in this section. In all cases, it is assumed that the mean ¯lm

thickness and the spatial period of the variation along the interface are small

compared to hs. The basic reasoning which leads to a connection between

patterned ¯lm properties and substrate curvature is ¯rst outlined for two-

dimensional plane strain bending, and then for three-dimensional biaxial

bending. The goal is to understand the coupling between deformation at the

level of ¯lm microstructure, often in the submicron range, and the substrate

deformation at a size scale which is several orders of magnitude greater.

3.9.1 Plane strain curvature change due to film cracks

Consider a uniform elastic ¯lm of thickness hf bonded to the surface of an

elastic substrate of thickness hs. The ¯lm supports a biaxial tensile mis-

match stress ¾m, but is constrained to deform in plane strain bending for

the time being, so as to render discussion of the general approach as trans-

parent as possible. The ¯lm is thin which, from Section 2.2, is understood

to mean that Efhf ¿ Eshs. If the de°ections are small in this case, the

uniaxial or cylindrical curvature of the substrate is

∙nc =
6¾mhf
¹Esh2s

; (3.90)

where ¹E = E=(1 ¡ º2) is the plane strain modulus, with the subscript `s'

denoting the substrate. The expression in (3.90) provides the plane strain

bending analog of the Stoney formula (2.23). The subscript `nc' denotes the

substrate curvature of the continuous thin ¯lm with no cracks.

Suppose that a periodic array of parallel cracks with crack spacing p

then forms in the ¯lm, as depicted in Figure 3.8(a), with the crack edges

being parallel to the bending axis, which is the y¡axis in this case. As a

result of crack formation, the curvature of the substrate midplane will be

reduced from the value in (3.90). The objective is to estimate the curvature

following crack formation or, equivalently, the change in curvature due to

crack formation. This will be done at the same level of approximation as the

approach which underlies the Stoney formula (2.7), but the implementation

of the assumptions requires somewhat more care in the present case. The

main assumptions exploited here are: (i) the state of stress in the ¯lm

is determined solely by elastic mismatch of the ¯lm with respect to the

undeformed substrate and is not signi¯cantly altered by the deformation

of the substrate as it becomes curved and (ii) the °exural sti®ness of the
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substrate is not signi¯cantly in°uenced by the presence of the ¯lm material

on its surface. Under these circumstances, the curvature is essentially the

moment of this force with respect to the substrate midplane divided by the

°exural sti®ness of the substrate, as in (3.90).

The deformation associated with crack formation can be analyzed by

considering a reduced problem which is de¯ned to take advantage of the

thinness of the ¯lm. It is important to recognize that the con¯guration of

the ¯lm-substrate system under consideration is symmetric under re°ection

with respect to any of the planes at x = 0;§p; : : : or any of the planes

x = §1
2p;§3

2p; : : : midway between the crack planes, far from the substrate

edge. As a result, the shear traction transmitted across each of these surfaces

is identically zero and these surfaces remain planar during deformation. The

reduced problem is de¯ned to be a single period of the overall con¯guration,

which is bounded by symmetry planes as shown in Figure 3.9. The normal

displacements of the faces x = §1
2p on which the opposed forces of mag-

nitude f act are set equal to zero in the reduced problem. This is justi¯ed

by the feature noted above that the value of f is not signi¯cantly a®ected

by the deformation of the substrate. It is precisely this deformation which

is being ignored by imposing the boundary condition of vanishing displace-

ment. The loading in the reduced problem still derives from the mismatch

stress present in the ¯lm prior to formation of the cracks. Suppose that the

magnitude of the resultant normal force (per unit length in the y¡direction)

acting on the opposite symmetry planes in Figure 3.9 is denoted by f , as

shown on the right side of the segment; for equilibrium, it is necessary that

f =

Z hf

−∞
¾xx(¡p=2; z) dz: (3.91)

The symmetry of the single period of the con¯guration shown in Fig-

ure 3.9 has another important consequence. From overall equilibrium of the

segment, it follows that the resultant force on any plane z = constant is also

zero. In particular, the shear force vanishes identically on any such plane

and, by St. Venant's principle, it follows that the local shear stress becomes

negligibly small for depths beyond about 2p into the substrate. The ab-

sence of shear traction on a section of the substrate is one of the hallmarks

of pure °exural deformation. This reasoning supports the use of cylindrical

or spherical substrate curvature concepts to study the behavior of patterned

surface ¯lms.

The main calculation which must be done to estimate curvature in

the presence of cracking is the determination of f , the force which plays the

role here that ¾mhf served in the derivation of the Stoney formula. The
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Fig. 3.9. A reduced boundary value problem for a periodic ¯lm/substrate con¯gura-
tion which includes a single period of extent p, showing the total force f which acts
on the planes of re°ective symmetry of the con¯guration; this force is the resultant
of the normal stress distribution ¾xx(¡p=2; z) which acts on each symmetry plane.
Determination of f makes it possible to estimate the curvature of the substrate
according to (3.93).

value of f , or perhaps ¢f = f ¡ ¾mhf , the change in force due to crack

formation from the value for a uniform ¯lm, can usually be determined

directly by means of the ¯nite element method applied to the con¯guration

illustrated in Figure 3.9. By choosing planes as boundaries of the reduced

problem which do not include sharp geometric features, the calculation of f

by means of the ¯nite element method is a routine task.

Alternatively, reliable results of broad applicability can often be found

by other means. For example, if a solution is known for the con¯guration of

interest but with di®erent boundary conditions, then elastic reciprocity can

be used to extract useful results with minimal e®ort. In any case, once f or

¢f is known, the plane strain curvature ∙, or the change in curvature ¢∙,

is given by

∙ =
6f
¹Esh2s

or ¢∙ =
6¢f
¹Esh2s

: (3.92)

Representative results for the ratio of substrate curvature change due to

¯lm cracking at a given level of equi-biaxial mismatch strain ²m to the cor-

responding curvature for an uncracked ¯lm at the same level of mismatch

strain are shown in Figure 3.10. Certain asymptotic results, namely,

¢∙

∙nc
! ¡1 as

hf
p

! 1 ;
¢∙

∙nc
! 0 as

hf
p

! 0 (3.93)

are evident in the plot. The discrete points shown in the plot were deter-

mined by means of the ¯nite element method for the case when the elastic

moduli of the ¯lm and the substrate are identical.

Next, application of elastic reciprocity to estimate f is illustrated.

This requires use of two instances of an elastic solid which are identical

in properties and shape, but which are subjected to boundary conditions
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Fig. 3.10. Ratio of the change in plane strain bending curvature in a cracked ¯lm
to curvature for an uncracked ¯lm at the same level of mismatch stress versus
crack spacing p. The elastic properties of the ¯lm and substrate are identical. The
discrete points connected by dotted lines follow from a ¯nite element simulation
while the approximation represented by the solid curve is obtained by means of
elastic reciprocity (3.101). The asymptotes represented by dashed lines are evident
on physical grounds.

chosen in a way to reveal certain information. When the only mechanical

loading involved is applied to the elastic solid through its bounding surface,

say C, then the Betti-Rayleigh reciprocal theorem relates the stress ¯eld

¾ij and displacement ¯eld ui of one boundary value problem to the stress

¯eld ¾∗ij and displacement ¯eld u∗i of the other problem through the global

relationship Z
C
¾ijnju

∗
j dC =

Z
C
¾∗ijnjuj dC; (3.94)

where ni is the outward unit normal vector to C. For two compatible equi-

librium elastic ¯elds, the work done by the boundary traction of the ¯rst

¯eld through the boundary displacement of the second ¯eld equals the work
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Fig. 3.11. The two boundary value problems for which the theorem of elastic reci-
procity is applied. In the ¯rst case, normal compressive traction of magnitude ¾m

acts on the crack faces and total force f acts on the planar symmetry surfaces. In
the second case, the symmetry surfaces are subject to a uniform normal outward
displacement of u¤

f =2 and the average opening between the crack faces is ±¤.

done by the boundary tractions of the second ¯eld through the displacement

of the ¯rst ¯eld.

The two boundary value problems to be considered here are illustrated

in Figure 3.11. The instance on the left side of the ¯gure is similar to

that in Figure 3.9 except that no mismatch stress is present and a normal

pressure of magnitude ¾m acts on the crack faces. Analysis of this problem

provides the change in f , termed ¢f above, due to crack formation in a

uniform ¯lm. As before, the normal displacement on the bounding symmetry

planes at x = §1
2p is required to vanish. In the second instance of the

same con¯guration shown in the right side of Figure 3.11, the faces of the

crack are free of traction and the uniform normal displacements of the faces

x = §1
2p are speci¯ed to be ux = §1

2u
∗
f where u

∗
f is an arbitrary displacement

amplitude. As a consequence of this normal displacement, the crack faces

deform; the average opening of the crack over 0 < z < hf is denoted by ±∗

and is de¯ned by

±∗ = h−1f
Z hf

0

£
ux(0

+; z)¡ ux(0
−; z)

¤
dz: (3.95)

The superscript (*) is intended to serve as a reminder that the de°ections

u∗f and ±∗ are independent of the force f .

When applied to the two con¯gurations in Figure 3.11, elastic reci-

procity (3.94) then requires that

¢f u∗f + ¾mhf±
∗ = 0: (3.96)

There is no contribution from the right side of (3.94) because the boundary

value problems have been de¯ned so that ui = 0 wherever on the boundary

C that ¾∗ijnj 6= 0. Due to linearity of the boundary value problem on the
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right on Figure 3.11, ±∗ is proportional to u∗f . If the proportionality factor

is known in terms of material parameters and geometrical dimensions then

f can be determined from (3.96). If the same ¯nite element calculation

procedure which led to the discrete points in Figure 3.10 would be used to

estimate ±∗, then (3.96) would lead to exactly the same result for curvature

change. For this case, however, estimates of ±∗ are available (WikstrÄom et

al. (1999a); Xia and Hutchinson (2000)). These will be introduced once

the asymptotic behavior of ±∗=u∗f for both very large and very small crack

spacing is described.

The asymptotic behavior of ±∗=u∗f for very small and very large values

of crack spacing compared to ¯lm thickness are evident on physical grounds.

When the crack spacing is small compared to ¯lm thickness, the mismatch

stress in the ¯lm is relaxed with virtually no load transfer to the substrate. In

terms of the auxiliary problem in Figure 3.11, this implies that ±∗=u∗f ! 1

as hf=p ! 1. Therefore, it follows from (3.96) that ¢f ! ¡¾mhf or

f=¾mhf ! 0 as hf=p ! 1. At the other extreme, when the crack spacing

is very large compared to ¯lm thickness, the ratio ±∗=u∗f must be equal to

that for an isolated crack in a thin ¯lm. This result has been determined for

materials with di®erent elastic properties by Beuth (1992). When the elastic

properties of the ¯lm and substrate are identical, this ratio is approximately

±∗=u∗f ¼ 1:258¼hf=p as hf=p ! 0. It follows that ¢f ! 1:258¼¾mh
2
f =p or

that ¢∙=∙nc ! 1:258¼hf=p as hf=p ! 0. Both asymptotes are indicated by

dashed lines in Figure 3.10.

An approximation for all values of hf=p for this proportionality factor

has been given by Xia and Hutchinson (2000) for bimaterial systems as

±∗

u∗f
¼ `

p
tanh

µ
p

`

¶
; (3.97)

where ` is a parameter with physical dimension of length that is proportional

to hf . This approximation was obtained for the case of a periodic array of

cracks under plane strain conditions with a normal stress ¾∗ applied to the

crack faces and tending to open the cracks. Through identi¯cation of ¾∗

with ¹Efu
∗
f =p, the approximation can be exploited in the present develop-

ment. The proportionality factor has been tabulated by Beuth (1992) for

various combinations of material parameters. The dependence of ` on elas-

tic constants can be expressed in terms of the two dimensionless parameters

de¯ned by

D1 =
¹Ef ¡ ¹Es
¹Ef + ¹Es

; D2 =
1

4

¹Ef(1¡ ºf)(1¡ 2ºs)¡ ¹Es(1¡ ºs)(1¡ 2ºf)
¹Ef(1¡ ºf)(1¡ 2ºs) + ¹Es(1¡ ºs)(1¡ 2ºf)

(3.98)
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and known as the Dundurs parameters (Dundurs 1969). Values of the nondi-

mensional ratio `=hf are plotted versus D1 in Figure 3.13 for the particular

choices of D2 = 0 and D2 = D1=4. The latter condition is equivalent to the

condition ºf = ºs, whereas the former choice is of special interest in elastic

fracture mechanics, a topic to be considered in Chapter 4. Level curves of

D1 in the plane of ºf and ºs are shown in Figure 3.12 for the case when

D2 = 0. When the ¯lm and substrate materials have essentially the same

elastic properties, D1 = D2 = 0 and ` = 1:258¼hf . In the case when the

elastic properties of the ¯lm and the substrate are identical, an approximate

expression for ±∗=u∗f has also been given by WikstrÄom et al. (1999a) in the

form of the series

±∗

u∗f
¼ 1:258 ¼

hf
p
¨(hf=p) ; ¨(s) ´

10X
k=1

dk
(1 + s)k

; (3.99)

where the coe±cients in the series are given by

k dk

1 0.25256
2 0.27079
3 ¡0.49814
4 8.6296
5 ¡51.246
6 180.96
7 ¡374.29
8 449.59
9 ¡286.51
10 73.842

It follows from (3.96) that

¢f ¼ ¡`hf¾m
p

tanh

µ
p

`

¶
: (3.100)

The bending moment that produces the change in substrate curvature is

¢f(hs=2). The change in curvature from ∙nc due to crack formation is

¢∙ ¼ 6¢f
¹Esh2s

= ¡∙nc
`

p
tanh

µ
p

`

¶
: (3.101)

The result (3.101) is also illustrated in Figure 3.10 in the form of ¢∙=∙nc
versus hf=p for the case when D1 = D2 = 0. Note that the approximate

result for ¢∙ is asymptotically consistent as hf=p ! 0 and hf=p ! 1 but

that it shows some di®erence from the ¯nite element results when hf=p is of
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Fig. 3.12. Level curves of D1 in the plane of ºf and ºs for the case when D2 = 0.

the order of unity. It is evident that the curvature falls o® rapidly as widely

spaced cracks appear in the ¯lm, becoming relatively small compared to the

initial uncracked curvature once spacing has decreased to about p ¼ hf .

3.9.2 Biaxial curvature due to film cracks

Next, turn to the three dimensional situation concerning the change in cur-

vature of the substrate due to formation of a periodic array of parallel cracks

in a strained ¯lm in tension. As before, the tensile mismatch stress is ¾m
and the ¯lm thickness is hf , and both the ¯lm and substrate materials are

assumed to be elastic and isotropic. However, the restriction of the defor-

mation to be plane strain bending which has been in force up to this point

in the subsection is now relaxed. Formation of the cracks will still result in

a relaxation of the curvature ∙x of the substrate in the x¡direction due to

a change in bending moment acting on the substrate midplane about the

y¡direction. Now the possibility of a change in curvature ∙y of the substrate

due to a change in bending moment about the x¡direction in the substrate

midplane is also taken into account. The general relationship between the

components of curvature of the substrate midplane and the bending moment
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Fig. 3.13. Plots of `=hf versus D1 for D2 = 0 and D2 = D1=4.

resultants due to mismatch stress in the ¯lm is given by

∙x =
12

Esh3s
(mx ¡ ºsmy) ; ∙y =

12

Esh3s
(my ¡ ºsmx) ; (3.102)

where mx is the resultant bending moment acting on a line x = constant in

the the substrate midplane per unit length in the y¡direction, and similarly

for my. For the case of a uniform uncracked ¯lm, the unrelaxed resultant

force in the ¯lm is ¾mhf . The moment of this force acting through the

distance hs=2 must be balanced at a free edge of the substrate by resultant

moments mx = my = ¾mhfhs=2. The substrate curvature implied by (3.102)

is then ∙ncx = ∙ncy = ∙St, as predicted by the Stoney formula (2.23).

The same approach is followed for this case as was used for the case of

plane strain bending. However, in the three dimensional case, two resultant

forces must be calculated to determine the changes in both mx and my in or-

der to compute curvature change by means of (3.102). The steps rely on the

same assumptions which eventually led to the results for plane strain bend-

ing, so only the main intermediate steps are included. A reduced boundary

value problem as depicted in the left portion of Figure 3.14 is introduced. It

consists of a single period of the cracked ¯lm-substrate system of extent p in
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Fig. 3.14. The left part of the ¯gure shows the reduced boundary value problem
which serves as the basis for calculating the force resultants ¢fx and ¢fy, and
thereby the change in substrate curvature, due to crack array formation. The right
portion shows the auxiliary boundary value problem for use with elastic reciprocity.

the x¡direction and of arbitrary extent q in the y¡direction. The shaded

surfaces x = §1
2p and y = §1

2q both lie on planes of re°ective symmetry,

so shear traction is zero; these surfaces remain planar during deformation.

In the reduced problem, the normal displacement on the shaded surfaces is

constrained to be zero. A uniform normal pressure of magnitude ¾m acts

on the crack faces. This loading produces normal forces fxq and fyp on

the constrained surfaces, where fx and fy are the force resultants per unit

length along the ¯lm edge which are sought; see Figure 3.14. As before, the

changes in resultant force due to crack formation are ¢fx = fx ¡ ¾mhf and

¢fy = fy ¡ ¾mhf .

Before seeking simple approximate expressions for the change in cur-

vature, results from direct determination of fx and fy obtained by means of

the ¯nite element method are illustrated in Figure 3.15. The estimates of

curvature change ¢∙x and ¢∙y are determined from the force calculation

according to

¢∙x =
6(¢fx ¡ ºs¢fy)

Esh2s
; ¢∙y =

6(¢fy ¡ ºs¢fx)

Esh2s
: (3.103)

The graph is drawn for the case when the two materials have identical elastic

properties, that is, D1 = D2 = 0, and the curvature changes are normalized

by ∙St. For this case, it is found that ¢∙y=∙St = 0. The results here are

somewhat di®erent from the corresponding plane strain bending result in

Figure 3.10, highlighting the in°uence of three-dimensional e®ects.

It is seen in Figure 3.15 that, for the case of closely spaced cracks, the
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Fig. 3.15. Curvature change in the x¡direction due to crack formation in a thin
¯lm with mismatch strain versus crack spacing for three-dimensional bending. The
elastic properties of the ¯lm and substrate are identical in this illustration. The
computed change in curvature in the y¡direction for this case is essentially zero for
all crack spacings. The solid curves is an estimate of the curvature change due to
cracking based on application of elastic reciprocity (3.108).

change in curvature ¢∙x in the x¡direction, which is perpendicular to the

array of cracks, is larger in magnitude than the curvature ∙x before formation

of the cracks. This curvature reversal phenomenon is due to the Poisson

contraction e®ect. Suppose that the mismatch strain in the ¯lm with respect

to the substrate is tensile, so that curvature is positive with ∙x = ∙y before

crack formation. The direct e®ect of formation of a closely spaced array

of cracks in the y¡direction is to relieve the tensile stress due to mismatch

in the x¡direction, thereby reducing ∙x to zero. However, the tensile ¯lm

stress in the y¡direction is only partially relieved by crack formation. The

remaining tensile stress in the ¯lm acting in the y¡direction maintains the

curvature ∙y. A consequence of this curvature is a compressive strain in

the y¡direction in the substrate material near the interface associated with

the substrate curvature ∙y. This imposed compressive strain introduces an

additional extensional strain in the x¡direction in the substrate material
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near the interface; the magnitude of this additional strain is ºs times the

imposed strain in the y¡direction. The net e®ect of this extensional strain

is to induce an additional negative or reversed curvature in the x¡direction.

Indeed, the location of the asymptotic behavior of curvature for vanishingly

small crack spacings seen in Figure 3.15.

Turning next to application of the reciprocal theorem to calculate

¢fx and ¢fy, the changes in force resultants due to crack formation, the

auxiliary boundary value problem shown in the right side of Figure 3.14 is

introduced. In this problem, the plane surfaces x = §1
2p are given a normal

displacement ux = §1
2u
∗
fx

while the plane surfaces y = §1
2q are given a

normal displacement uy = §1
2u
∗
fy
, where u∗fx and u∗fy are arbitrary displace-

ment amplitudes. As a result of these imposed boundary displacements, the

crack experiences an opening which is independent of the y coordinate. As

before, the average crack opening is denoted by ±∗ as de¯ned in (3.95).

Elastic reciprocity (3.94) then requires that

q¢fxu
∗
fx + p¢fyu

∗
fy + q¾mhf±

∗ = 0 (3.104)

from which ¢fx and ¢fy are to be determined. Note that ±∗ is necessarily
linear in u∗fx and u∗fy . It is possible to determine both u∗fx and u∗fy from

(3.104) by invoking the arbitrariness of u∗fx and u∗fy . The linear dependence

of ±∗ on u∗fx and u∗fy can be established in the following way. It is noted

that the interface traction in the complementary problem would vanish com-

pletely if a tensile normal stress ¾∗ of magnitude

¾∗
¹Ef

=

Ã
u∗fx
p

+ ºf
u∗fy
q

!
(3.105)

would act on the faces of the cracks. This observation provides a basis for

generalizing the estimate of ±∗ given in (3.97) or (3.99). If the factor u∗f =p
on the right side of (3.97) is replaced by the right side of (3.105) then (3.97)

can be used in the present case in the form

±∗ ¼ `

Ã
u∗fx
p

+ ºf
u∗fy
q

!
tanh

µ
p

`

¶
: (3.106)

Substituting (3.106) into (3.104) and alternately setting either u∗fx = 1 and

u∗fy = 0 or u∗fx = 0 and u∗fy = 1 yields

¢fx ¼ ¡`hf¾m
p

tanh

µ
p

`

¶
; ¢fy ¼ ¡`hf¾mºf

p
tanh

µ
p

`

¶
: (3.107)

The resulting curvature changes of the substrate corresponding to these ¯lm



218 Stress in anisotropic and patterned films

force resultants are determined from (3.103) to be

¢∙x
∙St

¼ ¡(1¡ ºfºs)`

(1¡ ºs)p
tanh

µ
p

`

¶
;
¢∙y
∙St

¼ ¡(ºf ¡ ºs)`

(1¡ ºs)p
tanh

µ
p

`

¶
:

(3.108)

Note that the curvature change in the x¡direction always decreases due to

crack formation whereas the curvature change in the y¡direction can either

increase or decrease, depending on whether ºf is smaller or larger than ºs.

Note that for widely spaced cracks with p=hf À 1,

¢∙x
∙St

¼ ¡(1¡ ºfºs)

(1¡ ºs)

`

p
;

¢∙y
∙St

¼ ¡(ºf ¡ ºs)

(1¡ ºs)

`

p
: (3.109)

For closely spaced cracks, the asymptotic behavior as p=hf ! 0 is

¢∙x
∙St

! ¡(1¡ ºfºs)

(1¡ ºs)
;

¢∙y
∙St

! ¡(ºf ¡ ºs)

(1¡ ºs)
: (3.110)

Notice that di®erences in elastic constants between the ¯lm and substrate

are included in (3.108) and (3.109) through `, as well as through the explicit

dependence on the Poisson ratios.

3.10 Periodic array of parallel lines or stripes

A second particular case of substrate curvature due to a surface ¯lm with

periodic nonuniformity is considered in this section. Suppose that a ¯lm of

thickness hf is deposited onto a substrate in the con¯guration of a periodic

array of identical parallel stripes of rectangular cross-section. Each stripe is

of width b and the periodicity of the con¯guration is p, as depicted in Fig-

ure 3.8(c). If the ¯lm material in this case carries an equi-biaxial mismatch

strain ²m with respect to the substrate, what is the resulting curvature of the

substrate midplane? The ¯lm behaves as an orthotropic material over dis-

tances large compared to p, and the curvatures will be di®erent, in general,

in the directions parallel to and perpendicular to the stripes.

3.10.1 Biaxial curvature due to lines

Because the ¯lm material is not deposited with uniform thickness in this

case, the parameter ∙St is perhaps less suitable as a normalizing factor for

curvature than it was in the discussion of a periodically cracked ¯lm. The

mean ¯lm thickness in this case is hfb=p, so a more suitable normalizing

factor for curvature might be b∙St=p. Nevertheless, the interpretation of the
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Fig. 3.16. Reduced boundary value problem to be solved to determine the force
resultant increments necessary for estimating substrate curvature according to
(3.103).

quantity represented by ∙St is left unaltered for this development, that is, it

depends on hf but on neither b nor p.

The geometry of the con¯guration and the coordinate system adopted

are illustrated in Figure 3.16. The origin of a rectangular xyz¡coordinate

system is located on the substrate surface at a point midway between two

neighboring stripes. The x¡axis lies in the interface in a direction perpen-

dicular to the stripes, the y¡axis lies in the interface parallel to the stripes,

and the z¡axis is in the direction of the outward normal vector to the

substrate surface. The ¯gure shows a segment of the con¯guration which

includes a single period of length p in the x¡direction, extending from the

midplane of one stripe to the midplane of a neighboring stripe. The extent

of the segment in the y¡direction is some arbitrary but ¯xed q.

If both p and hf are very small compared to substrate thickness hs,

then the con¯guration can be analyzed within the framework established in

considering the Stoney formula (2.7). The main task here is to determine

the resultant forces per unit length in coordinate directions that act on

symmetry planes of the con¯guration with the substrate in its undeformed

state; these resultant forces are again denoted by fx and fy. The calculation

can be pursued on the basis of elastic reciprocity (3.94), as in the case of

a periodic array of cracks, and only a few steps in the procedure will be

included. In the present case, the force resultants can be written as

fx = ¾mhf +¢fx ; fy = ¾mhfb=p+¢fy; (3.111)

where the force increments ¢fx and ¢fy are de¯ned by the reduced bound-

ary value problem illustrated in Figure 3.16.
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The analysis is virtually identical to that described in the preceding

section. The speci¯cation of a boundary value problem that is complemen-

tary to that illustrated in Figure 3.16 is based on the same reasoning that

led to the complementary problem in Figure 3.14. Application of the recip-

rocal theorem (3.94) again leads to the relationship (3.104), where ±∗ now
represents the average relative displacement of the side faces of the thin ¯lm

stripes at x = §1
2(p¡ b), that is, in the present case

±∗ =
1

hf

Z hf

0
[u∗x((p¡ b)=2; z)¡ u∗x(¡(p¡ b)=2; z)] dz (3.112)

where u∗x(x; z) is the x¡component of material displacement in the com-

plementary elastic ¯eld. In other words, ±∗ represents the relative normal

displacement of strip side faces on opposite sides of the gaps between the

stripes in the ¯lm. The dependence of ±∗ on p, b, hf and material para-

meters is expected to be very complicated in detail. However, in order to

obtain an estimate of the curvature it seems reasonable to assume that the

deformed shapes of the side faces of the stripes are essentially the same as

the deformed shapes of the cracked faces in Figure 3.14, except that now

these faces are separated by ¯lm material of width b, rather than of width p

in the case of cracks. If this guess for ±∗ is adopted, then (3.106) is replaced

by

±∗ ¼ `

Ã
u∗fx
p

+ ºf
u∗fy
q

!
tanh

µ
b

`

¶
+

u∗fx
p

(p¡ b) : (3.113)

The second term on the right side of (3.113) accounts for the fact that the

side faces of the stripes are separated by the gap of width p ¡ b, so this

contribution represents an additional relative displacement of these faces

due to the roughly uniform strain u∗fx=p in this gap region. When the elastic

properties of the ¯lm and substrate are the same, the factor tanh(b=`) in

(3.113) can be replaced by the alternative form ¨(hf=b) as de¯ned in (3.99).

Aside from the task of devising an estimate for ±∗ in the case of ¯lm

stripes, the analysis is otherwise identical to that followed in deriving (3.108).

The results for principal curvatures of the midplane of a substrate of thick-

ness hs and elastic properties Es and ºs are

p

b

∙x
∙St

¼ 1¡ 1¡ ºfºs
1¡ ºs

`

b
tanh

µ
b

`

¶
;

p

b

∙y
∙St

¼ 1¡ ºf ¡ ºs
1¡ ºs

`

b
tanh

µ
b

`

¶
:

(3.114)
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This estimate is remarkably simple, given the complexity of the underlying

boundary value problem. The left sides of the expressions in (3.114) are the

curvatures normalized by the e®ective Stoney curvature based on the average

¯lm thickness hfb=p. Furthermore, the right sides of (3.114) do not involve

the parameter p. In other words, p enters the estimate for curvature only

through the e®ective Stoney curvature based on the amount of ¯lm material

involved. When b = p, the response is identical to that for a periodic array

of parallel cracks.

Implications of the foregoing elastic analyses of curvature of substrates

with periodic thin stripes or lines are next considered in the context of

experimental results reported by Shen et al. (1996) for a model system that

comprises Si substrates with unidirectional SiO2 lines patterned on them.

This particular system is chosen for discussion here primarily because during

oxidation of Si to form a continuous SiO2 ¯lm, during patterning of the

continuous SiO2 ¯lm into parallel stripes on the Si substrate, and during

subsequent thermal excursions, the entire ¯lm{substrate system remains

elastic. The validity of the predictions of the earlier analyses could thus

be directly assessed by systematically examining curvature evolution in the

SiO2{Si system for controlled variations in the thickness, width and spacing

of the SiO2 lines.

A number of single crystal Si wafers, 100mm in diameter and 525¹m

or 515¹m in thickness, with a (111) surface orientation, were prepared as

substrate materials. The curvature of each blank wafer was measured prior

to deposition using the scanning laser technique described in Section 2.3.1.

The wafers were then thermally oxidized in steam to form a blanked SiO2
¯lm on both sides of each wafer. Because both the ¯lm and substrate are

elastic and the oxide adheres well to the substrate, curvature evolution dur-

ing patterning and thermal cycling could be interpreted without complica-

tions arising from inelastic deformation and damage in the ¯lm or delam-

ination at the ¯lm-substrate interface. The temperature and duration of

oxidation was varied for di®erent wafers so that the SiO2 ¯lms of di®erent

thicknesses were grown on di®erent Si wafers. Nominal oxide thicknesses of

100 nm, 300 nm and 700 nm were obtained for oxidation treatments of 920 ◦C
for 60min., 1030 ◦C for 23min., and 1030 ◦C for 100min., respectively. The

oxide ¯lms on one side of the wafers were removed subsequently.

Net compressive stress develops in the remaining oxide ¯lms upon

cooling to room temperature from the oxidation temperature because the

oxidation of Si results in an increase in volume, and because the coe±cient of

thermal expansion of the oxide ¯lm is less than that of Si. The curvature of

the wafers was measured at room temperature both along and transverse to
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Fig. 3.17. The curvature ratio ∙x=∙y versus hf=b for several normalized values of
line spacing p=b. The solid line represents the prediction based on (3.114), whereas
the dashed line represents the prediction of the same behavior with tanh(b=`) in
(3.114) replaced by ¨(b=hf) from (3.99). The ¯nite element predictions are denoted
by the symbols +, £ and ± for p=b = 1.05, 2.10 and 3.00, respectively. The ¯lled
square symbols represent the experimental data obtained by substrate curvature
measurements by Shen et al. (1996). The analytical limit ∙x=∙y ! ¡ºs as hf=b !
1 indicated by the dotted line is given in (3.117).

the prospective line direction. These measurements revealed that, as antici-

pated, the curvatures along the x and y directions as oriented in Figure 3.16

were essentially the same, that is, ∙x = ∙y = ∙St, and that the correspond-

ing mismatch stress ¾m in the continuous oxide ¯lms, predicted using the

Stoney formula (2.7), ranged from about {281MPa for the thickest ¯lm to

{366MPa for the thinnest ¯lm.

Following this step, the oxide ¯lms were dry-etched to form unidirec-

tional, patterned lines spanning essentially the entire surface of the wafers.

Six specimens with lines of widths roughly in the range 1¹m ∙ b ∙ 1:43¹m,

and thicknesses in the approximate range 100 nm ∙ hf ∙ 700 nm were pre-

pared; the spacing between the lines p was varied only in the narrow range

from 2:81¹m to 3:02¹m.

Figure 3.17 is a plot of the ratio of the ∙y=∙x as a function of the

line aspect ratio hf=b upon etching the continuous oxide ¯lm to form a

periodic array of lines. As was anticipated by (3.114) the normalized line
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spacing p=b has essentially no e®ect on the curvature ratio plotted in Figure

3.17. When the continuous oxide ¯lm is etched into parallel lines, the wafers

show reduced curvatures both along and across the lines, compared to the

corresponding case of the continuous oxide ¯lms. This e®ect is a consequence

of the partial relief of mismatch stress in the oxide ¯lm during material

removal by etching of the ¯lm into lines. The extent of such decrease in

curvature was observed to be stronger in the direction perpendicular to the

lines than parallel to the lines. When hf=b ! 0 with p=b = 1, the response

of the line{substrate system approaches that of the ¯lm{substrate system,

that is,

∙x
∙St

! 1 and
∙y
∙St

! 1 as
hf
b

! 0 (3.115)

in this case. These results follow directly from (3.114). For hf=b ! 0 and

p=b > 1, curvature depends on the fraction of the surface of the substrate

covered by the thin oxide lines, as can be seen from (3.114), which implies

that

∙x
∙St

! b

p
and

∙y
∙St

! b

p
as

hf
b

! 0 (3.116)

in this case. Experimental results indicate that ∙y,line=∙St increases as p=b

decreases, and that it is relatively insensitive to the line aspect ratio hf=b

when hf=b > 0.5 (Shen et al. 1996). When the lines are very closely distrib-

uted, ∙y can be greater than ∙St.

As hf=b increases from zero, the e®ects of the traction-free side sur-

faces of the unpassivated lines become progressively more dominant, and the

curvature ratio ∙y=∙St decreases precipitously. Figure 3.17 also shows that

at hf=b ¼ 0.35, the curvature ratio ∙x=∙y changes from a positive value to a

negative value. In other words, there occurs a transition from an ellipsoidal

shape to a hyperboloidal or saddle shape in the line{substrate system as

the line aspect ratio becomes greater than approximately 0.35 for the mate-

rial combinations and geometries considered. This change in shape can be

attributed to the Poisson e®ect which accounts for the coupling of strains

in the in-plane orthogonal directions. Because of the traction-free sidewalls

of the lines, it is reasonable to suppose that the normal stress acting in a

direction across the lines ¾xx ! 0 throughout as hf=b ! 1. This is the

limiting case considered in (3.110)) from which it follows that

∙x
∙y

! ¡ºs; as
hf
b

! 1: (3.117)

The dashed line in Figure 3.17 shows this limit, which is approached by
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both the theoretical and experimental results at high line aspect ratios. The

reversal of sign in curvature leading to a saddle shape for the Si substrate,

when the geometry changes from `short' to `tall' oxide lines at hf=b ¼ 0.35

can, therefore, be regarded as a consequence of the substrate Poisson e®ect

which causes anisotropic straining. The negative curvature transverse to the

lines is only a small fraction of the curvature along the lines, and hence this

Poisson e®ect, albeit experimentally detectable, is not very pronounced in

the SiO2{Si system.

3.10.2 Volume averaged stress in terms of curvature

The foregoing results relate the curvature of a substrate with a periodic ar-

ray of lines or stripes on its surface to a mismatch strain in those lines. Some

applications depend on the ability to make the inverse relationship, that is,

to estimate stress levels in a patterned line on the basis of observation of

substrate curvature. The stress levels are needed to understand evolution of

damage or cracking in the lines, or to estimate service life of the patterned

structure. This is the case in assessing damage due to electromigration in

current carrying metal interconnects in integrated circuits as discussed in

Section 9.7. The task of estimating stress in a periodically patterned ¯lm

on a substrate is signi¯cantly more complex than for a uniform ¯lm. The

reentrant corners, interfaces and free surfaces invariably result in large lo-

cal stress gradients. Nonetheless, it is possible to draw inferences about

the dependence of volume averaged stress components in periodic lines from

substrate curvature observations. The relationship between the volume av-

eraged stress and the corresponding curvatures may be useful in studying the

evolution of stress in ¯lms during processing, patterning and temperature

excursion.

As was noted in Section 3.7, the value of any stress component ¯eld ¾ij
averaged over the region contained within a material volume V is denoted

by h¾iji and is de¯ned as

h¾iji = 1

V

Z
V
¾ij (x1; x2; x3) dV: (3.118)

In the present context of periodically patterned ¯lms, the volume V is un-

derstood to be the volume of ¯lm material included within a single period of

length p in a direction normal to the lines and an arbitrary distance q along

the lines. The volume of ¯lm material included in Figure 3.16 is an example

of such a volume V for the case of a periodic array of ¯lm stripes. With

this de¯nition, it becomes clear that the force resultants fx, fy introduced in
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Section 3.7 and Section 3.10.1 already represent the volume averaged stress

components h¾xxi, h¾yyi as long as the ¯lm is a single phase patterned ma-

terial and the constraints of a thin ¯lm on a relatively thick substrate are

satis¯ed. The case of a multiphase or composite ¯lm will be addressed sub-

sequently. With reference to Figure 3.16, elementary force balances in the

x¡direction and y¡direction lead to the relationships

fxq = h¾xxibhf
p

q ; fyp = h¾yyibhf
p

p; (3.119)

respectively. These relationships presume that all of the force that induces

substrate curvature arises from stress in the ¯lm material, but this is not

strictly true; some load transfer occurs through the substrate near the line

edges. Nonetheless, the relationships (3.119) will be adopted as representa-

tive of ¯lm stress levels.

Once the identi¯cation (3.119) is made, the means of deducing values

of h¾xxi and h¾yyi from curvature measurements is straightforward. Con-

sider the relationships (3.73), and associate the coordinate direction x trans-

verse to the line direction with x1 and associate the coordinate direction y

parallel to the lines with x2. Then, solving (3.73) for fx and fy, and invoking

(3.119), it follows that the volume averaged stress components in the lines

transverse to and along the line directions are given in terms of substrate

curvature by

h¾xxi ¼ 1

6

h2s
hf

¹Es
p

b
(∙x + ºs∙y) ;

h¾yyi ¼ 1

6

h2s
hf

¹Es
p

b
(∙y + ºs∙x) :

(3.120)

These expressions represent a reinterpretation of (3.73) based on the iden-

ti¯cation of the stress resultants fx, fy with average stress values for a thin

¯lm containing periodic parallel stripes as in (3.119).

Noting that in the limiting case of very tall stripes (hf=b ! 1), the

side walls of the stripes become traction-free, it is readily seen from the ¯rst

of equations(3.120) that ∙x=∙y ! ¡ºs as hf=b ! 1. The theoretical and

experimental results plotted in Figure 3.17 indicate that ∙x=∙y asymptoti-

cally approaches the value ¡ºs, when the aspect ratio of the stripes hf=b is

approximately unity.

The e®ect of patterning the continuous ¯lm into periodic arrays of

parallel stripes on stress evolution can be determined by combining (3.114)

and (3.120) to obtain the volume averaged stress components in the lines in

terms of the mismatch stress in the original continuous ¯lm from which the
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Fig. 3.18. Average values of the normalized principal stress transverse to the oxide
line orientation h¾xxi=¾m and those along the line h¾yyi=¾m, as a function of the
strip width b=hf , for several di®erent normalized values of line spacing p=b. The solid
lines represent the analytical predictions of average stress from (3.121), whereas the
dashed lines are based on (3.122) for all values of p=b. Finite element predictions
by WikstrÄom et al. (1999a) are denoted by the symbols +, £ and ± for p=b = 1.05,
2.10 and 3.00, respectively. The analytical limit, h¾yyi=¾m ! 1¡ºf , is from (3.117)
and is denoted by the dotted line for hf=b ! 1.

unpassivated lines are patterned, with the result that

h¾xxi ¼ ¾m

½
1¡ `

b
tanh

µ
b

`

¶¾
; h¾yyi ¼ ¾m

½
1¡ ºf

`

b
tanh

µ
b

`

¶¾
: (3.121)

Here ¾m is the mismatch stress that would be present in a continuous ¯lm of

uniform thickness hf under the same conditions. As noted before, when the

elastic properties of the patterned ¯lm and the substrate are comparable, the

factor tanh (b=`) in (3.121) can be replaced by the alternative form ¨(b=hf)

de¯ned in (3.99). The resulting values of average stress components in the

latter case are

h¾xxi ¼ ¾m

½
1¡¨

µ
hf
b

¶¾
; h¾yyi ¼ ¾m

½
1¡¨

µ
hf
b

¶
ºf

¾
: (3.122)

A comparison of the predictions of (3.121) with ¯nite element sim-
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ulations of average principal stress along and transverse to the SiO2 line

orientations is shown in Figure 3.18. Note that the approximate results

given by (3.114) compare more favorably with the ¯nite element results for

h¾yyi than for h¾xxi; the former is invariably the component that is larger

in magnitude. Also, note that h¾xxi ! ¾m and h¾yyi ! ¾m as hf=b ! 0,

and that h¾xxi ! 0 and h¾yyi ! (1¡ ºf)¾m in the limit hf=b ! 1.

3.10.3 Volume averaged stress in a damascene structure

The foregoing discussion of substrate curvature induced by stress in a peri-

odic array of lines involved only unpassivated lines or stripes. In such a case,

the patterned metal ¯lm is a single phase material formed by the subtractive

process whereby the material originally between the stripes in a uniform ¯lm

is removed. A more complex system is encountered in the damascene process

described in Section 1.5.2 in which metal is deposited in an array of trenches

formed in an originally uniform ¯lm of an insulating material. This results

in a unidirectionally patterned composite thin ¯lm on a much thicker sub-

strate. A common system of this type is formed by electrodepositing copper

into trenches patterned into a silicon oxide layer, leading to the con¯guration

depicted in Figure 3.19(a). In this section, the volume averaged mismatch

stress in such a composite structure due to temperature change from an ini-

tially stress free state is estimated. The stress distribution within the lines

can be computed accurately by means of a ¯nite element method for the

structure. Alternately, the procedure developed in Section 3.10.1 could also

be followed; however, the key approximation (3.113) which played a central

role in that procedure is not yet available. Therefore, in this section, an

estimate is obtained by following the approach of WikstrÄom et al. (1999b);

an alternate approach was described by Park and Suresh (2000).

Each copper line in Figure 3.19(a) has thickness hf and width b, and

the pitch of the periodic structure is p. The lines are laterally con¯ned by

stripes of silicon oxide of the same layer thickness hf and width (p ¡ b).

The Poisson ratio, elastic modulus and linear thermal expansion coe±cient

of the copper lines are denoted by ºf , Ef and ®f ; the corresponding values

for the surrounding oxide are ºo, Eo and ®o, and for the Si substrate of

thickness hs À hf are ºs, Es and ®s. The stress is induced in response to a

temperature change ¢T .

The volume averaged shear stress components in both the ¯lm ma-

terial and the oxide material are identically zero due to the symmetry of

the periodic structure. Therefore, the task is to estimate the volume aver-

aged normal stress components in the coordinate directions. This task is
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Fig. 3.19. Schematic showing a segment of the damascene copper line structure on
a silicon substrate and the associated nomenclature. (a) Unpassivated structure.
(b) Passivated structure.

facilitated by adopting the assumptions implicit in derivation of the Stoney

formula (2.7) for a thin ¯lm on a relatively thick substrate. In particular,

the mean strain in both the direction parallel to the lines and the direc-

tion perpendicular to the lines is required to be equal to the mean strain in

the substrate surface, which is an isotropic extensional strain of magnitude

®s¢T . These conditions imply that

h¾fyyi ¡ ºfh¾fxxi ¡ ºfh¾fzzi+ (®f ¡ ®s)¢TEf = 0

h¾oyyi ¡ ºoh¾oxxi ¡ ºoh¾ozzi+ (®o ¡ ®s)¢TEo = 0

(3.123)

(p¡ b)

Eo

h
h¾oxxi ¡ ºoh¾oyyi ¡ ºoh¾ozzi

i
+ (p¡ b)(®o ¡ ®s)¢T+

b

Ef

h
h¾fxxi ¡ ºfh¾fyyi ¡ ºfh¾fzzi

i
+ b(®f ¡ ®s)¢T = 0;

which provides three equations involving the six normal stress components

to be determined.

Three additional equations are needed to establish the stress estimate.

The condition

h¾fxxi = h¾oxxi (3.124)

ensures that the two phases of the ¯lm exert equal and opposite forces on

each other, but it does not require continuity of displacement across the
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interface. Finally, the free surface condition is satis¯ed by requiring the net

force per period in the z¡direction to be zero and the extensional strain in

the z¡direction to be the same in the line and oxide. These conditions are

enforced by

b

p
h¾fzzi+

p¡ b

p
h¾ozzi = 0;

1

Ef

h
h¾fzzi ¡ ºfh¾fxxi ¡ ºfh¾fzzi

i
+ ®f¢T = (3.125)

1

Eo

h
h¾ozzi ¡ ºoh¾oxxi ¡ ºoh¾ozzi

i
+ ®o¢T :

This approximation is expected to be most e®ective for values of hf larger

than b and p¡ b.

The components of averaged stress in the ¯lm material can be deter-

mined by solving the set of linear equations de¯ned by (3.123), (3.124) and

(3.125). It is readily con¯rmed from these equations that, when the volume

fraction of either of the phases approaches zero, the estimate of average stress

in the remaining phase approaches the appropriate uniform stress limit. For

example, when Eo ! Ef , ºo ! ºf and ®o ! ®f , the stress estimate has the

properties that h¾fxxi = h¾fyyi ! ¡Mf(®f ¡ ®s)¢T and h¾fzzi ! 0.

These expressions are easily evaluated for speci¯ed material proper-

ties and temperature change. For example, consider cooling of a system

in which the ¯lm material is Cu for which Ef = 110GPa, ºf = 0:30 and

®f = 17:0 £ 10−6 =◦C, the oxide material is SiO2 for which Eo = 71:4GPa,

ºo = 0:16 and ®o = 0:524 £ 10−6 =◦C and the substrate is Si for which

Es = 130GPa, ºs = 0:28 and ®s = 2:60 £ 10−6 =◦C. Consider the case

when b=p = 0:5. For a temperature change of ¢T = ¡180 ◦C, the estimates

of volume averaged stress components in this case are h¾fxxi = 141MPa,

h¾fyyi = 382MPa and h¾fzzi = 180MPa. To develop an understanding of

the quality of this approximation, the system depicted in Figure 3.19(a) was

analyzed by means of the ¯nite element method for a range of values of hf=b

with b=p = 0:5 (WikstrÄom et al. 1999b). The computed results for average

stress are shown in Figure 3.20 by means of discrete points for six values of

aspect ratio hf=b. The estimates obtained in this section, which are inde-

pendent of hf=b, are represented in the ¯gure by horizontal lines. As was

anticipated, the estimate is quite accurate for hf=b greater than about two,

and it is probably a useful approximation for hf=b greater than about one.

The substrate curvature implied by the average stress estimates from

(3.123){(3.125) is also readily obtained. The e®ect of membrane force resul-
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Fig. 3.20. Volume averaged stress in Cu lines embedded in SiO2 on a Si substrate
due to a temperature reduction of 180 ±C computed by the ¯nite element method.
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by T.-S. Park, Massachusetts Institute of Technology (2001).

tants in the composite ¯lm are obtained by means of (3.119) as

fx = h¾fxxihf = h¾oxxihf ; fy =
b

p
h¾fyyihf +

p¡ b

p
h¾oyyihf : (3.126)

The induced curvature changes in the coordinate directions due to these

stress resultants are obtained by means of (3.73) as

∙x =
6

Esh2s
(fx ¡ ºsfy) ; ∙y =

6

Esh2s
(fy ¡ ºsfx) : (3.127)

Finally, suppose that the patterned composite ¯lm structure on the

left in Figure 3.19 is capped with a uniform thin passivation layer, as shown

on the right in the ¯gure. If both surface layers are thin compared to the

substrate, then their contributions to substrate curvature are additive, as

was demonstrated in Section 2.4.7. In such a case, the total curvature is the

sum of the contribution from the patterned ¯lm as discussed in this section

and that due to the uniform ¯lm as discussed in Chapter 2.
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3.11 Measurement of stress in patterned thin films

As noted in previous sections, the development of life prediction models

for the reliability of patterned features such as periodic lines on substrates

inevitably requires knowledge of intrinsic stress and mismatch stress gener-

ated during ¯lm growth, patterning, passivation and service. In this section,

three prominent experimental methods for determining stress in thin ¯lms

with patterned lines are considered: the substrate curvature method, the

x-ray di®raction method, and the micro-Raman spectroscopic method. The

advantages and limitations of each of these techniques are also brie°y ad-

dressed.

3.11.1 The substrate curvature method

The substrate curvature method, described in Section 2.3, provides a simple

experimental tool for in-situ measurement of changes in principal curvatures

in a patterned thin ¯lm. In the scanning laser method for substrate curva-

ture measurement discussed in Section 2.3.1, this is achieved by scanning the

laser beam sequentially along the anticipated principal directions, that is,

along and transverse to the line direction. With the grid re°ection technique

discussed in Section 2.3.3 or the coherent gradient sensor technique discussed

in Section 2.3.4, variations in both the curvature ∙y along the lines and the

curvature ∙x transverse to the lines can be monitored simultaneously and

in real time as the mismatch strains evolve. Once the principal curvature

values are known, the average values of in-plane normal stress components

are estimated by recourse to analytical approximations, such as (3.121) or

(3.122), or the ¯nite element method of numerical simulation.

A drawback of this method is that measurements of changes in prin-

cipal curvature components represent changes in average values of principal

stress which are sampled over a large number of periodically spaced, nom-

inally identical lines. The curvature method is thus incapable of assessing

stress evolution in individual lines as they develop slit-like cracks or voids;

line to line variations in stress also cannot be quanti¯ed using this method.

Nevertheless, this technique o®ers a convenient means of monitoring small

variations in substrate curvature from which average stress values in both

crystalline and amorphous ¯lms comprising periodic patterned lines can be

obtained using relatively simple-to-use, commercially available experimental

systems. Examples of experimental results obtained through the substrate

curvature method were illustrated in Figure 3.17.
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3.11.2 The x-ray diffraction method

As described in Section 3.6, the x-ray di®raction method relies on measure-

ments of elastic strains from changes in the lattice spacing caused by stress.

Such elastic strains are converted to average stress values from known elastic

constants of the material. Real time measurements of stress evolution (as, for

example, during electromigration) in unpassivated and passivated patterned

lines can be conducted with x-ray microdi®raction using synchrotron-based

white beam x-rays where the beamline is con¯ned by a pinhole for a narrow

x-ray beam, typically several ¹ms in diameter (Wang et al. 1998); di®raction

from a few patterned lines or stripes are sampled and averaged in this man-

ner. The changes in d-spacing of a particular set of crystal planes during

stress evolution is then measured at di®erent positions along the lines by

translating the specimen. A particularly appealing feature of this technique

is that the stress gradient which develops along the length of the patterned

line, such as an electric-current-carrying metal interconnect which is sub-

jected to damage by void, hillock or crack formation (see Section 9.7), can

be monitored in real time.

As in the case of the substrate curvature method, the x-ray di®rac-

tion technique provides average values of stress that are sampled over many

lines; it does not provide a means to estimate stress in a single line. Another

shortcoming of the method is that the measured changes in strains can be

very small for the patterned line structure. For example, periodically pat-

terned Al interconnect lines on Si substrates which are subjected to electric

currents that are typical of service conditions in microelectronic circuitry are

known to develop strains as small as 10−3; see (Wang et al. 1998); (Flinn

and Chiang 1990); (DeWolf et al. 1999). Consequently, the accuracy of the

standard x-ray di®raction units may not be adequate for the level of preci-

sion required in many applications involving patterned thin ¯lms; cost and

safety issues are also additional limiting factors. The use of x-ray di®raction

method is restricted to crystalline thin ¯lms.

3.11.3 Micro-Raman spectroscopy

Micro-Raman spectroscopy has evolved as a possible experimental method

for estimating local stress in nonplanar, submicron scale structures of in-

terest in very large scale integration (VLSI) devices and MEMS; see, for

example, Kobayashi et al. (1990) and DeWolf et al. (1992). Examples of

the geometries studied by this method include: local isolation structures

involving techniques such as local oxidation of polysilicon over silicon, iso-
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lation trenches, metal conductors in microelectronic devices, and V-groove

structures.

For the case of interconnect line features patterned on a single crystal

Si substrate, a common procedure for the use of micro-Raman spectroscopy

entails determination of the stress in the interconnect from the distortion

produced in the substrate and the dielectric which immediately surround the

interconnect (DeWolf et al. (1992); Ma et al. (1995); DeWolf et al. (1999));

the Raman spectra can be measured in the backscattering mode using an

argon laser. The piezo-spectroscopic shift in the Raman spectrum, which is

induced by such local distortions, can be measured to a spatial resolution

on the order of 1 ¹m so that stress in individual lines can be estimated.

A single crystal Si substrate has three `Raman-active' optical vibra-

tion modes: for incident optical direction along the [001] crystallographic

axis, the one longitudinal mode coincides with [001] directions, and the two

transverse modes are oriented along [100] and [010] directions. If the Si

substrate is devoid of any stress, these three vibration modes have the same

frequency, !0 ¼ 520 R¢cm−1. When backscattering occurs from the (001)

surface, it is known that the Raman signal is produced only by the longitu-

dinal mode. Local straining of the Si substrate as a result of the mismatch

stress in the interconnect line lowers the symmetry of the Si crystal. This

causes the vibration frequencies of the three optical modes to shift from !0,

with the amount of shift in each of the three modes dependent upon the na-

ture of the strain tensor. These frequency shifts can easily be related to the

strain tensor. (In addition, the associated changes in the Raman polarizabil-

ity tensors can be used to asses the scattering e±ciency which signi¯es the

ratio of the scattered power to the incident power of the laser beam.) These

steps enable the determination of elastic strains from the experimentally

monitored shifts in the Raman spectrum. Once the strain tensor is deter-

mined, the stress in the interconnect line can be approximated using the

¯nite element method whereby the measured frequency shifts are matched

with the stress distributions for a particular interconnect line geometry as

a function of distance from the line.

Figure 3.21 schematically shows a typical experimental setup used for

the micro-Raman spectroscopy. A laser beam, typically an argon-ion laser

with an output power of no more than a few tens of mW (so as to avoid local

heating of the substrate), is directed in a region immediately surrounding

an interconnect line of interest. Note that the laser beam easily traverses

through a passivation or capping layer of silicon dioxide or silicon nitride so

that passivated line structures can also be studied. The beam is focused at

the interface between the passivation layer and the substrate. The signal of
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Fig. 3.21. Schematic showing an experimental setup for determining the piezo-
spectroscopic shifts in the Raman spectrum in a Si substrate immediately sur-
rounding an interconnect line.

the excited Raman °uoroscence is gathered by the objective lens and then

passed through a monochromator for frequency analysis. A series of Raman

spectra is obtained at di®erent points on either side of the interconnect so

that the spatial variation of frequency shift is adequately captured.

A drawback of this method is that micro-Raman spectroscopy cannot

generally be applied to metallic materials. Furthermore, stress estimation

can only be made on the basis of Raman spectra gathered in the substrate

and the dielectric on the sides of the interconnect lines. Such measurements

cannot be made in the region immediately below the line, where the stress is

more uniform and more sensitive to the stress in the lines themselves, if the

substrate is nontransparent. Despite these limitations, the micro-Raman

spectroscopy method has been successfully used to infer the average values

of internal stress components in interconnect lines tested in the as-fabricated

condition as well as after electromigration testing (Ma et al. (1995); DeWolf

et al. (1999)).

3.12 Exercises

1. A cubic crystal is subjected to uniaxial tension along the [112] direction.
Show that the e®ective elastic modulus for that orientation is

E112 =
ns11

2
+

s12
2

+
s44
4

o¡1

: (3.128)

2. A thin ¯lm of a cubic crystal is deposited on a substrate. The orientation
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of the ¯lm material is such that the direction perpendicular to the interface
coincides with the [101] crystallographic direction of each material. The
elastic constants of the ¯lm referred to the natural coordinate axes are c¤11,
c¤12 and c¤44.

(a) Show that the ¯lm appears to be orthorhombic (or orthotropic), with
¯ve independent elastic sti®ness constants, in a global coordinate sys-
tem with axes coinciding with the crystallographic directions [10¹1],
[010] and [101].

(b) In the global coordinate system, show that the nonzero components
of cij are

c11 = c33 = 1
2c

¤
11 +

1
2c

¤
12 + c¤44 ; c13 = 1

2c
¤
11 +

1
2 c

¤
12 ¡ c¤44;

c22 = c¤11 ; c12 = c23 = c¤12 ; c44 = c66 = c¤44: (3.129)

3. A thin single crystal ¯lm of a cubic material is grown epitaxially to thickness
hf on a substrate of another cubic material of thickness hs. Both materials
are oriented with the shared interface being the (101) plane of each crystal.
As noted in the preceding exercise, both materials can be viewed as or-
thotropic materials in the global coordinate system adopted in Section 3.5,
that is, they are aligned orthotropic materials. Assuming that the exten-
sional mismatch strain in the ¯lm with respect to the substrate is ²m in all
directions in the interface and that the two materials have the same elastic
constants, determine the ratio of curvatures ∙2=∙1 in the global coordinate
directions in the interface coinciding with the crystallographic directions
[10¹1] and [010]. Express the result in terms of the three elastic constants
de¯ned in (3.129).

4. The residual strains in an aluminum ¯lm, 1 ¹m in thickness, on a Si sub-
strate, 550 ¹m thick and 200 mm in diameter, were studied by x-ray di®rac-
tion. It was found that the d-spacing of crystallographic planes in the ¯lm,
which were oriented parallel to the plane of the ¯lm decreased by 0.054%,
compared to the situation when the ¯lm had no residual strains.

(a) If the ¯lm is assumed to be elastically isotropic, ¯nd the equi-biaxial
mismatch strain and mismatch stress in the ¯lm.

(b) Repeat your calculations assuming that the aluminum ¯lm has (100)
texture.

5. A polycrystalline thin ¯lm of Cu is deposited on a thick Si substrate. The
grains of the Cu ¯lm have a `bamboo' structure, i.e., the grain boundaries
extend through the entire thickness of the ¯lm with only one grain through
the thickness. If the texture of the ¯lm is such that the [111] direction of the
grains is oriented normal to the ¯lm{substrate interface for all the grains,
describe how you would approximate the in-plane elastic modulus of the
polycrystalline Cu ¯lm.

6. A metal thin ¯lm is deposited on a Si substrate at an elevated temperature.
After cooling the ¯lm{substrate system to room temperature, it was found
from x-ray di®raction measurement that the d-spacing in the direction nor-
mal to the ¯lm{substrate interface had decreased by 1 per cent compared to
that in the same crystallographic direction in the unstressed ¯lm material.



236 Stress in anisotropic and patterned films

Assume that the ¯lm is isotropic, and that Ef = 70 GPa, hf = 1¹m, ºf =
0.33, ®f = 23£10¡6 ±C, ESi = 130 GPa, hs = 500¹m, ºSi = 0.28, and ®Si

= 3£10¡6 ±C.

(a) Calculate the mismatch strain and stress in the ¯lm.

(b) Determine the curvature of the substrate.

(c) After the x-ray di®raction test, it is determined that the curvature is
too large for the Si wafer to be acceptable for the intended application.
As a ¯rst suggestion to decrease the curvature, you recommend that
the ¯lm thickness be reduced if possible. The Si wafer manufacturer
notes that although the ¯lm thickness could be reduced, the ratio
hf=hs should be kept constant for the particular application. Does
this requirement change your recommendation?

7. A multilayer is made by growing alternate layers of single crystalline Si and
Ge. The repeating layers of the Si and Ge layers in the multilayer are (100)
¯lms with thicknesses of 8 nm and 2 nm, respectively. The lattice parameters
of Si and Ge are 0.542 nm and 0.564 nm, respectively.

(a) If the epitaxial mismatch strains between adjacent layers are not
relieved by the nucleation of mis¯t dislocations, compute the equi-
biaxial stress and strains in each Si and Ge layer.

(b) What is the out-of-plane strain in each Si and Ge layer?

8. Consider the isotropic aluminum ¯lm on silicon substrate, which is discussed
in problem 4. If this ¯lm is etched into unidirectional lines, of the same
thickness as the ¯lm, and with 1 ¹m width and 2 ¹m spacing.

(a) Estimate the values of the volume averaged stress along and across
the lines.

(b) Determine the volume averaged shear stress in the lines.

9. Ten di®erent thin ¯lm specimens are fabricated, with each specimen com-
prising a continuous thin ¯lm of Cu deposited uniformly on a Si substrate
which is 200 mm in diameter and 600 ¹m in thickness. The ¯lm thickness
in the ten specimens ranges from 100 nm to 1000 nm. X-ray di®raction
experiments indicate that the mismatch stress in the ¯lms vary from about
200 MPa for the thinnest ¯lm to 40 MPa for the thickest, and that the stress
for the in-between thicknesses can be approximated by linear interpolation
between these two limits. The ¯lms in all ten specimens are then patterned
into unidirectionally oriented lines which are 750 nm wide and 3,000 nm
apart; the thicknesses of the lines in the di®erent specimens are the same
as those of the continuous ¯lms from which they are etched. Assuming that
curvature evolution during the patterning of the ¯lm into lines arises solely
from geometry changes in each specimen, determine the average stress in the
lines and of the curvatures along and across the lines.

10. The methods outlined in Section 3.10 for patterned thin ¯lms on substrates
can also be used, with appropriate modi¯cations, to estimate substrate cur-
vature and volume-averaged elastic stress in multilayered patterned ¯lms.
Figure 3.22 shows a four-level damascene copper line structure where the
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Fig. 3.22. A cross-sectional micrograph showing a four-level damascene copper line
structure, where the lines appear as white regions. The silicon oxide passivation
layers, P1, ..., P4, are deposited on each level of metallization. The dark regions in
the ¯gure are the silicon oxide trenches and passivation layers. The thickness, width
and spacing of the Cu lines and the surrounding oxide trenches in each metallization
level and the thickness of the passivation layers separating di®erent levels of metal-
lization are all 1 ¹m. Note that the Cu lines in levels M1 and M3 are oriented along
the y¡direction whereas those in levels M2 and M4 are parallel to the x¡direction.
(Photograph courtesy of International Business Machines Corporation. Reprinted
with permission.)

Cu lines ¯ll the silicon oxide trenches; di®erent levels of metallization are
separated by silicon oxide passivation ¯lms.

(a) Consider a Si wafer substrate, 200 mm in diameter and 525 ¹m thick,
which has a uniform initial curvature of {0.001m¡1, with the sign
convention from Section 2.1 that the face of the substrate bonded to
the ¯lm becomes concave for the case of a tensile mismatch stress.
This substrate is then oxidized at 400 ±C in such a way that a uni-
form silicon oxide ¯lm, 1 ¹m in thickness, is formed on one surface.
After the ¯lm{substrate system is cooled down to room temperature,
the substrate curvature was measured to be {0.008 m¡1. The oxide
is then patterned at room temperature into unidirectional trenches,
1 ¹m wide with a spacing of 1 ¹m. The elastic modulus, Poisson
ratio, and thermal expansion coe±cient of the Si substrate are Es =
130 GPa, ºs = 0.28 and ®s = 2.6£10¡6 =±C, respectively; the corre-
sponding values for silicon oxide are: Eo = 71.4 GPa, ºo = 0.16 and
®o = 0.524£10¡6 =±C, respectively. Find the magnitude and sign of
curvature parallel to and perpendicular to the orientation of the oxide
trenches on the Si substrate. Assume, in all parts of this problem,
that the entire ¯lm{substrate system remains elastic.

(b) The gap between the oxide trenches is now electrodeposited with pure
Cu at room temperature, and the excess Cu above the oxide trench
is removed by chemical{mechanical polishing. Any intrinsic stresses
introduced during metal deposition and polishing may be assumed
to be negligible. The elastic modulus, Poisson ratio, and thermal
expansion coe±cient of the Cu lines are Ef = 110 GPa, ºf = 0.3 and ®f

= 17£10¡6 =±C, respectively. A 1 ¹m thick silicon oxide passivation
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layer, denoted as layer P1 in Figure 3.22, is now deposited on the
composite layer M1 at 400 ±C. It may be assumed that the formation
of the continuous oxide ¯lm at 400 ±C does not lead to any intrinsic
stress buildup. Find the curvatures along and across the Cu line
direction when the passivated ¯lm{substrate system is cooled to room
temperature.

(c) Three more levels of metallization and passivation comprising layers
M2, P2, M3, P3, M4 and P4 are now made by repeating the above
procedure, with the lines in layer M3 being parallel to those in layer
M1, and the lines in layer M4 being parallel to those in layer M4.
Find the principal curvatures of this four level metallization system
at room temperature.
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Delamination and fracture

Any material that transmits mechanical load from one place to another is

susceptible to fracture. This susceptibility is enhanced if the geometry of

the object includes reentrant corners, internal defects or other geometrical

variations which serve as sites of stress concentration. At these sites, the

local stress can be much larger than the nominal stress, which is loosely

de¯ned as the average stress transmitted at a cross-sectional area. As a

consequence of stress concentration, the local stress can exceed the strength

of the material and fracture ensues, even though the nominal stress is well

below the fracture strength.

Mechanical interactions between a thin ¯lm and a substrate to which

it is bonded were the focus of discussion in the preceding chapters. These

interactions, when occurring in the absence of any failure or delamina-

tion processes, are manifested in a number of ways: the constraint of the

substrate prevents the ¯lm from relaxing its internal stress, and the ¯lm{

substrate system accommodates the internal stress by in-plane stretch or

contraction, substrate curvature, and/or plastic yielding of the ¯lm. How-

ever, when edge e®ects are neglected, the traction exerted by the ¯lm and

substrate material on each other across the ¯lm-substrate interface is zero

everywhere.y If this is the case, how do the ¯lm and substrate interact?

The paradox of interaction without traction on the shared interface

is resolved by recalling that the thickness of the ¯lm{substrate system is

much smaller than its in-plane dimensions. If the mechanical state of the

material is examined at various points on the ¯lm{substrate interface more

distant from the ¯lm edge than several times the ¯lm thickess hf , these

† In general, traction is a vector valued quantity representing the local force per unit area acting
on a material surface, whereas stress is a tensor valued property of the local mechanical state
in a material which is independent of any particular surface orientation. While the terms are
commonly used interchangeably, the distinction is sometimes important for understanding.

239
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points appear to be indistinguishable. As a result, the mechanical stress

and deformation ¯elds are translationally invariant in any direction parallel

to the interface over nearly the entire volume of the ¯lm and the substrate

material, the exception being only a small region near the free edges. Thus,

when global measures of deformation such as potential energy or curvature

are considered, the fact that some relatively small volume of material near

the ¯lm edge has been neglected has only very minor consequences.

The property of translational invariance cannot be invoked near the

¯lm edge, and this is precisely the region where mechanical load transfer

between the ¯lm and substrate is e®ected. Because the free edge of a ¯lm

is a site of an abrupt change in geometrical shape, its neighborhood is ex-

pected to be a region of stress concentration. Furthermore, this local stress

¯eld must be self-equilibrating because the translationally invariant inter-

nal stress ¯eld itself is an equilibrium ¯eld in the absence of any externally

imposed loads. Finally, the abrupt change in geometry arising at the inter-

section of a ¯lm{substrate interface with a free edge is conceptually similar

to the region of stress concentration introduced by a crack or the edge of a

delamination zone. Indeed, a sharp crack in a solid is commonly regarded

as the ultimate stress concentrating feature.

In this chapter, the goal is to discuss the stress concentration at the

edge of a ¯lm bonded to a substrate in terms of material and geometrical

parameters. Since stress concentration can lead to ¯lm fracture and inter-

facial delamination, attention is also directed to quantitative descriptions of

the growth of a crack or delamination. The study of stress concentration is

based on continuum constitutive behavior and equilibrium stress analysis,

and its extension to the study of interface delamination and crack growth

requires introduction of a fracture criterion as an additional physical pos-

tulate of material behavior. Such fracture criteria are inevitably linked to

the mechanisms of material separation which, in turn, can be in°uenced by

microstructure and environment.

The discussion of stress concentration near a ¯lm edge in the next

section is followed by a brief review of linear elastic fracture mechanics con-

cepts, a prelude to a discussion of delamination and cracking due to ¯lm

residual stress. A survey of these topics set in the context of fracture me-

chanics has been presented by Hutchinson and Suo (1992). The chapter also

includes descriptions of various experimental techniques for evaluating the

fracture resistance of interfaces between ¯lms and substrates. In addition,

representative experimental results on the interface fracture resistance, as a

function of interface chemistry and environment, are presented for a variety

of thin ¯lm and multilayer systems of scienti¯c and technological interest.
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Fig. 4.1. Schematic diagram of a thin ¯lm with a free edge bonded to a thick
substrate. The equi-biaxial stress in the ¯lm is ¾m at points far from the ¯lm edge
compared to hf . The planar edge of the ¯lm x = 0 is traction-free.

4.1 Stress concentration near a film edge

The fundamental edge stress con¯guration for strained thin ¯lms is shown

in a Figure 4.1. This con¯guration can be imagined to arise in any number

of di®erent ways. For example, start with a relatively thick, stress-free sub-

strate which has a large planar surface which coincides with the xy¡plane

in the ¯gure. Then, a uniform all-around normal traction of magnitude ¾m,

either tension or compression, is applied to the edges of a ¯lm of thickness

hf , resulting in a homogeneous state of equi-biaxial stress throughout the

¯lm. The stressed ¯lm is then bonded to the substrate, forming a planar

interface, after which the traction acting on the edge of the ¯lm coinciding

with the plane x = 0 in Figure 4.1 is relaxed. This results in the edge of

the ¯lm becoming a free surface. If attention is then focused on material

points near the edge of the ¯lm where the ¯lm boundary in plan view is

fairly smooth, the system has the features shown. The ¯lm edge lying along

the y¡axis appears to be straight at this scale, and the only pertinent phys-

ical dimension is the ¯lm thickness hf . The edge of the ¯lm at x = 0 is

traction-free. At points in the ¯lm that are remote from the edge compared

to the distance hf , the stress is unrelaxed; asymptotically, the stress state

approaches the equi-biaxial stress of magnitude ¾m as x=hf becomes large.

Stress and deformation ¯elds vary relatively slowly with distance along the

¯lm edge on this scale. Consequently, this state of deformation is essentially

two-dimensional generalized plane strain in the xz¡plane, assuming at least

orthotropic material behavior with the axes of orthotropy aligned with the

coordinate axes.

Near the free edge of the ¯lm, some traction is exerted on the ¯lm by

the substrate across the common interface. Far from the edge, the ¯lm stress
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is uniform and, as a consequence of the requirement of local equilibrium,

no traction acts across the interface. The goal here is to understand the

spatial scale of the transition from the edge behavior to the remote interior

behavior and the transfer of mechanical load from the substrate to the ¯lm

in the region near the free edge of the ¯lm.

This edge problem can be studied at several scales of observation.

It is instructive to consider states of stress for two extreme sites, namely,

for points that are very close to the edge compared to ¯lm thickness and

for points that are very far from the edge compared to ¯lm thickness. For

points close to the interface edge for which (x2+z2)1/2 ¿ hf , the problem of

stress concentration along the ¯lm edge has no characteristic length scale.

It can be formulated as a plane strain analysis of wedges that are joined

along a common boundary (Bogy 1971). At this scale of observation, the

¯lm is represented by a 90◦ elastic wedge subjected to a mismatch strain.

One face of the wedge is free of traction and the other is bonded to the

surface of an elastic half space. In this case, the stress magnitude is found

to be singular at the corner and to exhibit rapid oscillations in amplitude

with distance from the corner, in general. For the special case when both

materials behave as isotropic elastic solids with the same elastic constants,

the oscillations vanish and the stress components vary with distance from

the edge as r−α where ® ¼ 0:4.

At the other extreme, for points far from the edge compared to hf ,

the ¯lm thickness is imperceptible and the in°uence of this length is again

suppressed. In the remote ¯eld (x À hf), the force per unit distance in

the y¡direction on any ¯lm section is ¾mhf , and this force acts in the

x¡direction. At the ¯lm edge x = 0, the force on the ¯lm is zero. Con-

sequently, by the condition of overall equilibrium, the resultant force due

to the traction exerted by the substrate on the ¯lm has magnitude ¡¾mhf
and it acts in the x¡direction. Thus, the stress in the substrate at points

far from the origin compared to hf is that due to a concentrated tangen-

tial line load of magnitude ¾mhf per unit distance in the y¡direction, act-

ing in the x¡direction on the substrate surface. A main feature of this

stress ¯eld, which is the classical Flamant solution for isotropic elastic solids

(Johnson 1985), is that the magnitude of any stress component varies as

r−1 with distance from the ¯lm edge. The decay in magnitude along the

interface is expected to be more rapid than x−1 because the stress acting

on this interface is identically zero in the Flamant solution. In any case,

the con¯guration has no characteristic length at this scale of observation,

and the stress components necessarily decay in magnitude inversely with

distance from the load point at the origin.
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While both of these asymptotic extremes provide useful information

about ¯lm edge e®ects, they do not address the important question of load

transfer posed above. Speci¯cally, what is the character of the transition in

response between these two limiting cases, and over what size scale does this

transition occur? This issue is taken up next, beginning with the simplest

system that reveals the nature of this transition; more realistic systems are

discussed subsequently.

4.1.1 A membrane film

The issue of interface stress near a ¯lm edge is addressed ¯rst by idealiz-

ing the thin ¯lm as an elastic membrane. Such an idealization rests on the

notion that thin membrane structures are relatively more resistant to exten-

sional loading than to bending; they are not capable of sustaining transverse

loads during small deformation. A major outcome of this idealization is the

realization that the interface traction between the ¯lm and the substrate

near the free edge is a shear traction.

� � � � 	 � � � �

Fig. 4.2. A schematic diagram of a ¯lm with a free edge bonded to a substrate is
shown in the upper portion. The lower portion depicts the same system but with the
¯lm and substrate separated to reveal the shear traction distribution q(x) through
which they interact across their interface and the internal membrane tension t(x)
in the ¯lm.

The problem is illustrated schematically in Figure 4.2, where the ¯lm

and substrate have been separated to reveal the spatially nonuniform inter-

facial shear traction q(x) exerted by each material on the other. The goal
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here is to determine q(x) in terms of the ¯lm mismatch stress ¾m and ¯lm

thickness hf , for arbitrary combinations of elastic properties for the ¯lm and

the substrate, both of which are assumed to be isotropic. Also shown in

Figure 4.2 is the tensile force t(x) acting per unit width of the section in the

¯lm located at distance x from the edge. On physical grounds, it is expected

that q(x) ! 0 and t(x) ! hf¾m as x=hf ! +1 along the interface, as noted

in the introduction to the chapter.

The interfacial shear stress is determined by requiring that the ma-

terial is everywhere in equilibrium without the application of the external

loading and that the deformation resulting from relaxation of the edge stress

from the value ¾m at x = 0 is continuous across the interface. The steps

involved in deriving the governing equation for q(x) are outlined in Sec-

tion 4.1.2. It is anticipated that the stress distribution q(x) will be singular

in the limit as x=hf ! 0+. By means of the J-integral of elastic fracture

mechanics (Rice 1968a) or other equivalent arguments, it can be established

that

q(x) » ¾m

s
khf
2¼x

(4.1)

asymptotically as x=hf ! 0+, where

k =
¹Es
¹Ef

=
Es

1¡ ºs

1¡ ºf
Ef

(4.2)

is the ratio of the plane strain elastic modulus of the substrate to that of

the ¯lm.

The numerical solution of the equation governing q(x) for 0 < x < 1,

which is established in Section 4.1.2, is readily obtained by means of the

technique developed by Erdogan and Gupta (1972). The result is graphed

in nondimensional form q(x)=k¾m versus kx=hf in Figure 4.3. Included in

the same ¯gure are graphs of the normalized extensional stress in the ¯lm

t(x)=k¾m and of the square root singular asymptotic form (4.1). Several

noteworthy features are evident in Figure 4.3. For one thing, the numerical

solution matches the square-root singular behavior very well as kx=hf ! 0+.

For values of kx=hf large compared to unity, the shear stress was anticipated

above to decay more rapidly with distance from the edge than x−1 and this

is indeed so. The action of load transfer between the ¯lm and the substrate

is con¯ned to a region of length only a few times hf=k near the ¯lm edge.

Thus, if the materials have approximately the same elastic properties, so

that k ¼ 1, the ¯lm membrane force t(x) increases from zero to about
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Fig. 4.3. The solid curve labeled q(x)=k¾m shows the shear traction versus distance
kx=hf , as determined from the numerical solution of the elastic membrane problem.
The dashed curve shows the square root singular behavior of the shear traction
anticipated in (4.1) and the curve labeled t(x)=¾mhf is the normalized ¯lm tension
that is in equilibrium with the shear traction q(x).

80% of its asymptotic value ¾mhf within a distance of about 3hf from the

edge. In retrospect, this result reinforces the assumption of the preceding

chapters that the edge e®ect associated with the load transfer region is

negligible when considering curvature of a ¯lm-substrate system with lateral

dimensions more than about 50hf . Concerning the in°uence of the modulus

ratio k, it is evident from the result that, for a ¯lm which is much sti®er

(softer) than the substrate, so that k ¿ 1 (k À 1), the interfacial shear

stress has a magnitude which is small (large) compared to ¾m over a region

which is large (small) compared to hf .

4.1.2 Example: An equation governing interfacial shear stress

Consider the physical system consisting of a thin ¯lm with a free edge bonded to
a relatively thick substrate as depicted in Figure 4.2, and assume that the ¯lm
deforms as an elastic membrane. For a speci¯ed equi-biaxial mismatch stress ¾m,
or corresponding mismatch strain ²m = ¾m=Mf , determine an integral equation
that governs the interfacial shear stress q(x).
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Solution:

The condition of overall equilibrium for the portion of the ¯lm between the
free end and the section at x requires thatZ x

0

q(») d» = t(x) ; 0 < x < 1 : (4.3)

The extensional elastic strain in the ¯lm in the y¡direction remains as ²m follow-
ing relaxation due to the plane strain constraint. The extensional strain in the
x¡direction is

²(x) = ²m + t(x)= ¹Efhf ¡ (1 + ºf)²m = ²m + ²f(x) (4.4)

where Ef , ºf are the elastic constants of the isotropic elastic ¯lm material, ¹Ef =
Ef=(1 ¡ º2

f ) is the plane strain modulus and ²f(x) is the elastic strain relaxation
in the ¯lm due to the presence of the free edge. Clearly, ²f(x) ´ 0 if t(x)=hf =
¾m = ¹Ef(1+ºf)²m everywhere. The equilibrium equation (4.3) and the constitutive
equation (4.4) are combined to obtain

²f(x) =
1

hf
¹Ef

Z x

0

q(») d» ¡ (1 + ºf)²m ; 0 < x < 1 : (4.5)

The relationship between the extensional strain along the surface of the sub-
strate ²s(x) and the shear traction q(x) corresponding to (4.5) is obtained by su-
perposition over the Flamant solution for a concentrated tangential line load acting
on the surface of a half-space (Johnson 1985) as

²s(x) =
2

¼ ¹Es

Z 1

0

q(»)

» ¡ x
d» ; 0 < x < 1 : (4.6)

Here, ¹Es is the plane strain modulus of the isotropic elastic substrate and the
singular integral is de¯ned in the sense of its Cauchy principal value (Muskhelishvili
1953).

The ¯lm and substrate are bonded at the interface, and they must deform to-
gether during relaxation due to this mutual constraint. The compatibility condition
is

²f(x) = ²s(x) ; 0 < x < 1 (4.7)

which leads to the integral equation

1

hf
¹Ef

Z x

0

q(») d» ¡ 2

¼ ¹Es

Z 1

0

q(»)

» ¡ x
d» = (1 + ºf)²m ; 0 < x < 1 (4.8)

for the unknown shear stress q(x). The formulation is completed by noting that
q(x) has the properties that

q(x) ! 0 as x=hf ! 1 and

Z 1

0

q(x) dx = hf¾m : (4.9)

Thus, a solution of (4.8) having these properties is sought. The form of the
equation simpli¯es considerably by introduction of the non-dimensional coordinate
x̂ = kx=hf and shear stress q̂(x̂) = q(x)=k¾m.

An exact solution of this equation is not known, although equations of this
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general form have been studied extensively in connection with load transfer in
sti®ening members attached to thin-walled structures (Koiter 1955). A particularly
important feature of the solution of (4.8) is that the shear stress distribution q(x) is
square-root singular as x ! 0+, as was noted in (4.1). Knowledge of this behavior
is invaluable in proceeding with a numerical solution of the integral equation. The
interpretation of this square root singular stress distribution will be discussed more
completely in connection with crack growth modeling in Section 4.2.

An accurate numerical solution of the integral equation can be obtained

by reducing (4.8) to a system of algebraic equations for values of q̂(x̂) at a ¯nite

number of discrete points by means of Gaussian quadrature formulae (Erdogan

and Gupta 1972). The weight function in the quadrature formulae incorporates

the known behavior of the solution at its endpoints, and the system of algebraic

equations resulting from the integral equation must be augmented by the discrete

form of the auxiliary conditions. The numerical solution of (4.8) is illustrated in

the non-dimensional form of q(x)=k¾m versus kx=hf in Figure 4.3. Implications of

the results shown in Figure 4.3 can be found in Section 4.1.1.

4.1.3 More general descriptions of edge stress

The foregoing analysis of an edge stress singularity based on the idealiza-

tion of the thin ¯lm as a membrane is expected to hold over distances which

are large compared to the ¯lm thickness. However, over distances from the

free edge on the order of the ¯lm thickness, the local in°uence of bending

resistance in a thin ¯lm should be considered as a possibly signi¯cant ef-

fect. Thus, in this section, the load transfer between a strained ¯lm and its

substrate is re-examined for a ¯lm which has both extensional and bending

resistance to applied loading. After a brief discussion of the main features

of a model based on combined extension and bending, other models which

involve less a priori constraint on deformation ¯elds but which are more

di±cult to analyze our brie°y discussed.

The simplest physical idealization of the ¯lm that incorporates bend-

ing resistance is that of an elastic plate which admits extensional and bend-

ing deformation but no shear deformation; this model is known commonly

as a Kirchhoff plate. The boundary value problem is illustrated schemati-

cally in Figure 4.4, where the ¯lm and the substrate have been separated

to show the shear stress distribution q(x) and the normal stress distribution

p(x) together which represent interaction between the ¯lm and substrate.

Also shown acting on a section of the ¯lm at distance x from the edge is an

internal extensional force t(x), an internal shear force s(x) and an internal

bending moment m(x), all measured per unit thickness in the y¡direction.
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Fig. 4.4. A schematic diagram of a ¯lm with the free edge bonded to substrate.
The lower portion shows the ¯lm and substrate separated, revealing the traction
distribution representing the interaction of the ¯lm and substrate across the inter-
face.

It is important to note that these resultant forces act at a point on the mid-

plane of the ¯lm. The objective is to determine p(x) and q(x) in this case for

an equi-biaxial mismatch strain ²m in the ¯lm with respect to the substrate.

Conceptually, the derivation of the equations governing the stress transmit-

ted across the ¯lm{substrate interface for this case follows the same steps

as for the case of the membrane model. The resulting equations have the

form of a coupled pair of integral equations having the same general charac-

ter as (4.8), and implications of these equations were studied by Shield and

Kim (1992). The derivation of the coupled integral equations is left as an

exercise.

The traction distributions represented by p(x) and q(x) are expected

to be algebraically singular at the ¯lm edge x = 0. There is a general

approach for extracting the strength of such singularities from the governing

equations which, in the present case, leads to the behavior (Muskhelishvili

1953)

p(x); q(x) » x−
1
2
+ i
2π
ln(3−4νs): (4.10)

The appearance of an imaginary part of the exponent in (4.10) implies that
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Fig. 4.5. The solid curves show the interface tractions between the ¯lm and sub-
strate as determined from the numerical solution of the integral equation (4.93).
The dashed curves show the corresponding internal stress resultants in equilibrium
with the computed interface tractions.

the actual variation of the tractions with position is oscillatory as x ! 0+.

This behavior is typical of stress distributions along the interfaces of joined

materials near an edge. Several regularization schemes have been proposed

for bypassing the non-physical aspects of such behavior, but these tend to

be cumbersome and the implications are not readily interpreted. To make

the main point of the present discussion, it is su±cient to limit consideration

to the case of an elastic substrate that is incompressible, so that ºs =
1
2 and

the imaginary part of the exponent in (4.10) vanishes.

The results of numerical solution of the coupled equations for p(x) and

q(x) with k = 1 are shown in Figure 4.5, which reveals several noteworthy

features. First, the magnitude of the edge singularities of p(x) and q(x) are

roughly the same. Therefore, the normal traction is expected to play a more

signi¯cant role in edge e®ects than could be anticipated on the basis of the

membrane model discussed in the preceding section. It is also seen that

the magnitudes of p(x) and q(x) decay to relatively small values compared

to ¾m within a distance a 2 or 3 times hf from the edge of the ¯lm. The

tensile force t(x) in the ¯lm also approaches its remote asymptotic value of

¾mhf within a distance of several times hf from the edge. At ¯rst sight, it
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might appear from the plot of m(x) in Figure 4.5 that bending e®ects are

not signi¯cant, but that is not the case. To see this, it is only necessary to

note that the maximum stress in the ¯lm due to bending alone, which is

6m(x)=¾mh
2
f evaluated at x ¼ 0:3, is roughly 0:6¾m or of the same order of

magnitude as the remote tensile stress.

For other values of sti®ness ratio k, the distribution of interface stress

near the ¯lm edge is similar in form to that shown in Figure 4.5 but the

amplitudes depend on the value of k. Consistent with the observation drawn

from analysis of the membrane ¯lm, the load transfer length is very short for

a relatively sti® substrate and very long for a relatively compliant substrate.

The extent to which further re¯nements in the description of edge

stress ¯elds can in°uence the nature of the results is illustrated for the case

of a ¯nite element solution of the continuum elasticity equations for the same

situation represented by the results in Figure 4.5, that is, an isotropic elastic

¯lm bonded to an isotropic incompressible elastic substrate with modulus

ratio of k = 1. To minimize the in°uence of remote boundaries in the

numerical simulation, a mesh of four-noded quadrilateral elements is de¯ned

over the region ¡20hf ∙ x ∙ 20hf , ¡20hf ∙ y ∙ 0, with the element

dimensions increasing gradually from hf=30 near the ¯lm edge to about hf
at the remote boundaries. The ¯lm is modeled similarly, with the remote ¯lm

tension condition enforced by requiring that the edge of the ¯lm-substrate

system at x = 20hf is a boundary of re°ective symmetry. In e®ect, the

con¯guration analyzed is that of a ¯lm of finite extent of 40hf along the

substrate surface. At this separation distance, the ¯lm edges are expected

to have little in°uence on each other. No elements with special interpolation

functions are introduced in an e®ort to capture the details of the asymptotic

singular behavior at the ¯lm edge.

The comparison of results obtained from the ¯nite element simulation

to those obtained on the basis of the plate model is shown in Figure 4.6.

The two sets of results are similar in terms a relative magnitudes, absolute

magnitudes, decay characteristics, edge singularity, and so on. The strength

of the edge singularity is seen to be weaker for the continuum model than for

the plate model, a feature that was anticipated in the introduction to this

chapter. While such di®erences should always be kept in mind, their impli-

cations for either practical or conceptual concerns are usually of secondary

importance.

The nature of the singularity in stress at the interface edge can be

pursued somewhat further. If q(x) is proportional to x raised to some power

in an interval near the edge x = 0, then the slope of the graph of ln(q(x)=¾m)

versus ln(x=hf) is equal to that power within the interval. A plot of these
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Fig. 4.6. The solid curves show the distribution of interface normal and shear trac-
tion near a ¯lm edge for the case when the elastic properties of the two materials
are identical as determined by means of the numerical ¯nite element method. The
corresponding traction distributions based on plate theory and shown in Figure 4.5
are included as dashed curves for purposes of comparison.

logarithmic quantities is shown in Figure 4.7 for both the results of analysis

of the plate model and the ¯nite element calculation. For purposes of com-

parison, a straight dashed line with slope of ¡1
2 is also shown in the same

¯gure. It appears from the numerical results that the interface shear stress

in both cases follows an inverse square root dependence on x roughly within

the range 0:1 < x=hf < 1:0. This is useful information for the interpretation

of some delamination processes.

For all cases discussed up to this point, the load transfer length has

been estimated for cases where the substrate extends inde¯nitely far beyond

the edge of the ¯lm. What if the substrate has a boundary plane that coin-

cides with the edge of the ¯lm, as illustrated in the inset of ¯gure Figure 4.8?

The substrate will appear to be more compliant in this case than if it extends

inde¯nitely far beyond the ¯lm edge. There are few analytical techniques

available for extracting the behavior of this con¯guration for which the intro-

duction of an additional free surface is an added complication. However, the
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Fig. 4.7. The shear traction distributions shown in Figure 4.6 are graphed in a way
that reveals the strength of the assumed algebraic singularity in behavior near the
¯lm edge. The behavior seems to agree with x¡1=2 dependence within the internal
0:1hf < x < hf .

con¯guration can again be analyzed by means of the ¯nite element method,

and results for load transfer length are shown in Figure 4.8. It is evident

that this length is substantially larger in the case when the substrate edge

coincides with the ¯lm edge than in the case when the substrate extends far

beyond the free ¯lm edge, re°ecting the increased compliance of the sub-

strate due to its free surface. Finally, it is noted that the state of stress along

the ¯lm-substrate interface in the immediate vicinity of the ¯lm edge is ex-

tremely complicated for the case of di®ering elastic properties, in general,

due to oscillations in the radial variation of stress. However, this e®ect is

quite localized and has little in°uence on the computed load transfer lengths

illustrated.

4.2 Fracture mechanics concepts

The preceding section dealt with the issue of load transfer between a ¯lm

and its substrate, particularly with the stress concentration in the vicinity of

a free edge in a ¯lm{substrate system. An important outcome of the study
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Fig. 4.8. The dependence of load transfer length near the free edge of a ¯lm with
a remote biaxial mismatch stress ¾m on the modulus ratio of the two materials.
The load transfer length is de¯ned as the distance from the free edge of the ¯lm
at which the internal force resultant has increased to a value equal to 90% of its
remote asymptotic value of ¾mhf , and this length was determined by means of
the numerical ¯nite element method. Results are shown for the case when the
substrate extends inde¯nitely far beyond the free ¯lm edge and when the substrate
edge coincides with the ¯lm edge.

is the estimate of the size of the transition region near the edge of a thin

¯lm bonded to a substrate over which the ¯lm stress increases in magnitude

from its nominally zero value at the edge to a relatively large fraction of

its asymptotic value due to constraint of the substrate. With reference to

Figure 4.3, it is also evident that the stress and deformation ¯elds near the

¯lm edge lead to the notion of a singular ¯eld which is a concept central to

the development of linear elastic fracture mechanics. In this section, some

general background information on fracture mechanics is summarized. It

will be apparent in later sections of this chapter and in Chapter 6 that these

concepts provide basic tools for the analysis of delamination and fracture in

¯lm{substrate systems.
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4.2.1 Energy release rate and the Griffith criterion

Consider a nominally elastic material containing a crack, which may have

originated from a region of stress concentration, from a material °aw, or

from a free surface, interface or grain boundary. The stress in the material

tends to cause the crack to advance while the characteristic strength of

the material tends to resist crack growth. To describe this competition,

the energy balance approach pioneered by Gri±th (1920) is adopted. He

recognized that extension of the crack was accompanied by a change in

the total potential energy of the system, which is the sum of the elastic

strain energy plus the potential energy of any externally applied loading.

The advance of a crack also results in the creation of new material surface.

Gri±th postulated that a certain amount of work per unit area of crack

formation must be expended at a microscopic level in creating that area.

This work per unit area of cracking is assumed to be a material parameter.

In the present context, the work expended at the microscopic level is not

included in the continuum potential energy. He also hypothesized that any

particular equilibrium state of the material was a state of incipient crack

extension if the reduction in potential energy due to any small virtual crack

advance from that state was equal to the microscopic work of fracture for

the new surface area created by that crack extension. By implication, it is

understood that the crack cannot extend if the reduction in potential energy

associated with any virtual crack advance is less than the material speci¯c

fracture energy. The Gri±th argument also applies for crack shortening by

healing, a phenomenon which has been observed in very clean systems with

atomically sharp cracks (Lawn 1993).

The Gri±th criterion for crack advance circumvents the need to con-

sider the actual physical mechanism of material separation at the crack edge

in detail. It is a reliable concept provided that the size of the region over

which fracture energy is absorbed is very small compared to all other rele-

vant physical dimensions. If this is the case, the speci¯c separation energy

can be regarded as a material property, independent of geometry and applied

loading. The terms fracture energy, work of fracture, energy of separation,

and energy of fracture are used interchangeably in this discussion. Gri±th

limited consideration to cases in which the work of fracture is the actual

surface energy or energy of cohesion of the material, the cases involving the

so-called ideally brittle materials, but the concept has been broadened to

include a much wider range of materials in the development of engineering

fracture mechanics.

To give the Gri±th concept of fracture a concrete structure, which can
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serve as a framework for quantitative study of thin ¯lm systems, consider the

con¯guration of a plate with an edge crack of length a extending along its

midplane. As shown in Figure 4.9, this crack is being opened symmetrically

either by imposed forces P or by imposed displacements ±. The con¯gura-

tion is two-dimensional and the measure P is the force for unit width in the

direction normal to the ¯gure. In any particular case, the imposed quantity

will be denoted by a superposed asterisk. The material deforms under plane

strain conditions, and all forces and energies are measured per unit depth in

the ¯gure, that is, per unit distance along the crack edge. The isotropic elas-

tic material has modulus E and Poisson ratio º; the plane strain modulus is

then ¹E = E=(1¡º2). The deformation is adequately described by assuming

that each arm of the body deforms as a Kirchho® plate of length a which

is cantilevered at the crack tip. The con¯guration is commonly referred to

as the double cantilever beam specimen. The relationship between the end

force and the load point displacement is

P =
¹Eh3

4a3
±: (4.11)

The corresponding elastic energy per unit depth in each arm is

1

2
P± =

¹Eh3

8a3
±2 =

2a3

¹Eh3
P 2: (4.12)

The speci¯c fracture energy is denoted by ¡, measured as energy expended

per unit crack advance per unit distance along the crack edge. For this

con¯guration, what is the value of ±∗ necessary to bring the system to a

state of incipient fracture under displacement control?

Fig. 4.9. A schematic diagram of a double cantilever crack propagation con¯gura-
tion. The crack of length a advances under the action of the opposed forces P or
due to imposed separation ± of the load points.

For the case of imposed displacement ± = ±∗, there is no exchange

of energy between the solid and its surroundings during virtual crack ad-

vance. Hence, the total potential energy per unit depth V (a) is the elastic
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energy ¹Eh3±∗2=4a3. The reduction in potential energy per unit crack ad-

vance during an in¯nitesimal virtual crack extension, which is the quantity

to be compared to ¡ to assess the tendency for crack growth, is

G(a) = ¡ @V

@a
(a)

¯̄̄̄
δ∗ fixed

: (4.13)

This quantity, which is called the energy release rate, is of central importance

in fracture mechanics; the minus sign accounts for the fact that G is a

measure of the continuum potential energy reduction per unit crack advance

per unit depth. Imposition of the Gri±th condition G(a) = ¡, which is a

necessary condition for the onset of crack growth, implies that

±∗ = ±∗cr ´
"
4¡a4

3 ¹Eh3

#1/2
: (4.14)

This is the boundary displacement from the stress-free con¯guration which

must be imposed to each arm of the double cantilever specimen to initiate

crack growth from an initial crack length of a.
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Fig. 4.10. The variation of total potential energy and crack surface fracture energy
with crack length is illustrated qualitatively for the con¯guration depicted in Fig-
ure 4.9 for the cases of (a) imposed boundary displacement ±¤ and (b) imposed
boundary force P ¤. The results illustrate the stability of crack advance under in-
creasing displacement in case (a) and instability under increasing force in case (b).
Adapted from Freund (1990).

It is instructive to examine the variation of energy with crack length

a. As a increases, fracture energy expended increases linearly and potential

energy decreases as a−3; these variations are shown schematically in part

(a) of Figure 4.10. The sum of the potential energy and fracture energy is

stationary at the state of incipient fracture. Furthermore, it is evident that,
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if G(a) = ¡ at a certain crack length, then G(a+¢a) < ¡ for any increment

¢a of crack advance. This implies that ±∗ must be increased continually if

the crack is to be advanced. Such crack growth is called stable. In general,

stable crack growth can occur only from states for which

@G
@a

(a) ´ ¡@2V

@a2
(a) < 0; (4.15)

where the derivatives are calculated at ¯xed ±∗.
If force is imposed, rather than displacement, what is the value of

P = P ∗ necessary for incipient fracture? For this case, the potential energy

is the sum of the elastic energy (4.12) in both arms plus the total exter-

nal potential energy ¡2±P ∗ = ¡8a3P ∗2= ¹Eh2. It follows that the state of

incipient fracture, characterized by G(a) = ¡, is de¯ned by the condition

P ∗ = P ∗cr ´
"
¹Eh3¡

12a2

#1/2
: (4.16)

This is the force that must be applied to each arm of the specimen to induce

crack growth. For this case, the potential energy varies with crack length as

¡a2, and generic graphs of potential energy and fracture energy are shown

in part (b) of Figure 4.10. As in part (a) of the ¯gure, the state of incipient

fracture is de¯ned by the point at which variation of total energy, potential

energy plus fracture energy, is stationary under variations in crack length.

In contrast to the case of imposed boundary displacement, however, it is

observed that

@G
@a

(a) ´ ¡@2V

@a2
(a) > 0 (4.17)

at the state of incipient fracture for imposed boundary loading, where the

derivatives are calculated with P ∗ held ¯xed. This implies that, if G(a) = ¡

at some ¯xed P ∗, then G(a + ¢a) > ¡ for any ¢a at the same P ∗. In

other words, the state of incipient fracture is unstable; the crack cannot

grow under equilibrium conditions, and inertial or material rate e®ects are

necessarily called into play upon the onset of crack growth (Freund 1990).

It should be noted that the value of ± corresponding to the critical

force P ∗ in (4.16) is identical to (4.14); likewise, the value of P correspond-

ing to the critical displacement (4.14) is identical to (4.16). In other words,

the force{de°ection conditions in the states of incipient fracture for applied

displacement and imposed force are the same, but the states are fundamen-

tally di®erent because the former is stable while the latter is unstable. A

range of responses between these extremes can be described by imposing

displacement through compliant links attached to the body of interest, and
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such links are commonly incorporated to represent the compliance of the

loading apparatus. Very sti® links correspond to the above case of imposed

displacement while very compliant links correspond to the case of imposed

force. Further development of this issue is left as an exercise.

In summary, in order to describe fracture in the context of the Gri±th

criterion, two ingredients are essential:

{ a representation of the e®ect of loading, con¯guration and deforma-

tion characteristics of the material through the energy release rate G,
and

{ a representation of the resistance of the material to fracture through

¡.

Actual values of ¡ cannot be deduced from modeling at this level; such in-

formation can be obtained directly only through experiments or it can be

estimated on the basis of more fundamental models of the physical processes

of material separation. The experimental determination of the fracture re-

sistance of thin ¯lm and layered materials is a complex task. Di®erent

experimental methods for the determination of ¡ will be presented in later

sections of this chapter. Values of ¡ can vary widely, from about 1 J/m2 for

separation of atomic planes in brittle materials, for which the strength of the

chemical bond strength dominates the resistance to fracture, to 104 J/m2 or

more in ductile materials, for which plastic °ow and ductile tearing primar-

ily determine the energy associated with fracture. For comparison with this

energy requirement, consider the energy available in a strained ¯lm of thick-

ness hf = 1¹m, biaxial modulus Mf = 1011N/m2 and equi-biaxial elastic

mismatch strain ²m = 0:01. In such a case, the elastic energy per unit area

of interface which is available to drive separation is Mf²
2
mhf = 10 J/m2. Of

course, it is unlikely that all of this energy can be used to drive fracture.

The principal merits of the Gri±th crack growth condition are evident

from the foregoing discussion. When considering the cracking of brittle ho-

mogeneous materials, the assumption that the work of separation is a con-

stant appears to be consistent with observed material behavior. For growth

of a delamination crack along an interface between dissimilar materials, on

the other hand, the work of separation exhibits signi¯cant dependence on

particular features of the local stress state in the vicinity of the crack edge.

Therefore, even within the framework of the Gri±th criterion, it becomes

necessary at times to take into account certain features of the local crack

edge mechanical ¯eld. This matter is pursued in Section 4.2.3. Of particular

signi¯cance is the ratio of the component of shear stress to the component
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of tensile stress on the prospective crack plane ahead of the crack edge; an

appropriate measure of this ratio is de¯ned in Section 4.2.4.

4.2.2 Example: Interface toughness of a laminated composite

A laminated composite is made by bonding two thin strips of steel with a thin
¯lm of adhesive epoxy, as shown in Figure 4.11. To characterize the delamination
resistance ¡ of the epoxy-steel bond, a patch is intentionally left out in the center
section to create a crack of total length 2a. The partially bonded plates are then
pulled apart by opposed forces of magnitude P per unit width of the strips; the
load point de°ection is denoted by ±. The plane strain modulus of the steel is ¹E.
Assume that the deformation of the strips is two-dimensional and that it can be
described in the same way as the double cantilever con¯guration in Section 4.2.1.

(a) Determine the values of P and ± at which delamination will begin from initial
crack length 2a in terms of ¡ and other system parameters. Note that crack
growth consists of the motion of two crack edges.

(b) Show that a knowledge of P and ± at the onset of delamination for two
di®erent values of a, say a1 and a2, is su±cient to estimate ¡ from the
data. To make the calculation concrete, suppose that P1 = 6:74N/mm and
±1 = 1:19mm for initiation with a1 = 40mm and that P2 = 7:71N/mm and
±2 = 0:91mm for a2 = 35mm. Assume that ¹E = 200GPa and h = 0:97mm,
and obtain a numerical estimate of ¡.

Fig. 4.11. Con¯guration of bonded plates, showing force per unit width P acting
to extend the crack and load point de°ection ±. The crack is assumed to extend
symmetrically.

Solution:

(a) The relationship between ± and P at ¯xed a is ± = Pa3=2 ¹Eh3 for this
con¯guration, from elementary plate theory. The potential energy of the
system for prescribed loading, say, is V (a) = ¡P± = ¡P 2a3=2 ¹Eh3. To
satisfy the Gri±th criterion G = ¡ at each crack edge, it is required that

2G = ¡ @V

@a
(a)

¯̄̄̄
P

=
3P 2a2

2 ¹Eh3
= 2¡ (4.18)
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where the factor 2 appears with G and ¡ to account for both crack edges. It
follows immediately that

P =

∙
4¡ ¹Eh3

3a2

¸1=2
; ± = a2

∙
¡

3 ¹Eh3

¸1=2
(4.19)

at the onset of growth. These two equations together de¯ne a path in the
plane of P versus ±, usually called the fracture resistance locus or the tough-
ness locus; the path is parametric in crack length a, and is illustrated in
Figure 4.12.
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Fig. 4.12. Plane of load P versus de°ection ± including the fracture resistance locus
for constant ¡. The value of ¡ can be estimated from fracture initation data for
two values of initial crack length 2a. Adapted from Suresh (1998).

(b) The relationship between load and de°ection is linear up to the point of
fracture initiation for initial crack size 2a1, as shown in Figure 4.12, and
similarly for the case with initial crack size 2a2 < 2a1. In the latter case,
suppose that ± is further increased beyond ±2 until it equals ±1. Crack
growth takes place with G = ¡ during this additional increment in load
point displacement and the P versus ± history follows the fracture resistance
locus. The area OA1B under the curve in Figure 4.12 is the external work
done in bringing this sample to the state of incipient fracture at crack length
2a1. The area OA2A1B under the second curve is the external work done
to bring this sample to the same state but from initial crack size 2a2. The
di®erence between these two work measures is precisely the energy consumed
in advancing the crack ends from total crack length 2a2 to 2a1, or

Area OA2A1 ¡Area OA1B = 2(a1 ¡ a2)¡ (4.20)
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Approximation of the area with a triangle leads to the estimate ¡ ¼ 293 J/m2.
(For comparison, the given \data" for values of (P1; ±1) and (P2; ±2) were
generated with ¡ = 300 J/m2.)

4.2.3 Crack edge stress fields

Descriptions of fracture in materials can be formulated using approaches

other than the Gri±th energy criterion. The most signi¯cant of these is the

one based on the concept of elastic stress intensity factor. It was recognized

by Irwin (1957) that the stress ¯eld in the vicinity of the tip or edge of a

sharp crack in a nominally elastic solid has universal spatial dependence,

in the sense that it is independent of geometry or the nature of loading,

and that the magnitudes of the stress components are asymptomatically

unbounded as the point of observation approaches the edge of the crack.

The scalar amplitude of this universal singular elastic ¯eld is the stress

intensity factor, and Irwin's fracture condition is the postulate that the state

of incipient fracture is reached when the stress intensity factor is increased

to a material-speci¯c value termed the fracture toughness.

The stress intensity factor concept is usually discussed in the context

of two-dimensional plane strain deformation ¯elds. However, the same char-

acteristics are present near the edge of a three-dimensional crack. To see

that this is so, consider a point along the edge at which the curve de¯ning the

crack edge has a continuously turning tangent with distance along the edge

and which is not on a material boundary other than a crack surface. Then

the stress ¯eld in any plane that is normal to the crack edge at such a point

has the same singular behavior and same spatial dependence as is demon-

strated under two-dimensional plane strain conditions. The reason for this

outcome is that, very near the crack edge, spatial gradients of ¯elds in the

direction parallel to the crack edge tangent are negligibly small compared

to the gradients in directions normal to the edge.

Cases for which the crack faces move apart symmetrically with respect

to the crack plane without relative sliding are termed mode I or opening

mode deformations. The application of a tensile load in a direction normal

to the plane of a crack in an isotropic material normally results in mode

I deformation. Cases for which the crack faces slide with respect to each

other in the direction normal to the crack edge without relative opening are

termed mode II or in-plane shearing mode deformations. Finally, cases for

which the crack faces slide with respect to each other in the direction parallel

to the crack edge without a relative opening are termed mode III or out-
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of-plane shearing mode deformations. Although mode III fracture can be a

signi¯cant factor in situations of both scienti¯c and technological relevance,

attention here is limited primarily to the in-plane deformation modes.

�

1

�
� � � � - 	 
 � � � �

Fig. 4.13. Region near the edge of a crack in which the local ¯eld can be described
in terms of a two-dimensional stress intensity factor ¯eld.

Consider a cylindrical coordinate system centered at the edge or tip

of a crack whereby the location of any material point in the cracked body

can be identi¯ed with its radial distance r from the crack tip and anglular

position µ, measured in the counterclockwise sense about the y¡axis that

completes the right-handed rectangular coordinate system, with respect to

the extension of the crack plane; see Figure 4.13. In this system, the crack

faces are at µ = §¼ and µ = 0 is the plane along which the crack extends.

The stress ¯eld at the edge of a crack in a homogeneous and isotropic elastic

solid deformed in mode I under plane strain conditions is

¾xx =
KIp
2¼r

§Ixx(µ) + ¾oxx + o(1); (4.21)

as r ! 0, where

§Ixx(µ) = cos 12µ
h
1¡ sin 1

2µ sin
3
2µ

i
; (4.22)

¾oxx is a non-singular stress term, commonly called the T -stress, which need

not vanish at the crack tip; the higher order terms vanish as r ! 0. The non-

singular stress term can have a signi¯cant e®ect on the directional stability

of crack growth. The other mode I stress components have the similar

representations

¾xz =
KIp
2¼r

§Ixz + o(1); §Ixz(µ) = cos 12µ sin
1
2µ cos

3
2µ;

(4.23)

¾zz =
KIp
2¼r

§Izz + o(1); §Izz(µ) = sin 1
2µ cos

1
2µ cos

3
2µ;



4.2 Fracture mechanics concepts 263

except that there is no counterpart to ¾oxx for traction free crack faces. In

(4.21) and (4.24), the scalar amplitude of the leading term of the asymptotic

expansion is the mode I elastic stress intensity factor KI, which is de¯ned

formally as

KI = lim
r→0

p
2¼r ¾zz(r; 0): (4.24)

Similarly, the crack edge singular ¯elds for mode II loading are given by

¾xx =
KIIp
2¼r

§IIxx; §IIxx(µ) = ¡ sin 1
2µ

h
2 + cos 12µ cos

3
2µ

i
;

¾xz =
KIIp
2¼r

§IIxz; §IIxz(µ) = cos 12µ
h
1¡ sin 1

2µ sin
3
2µ

i
; (4.25)

¾zz =
KIIp
2¼r

§IIzz; §IIzz(µ) = cos 12µ
h
1¡ sin 1

2µ sin
3
2µ

i
;

and the mode II elastic stress intensity factor is de¯ned as

KII = lim
r→0

p
2¼r ¾xz(r; 0): (4.26)

The concept of the stress intensity factor, which provides a unique

measure of the amplitude of the stress singularity at the edge of a sharp

crack, was developed by assuming linear elastic material behavior. Obvi-

ously, real engineering materials undergo inelastic deformation or damage

in the highly stressed region of the crack edge. Examples include the de-

velopment a zone of plastic yielding surrounding the crack edge in a ductile

metal, or a zone of grain boundary microcracking in a polycrystalline ce-

ramic. As long as the size of this inelastic deformation zone, commonly

called the `plastic zone' or the `process zone', is small in some sense com-

pared to the length of the crack, the size of the uncracked ligament directly

ahead of the crack edge or any other characterizing dimension, the general

notion of small scale yielding can be invoked (Rice 1968a). According to

this concept, if the size of the inelastic zone is small compared to any other

dimensions of the con¯guration, then the elastic ¯eld surrounding the in-

elastic zone is still the universal crack tip ¯eld which is characterized by the

stress intensity factor. In this sense, the stress intensity factor provides a

one-parameter representation of the loading imposed on the inelastic zone

within which material separation occurs. As a result, a fracture criterion

based on attainment of a critical value of stress intensity factor for fracture

initiation or sustained crack growth is a credible postulate for understanding

fracture of materials and, due to its simplicity, has great appeal. In thin

¯lm systems, it is sometimes di±cult to justify the use of the small-scale
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yielding hypothesis in any strict sense due to the small geometrical dimen-

sions involved. In such cases, reliance on the stress intensity factor concept

becomes a more subjective matter.

The onset of crack advance in a homogeneous material under monotonic

loading conditions is characterized by a critical value of the stress intensity

factor which may depend on the mode of loading, test temperature and

loading rate. The value of the critical stress intensity factor measured under

quasi-static plane strain mode I loading conditions is commonly called the

fracture toughness KIc. A fracture test specimen of a material susceptible

to plastic deformation in the crack edge region is considered to conform to a

state of plane strain deformation in the vicinity of the crack edge when the

thickness of the test specimen is typically 25 times the maximum extent of

the plastic zone at the center of the specimen. For a ¯xed test environment

and loading rate, the fracture initiation toughness KIc is a material prop-

erty, and is independent of specimen con¯guration provided that conditions

of mode I loading are maintained. Similarly, the plane strain fracture initi-

ation toughness in pure mode II loading is termed KIIc, although advance

of a crack in a homogeneous material under purely mode II conditions has

not been observed.

An important relationship between stress intensity factors and the

energy release rate for planar crack growth under equilibrium conditions

was established by Irwin (1960) as

G =
1¡ º2

E

³
K2
I +K2

II

´
=

1
¹E

³
K2
I +K2

II

´
: (4.27)

This relationship also provides a connection between the mode I fracture

toughness value KIc for a homogeneous material and the critical value of the

energy release rate ¡ representing material resistance to fracture according

to the Gri±th criterion as described in Section 4.2.1. Generalization of

the expression for G when all three crack deformation modes are active is

straightforward (Rice 1968a).

4.2.4 Phase angle of the local stress state

For any combination of in-plane crack deformation modes, the relative amounts

of mode I and mode II loading on the material in the crack edge region is

represented by the phase angle Ã of the local stress state; it is de¯ned in
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terms of the stress state as

Ã = lim
r→0

½
arctan

∙
¾xz(r; 0)

¾zz(r; 0)

¸¾
= arctan

∙
KII

KI

¸
: (4.28)

The branch of the arctangent function in (4.28) assumed here is such that

¡¼ < Ã ∙ ¼. Values of Ã in the range ¡¼ < Ã < ¡¼=2 or ¼=2 < Ã <

¼, which correspond to situations with KI < 0, are troublesome from the

physical point of view. A negative mode I stress intensity factor implies

that the normal traction on the crack plane ahead of the crack the edge is

compressive, and that behind the crack front the crack faces tend to displace

toward each other. In the usual idealization of an elastic crack, the crack

faces both coincide with the same mathematical surface when the solid is

free of stress. If the crack faces tend to displace toward each other from

such a con¯guration, they tend to interpenetrate, which must be ruled out

on physical grounds. The concept of a negative stress intensity factor is often

useful in constructing solutions for crack problems by linear superposition.

However, negative values of the total mode I stress intensity factor are ruled

out on physical grounds, which implies that the phase angle must be in the

range ¡¼=2 ∙ Ã ∙ ¼=2. With KI = 0, the normal stress on the crack plane

near the edge can still be compressive, although not singular. This implies

that the crack faces will interact in some way, possibly through friction; the

possibility of such interaction should be considered in any particular cases

for which the assumption of traction free crack faces leads to the conclusion

that KI ∙ 0 (Stringfellow and Freund 1993).

4.2.5 Driving force for interface delamination

If a crack lies in the interface between two materials, with the crack edge

separating a part of the interface over which the materials are bonded from

a part over which the bond has been broken, then the determination of

local ¯elds becomes a complex problem. Dundurs (1969) showed that the

solutions to problems in plane strain elastostatics which involve two joined

homogeneous and isotropic materials depend on the four elastic constants

involved in a very special way. The elastic ¯elds depend on the material
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Table 4.1. Values of the Dundurs parameters D1 and D2 for some common

substrate and film materials. The entry ‘DLC’ in this table refers to

diamond-like carbon.

Substrate Film Es (GPa) ºs Ef (GPa) ºf D1 D2

Si (100) Al 130 0.28 70 0.35 {0.28 {0.04
Si (100) Cu 130 0.28 130 0.34 0.02 0.03
Si (100) W 130 0.28 85 0.30 {0.20 {0.04
Al2O3 Al 372 0.25 70 0.35 {0.67 {0.14
Al2O3 Au 372 0.25 78 0.44 {0.61 {0.03
Al2O3 Mo 372 0.25 324 0.31 {0.05 0.01
Al2O3 Ni 372 0.25 200 0.31 {0.28 {0.05
SiO2 Cu 71 0.16 130 0.34 0.34 0.14
Steel DLC 210 0.30 80.8 0.13 {0.47 {0.15

PMMA Al 3.4 0.30 70 0.35 0.91 0.23

constants only through two independent material parameters de¯ned by

D1 =
¹Ef ¡ ¹Es
¹Ef + ¹Es

D2 =
1

4

"
¹Ef(1¡ ºf)(1¡ 2ºs)¡ ¹Es(1¡ ºs)(1¡ 2ºf)
¹Ef(1¡ ºf)(1¡ 2ºs) + ¹Es(1¡ ºs)(1¡ 2ºf)

# (4.29)

where ¹Ef and ¹Es are the plane strain moduli of the ¯lm and substrate,

respectively, and ºf and ºs are the corresponding Poisson ratios. The para-

meters D1 and D2 were introduced earlier in (3.98). The labels `¯lm' and

`substrate' are completely arbitrary in this context, and they can be un-

derstood to refer to any joined materials no matter what the con¯guration

might be. The parameter D1 is usually understood to indicate mismatch in

extensional sti®ness between the two materials, while D2 indicates mismatch

in volumetric sti®ness. Note that D1 = 0 and D2 = 0 when the materials

have to same elastic properties. Since the plane strain moduli can only be

positive numbers, the parameter D1 must be in the range ¡1 ∙ D1 ∙ 1.

For any ¯xed value of D1 and Poisson ratios in the range 0 ∙ ºf ; ºs ∙ 1
2 ,

the parameter D2 must be in the range ¡1
4(1 ¡ D1) ∙ D2 ∙ 1

4(1 + D1).

Values of the Dundurs parameters for some common substrate-¯lm material

combinations are listed in Table 4.1.

When a crack edge lies within either one of the joined materials, the
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near-edge stress ¯eld is still given by the expressions in Section 4.2.3, and

there is no particular advantage in restricting the values of D1 and D2

in any way. When a crack lies in the interface, however, setting D2 =

0 results in major simpli¯cation in the characterization of the crack edge

¯eld. As noted in connection with Figure 3.12, any particular value of D1

with D2 = 0 can be achieved only for certain combinations of ºs and ºf .

For many of the material combinations shown in Table 4.1, D2 is indeed

much smaller than D1 and, therefore, this requirement is not an unrealistic

restriction. Furthermore, without this restriction, the stress intensity factors

for an interface crack are complex-valued, in general. Their interpretation

becomes somewhat ambiguous and the utility of the stress intensity factor

concept is diminished signi¯cantly. It is noted that for Al, Cu, W or Au

¯lms on Si substrates, which are materials of interest for applications in

microelectronics, D2 can be sent equal to zero for most practical purposes.

With D2 = 0, it is still possible to draw useful conclusions concerning

the e®ect of modulus mismatch through dependence of results on D1, and

this is the situation assumed here. In this case, the de¯nitions of stress

intensity factor (4.24) and (4.26) and crack edge phase angle (4.28) given for

a crack edge in a homogeneous material are retained for an interface crack.

The Irwin relationship between stress intensity factors and the corresponding

energy release rate for planar crack growth, which is given by (4.27) for a

crack edge in homogeneous material, becomes

G =
¹Ef + ¹Es
2 ¹Ef ¹Es

³
K2
I +K2

II

´
=

1
¹Es(1 +D1)

³
K2
I +K2

II

´
(4.30)

for a planar interface crack with D2 = 0. The denominator ¹Es(1 +D1) has

the alternate form ¹Ef(1¡D1). The remarks following (4.28) about physical

constraints on achieving states with KI < 0 and the consequent implications

for the admissibility of certain ranges of phase angle Ã apply equally well to

the case of an interface crack.

As noted above, the work of separation that appears in the Gri±th

crack growth condition may depend on the phase angle of the local crack

edge stress state. Whenever this e®ect is expected to be signi¯cant, as in

the case of crack growth along a bi-material interface, the dependence is

emphasized by writing the Gri±th condition in the form G = ¡(Ã). An

example that plays a central role in delamination buckling is illustrated in

(5.20). For a crack in a homogeneous material, where the fracture path is

not con¯ned to lie in an interface, crack growth is usually observed to occur

in a direction for which Ã = 0. In other words, a crack in a homogeneous
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material selects a path along which it responds to pure tension across the

prospective fracture plane.

In many particular cases, there is a direct correspondence between

the Irwin and Gri±th criteria, as was noted above an connection with the

result in (4.27). However, the latter criterion has the distinct advantage

that the energy release rate can often be determined, or at least estimated,

without the need for a complete solution of the boundary value problem for

the stress ¯eld in the body. For this reason, it is selected as the basis for the

present discussion. Many of its special features and numerous extensions

of the basic concept will become evident in the sections that follow, in the

course of discussing various issues concerned with delamination and fracture

in thin ¯lm con¯gurations.

4.3 Work of fracture

The Gri±th criterion, described in Section 4.2.1, was developed as a basis

for considering the onset of crack growth and/or fracture advance in a ho-

mogeneous material by relating the potential energy release rate G to the

microscopic work ¡ required to create the new fracture surfaces. In its orig-

inal conception, the criterion was used as a basis for describing the cracking

behavior of glass, and the speci¯c work of fracture was viewed naturally in

this case as being twice the surface energy density of the material. It was

expected that the criterion could not be applied in any situation in which

the material exhibited inelastic deformation other than the formation of the

crack.

An important extension was proposed by Irwin (1948) on the basis of

a study of cleavage crack growth in steels, a process invariably accompanied

by some amount of plastic deformation in the material immediately adjacent

to the fracture path. He reasoned that the plastic work dissipation per unit

area of interface was also a characteristic of the separation process, so that

the work of fracture could be taken as the sum of the surface energy density

plus this plastic work dissipation per unit area of crack advance, thus pre-

serving the fundamental structure of the postulated energy criterion. The

expectation was borne out by experimental observations, thereby expand-

ing the range of applicability of the energy criterion signi¯cantly. The same

extension of the Gri±th theory was also proposed by Orowan (1955). It

does not matter exactly how the added work is dissipated, as long as it is

characteristic of the separation process. The physical mechanism of sepa-

ration is determined, to a large extent, by the nature of the material, but

it can also depend on temperature, chemical environment, rate of loading,
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rate of cracking and possibly other factors. For the growth of a crack along

a bimaterial interface between two materials, the process can be viewed in

more or less the same way. However, the details of material separation are

complicated by the interaction of two materials which may themselves have

di®erent fracture characteristics.

4.3.1 Characterization of interface separation behavior

In its current state of development, the study of interface fracture has not

yet led to a level of understanding of fundamental processes that can pro-

vide a basis for detailed quantitative description. Indeed, the phenomena

encountered are so diverse in type and complexity so that this will never be

the case, except perhaps for a few critical material systems. The simplest

case involves interface separation as a direct analog of the situation origi-

nally considered by Gri±th. For example, if crystals of a `¯lm' material and

a `substrate' material are joined along an interface, then that interface has

a characteristic free energy °fs, as was noted in Section 1.3.3. If the crystals

are separated, then the free surface of each has a characteristic surface en-

ergy density, °f for the ¯lm material and °s for the substrate material. If the

separation of the interface occurs by growth of an interface crack without

inelastic deformation in either of the materials involved, then the work of

fracture is

¡0 = °f + °s ¡ °fs : (4.31)

If the two materials are identical, then °fs = 0 and °f = °s, so the orig-

inal picture conceived by Gri±th is recovered. The capability to describe

interface fracture quantitatively for a broader range of phenomena and ma-

terial combinations remains a goal of scienti¯c study. An approach toward

describing processes for a fairly wide class of materials that has been found

e®ective is to retain the phenomenological character of fracture mechanics

but to add models of behavior at one or two levels of observation, or size

scales, between the applied driving force G and the physical process of mate-

rial separation. The salient features of this point of view are summarized in

this section; the diagrams in Figure 4.14 depict the main features. A similar

point of view was found to apply in the case of separation of a cross{linked

rubber adhesive from a relatively sti® polymeric substrate (Andrews and

Kinloch 1973).

A common representation of the behavior implied by (4.31) within a

continuum framework is that of separation of adjacent planes of otherwise

elastic materials, with that separation being resisted by a cohesive traction
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Fig. 4.14. A hierarchical point of view of interface fracture advance, whereby the
complexities of material separation are lumped into a representative phenomenolog-
ical cohesive rule that is representative of the system; its essential features are the
work per unit area ¡0 required for separation of the surfaces and the maximum co-
hesive traction ¾¤ that arises in the process. The cohesive traction must be imposed
by the surrounding ¯lm and substrate materials, viewed as elastic-plastic continua.
The tendency for signi¯cant plastic deformation in either material is determined
by the ratio of ¾¤ to the yield stress of that material. The driving force necessary
to e®ect separation is characterized by an energy release rate G. To sustain crack
growth, its value must be large enough to overcome ¡0 plus plastic dissipation per
unit area ¡p. Adapted from Hutchinson and Evans (2000).

acting across the gap between these planes { the so-called cohesive zone

models of material behavior. The magnitude of the cohesive traction depends

locally on the amount of interface separation ±. In the model developed

by Barenblatt (1959), the traction represents atomic interaction, and its

magnitude falls to zero beyond some separation distance, say ±cr, on the

order of atomic spacing in the materials involved. If the separation of the

planes in mode I opening is denoted by ±, which is a function of position on

the fracture plane, then the work of fracture is the work done in overcoming

this resisting traction or

¡0 =

Z δcr

0
¾(±) d± : (4.32)

When viewed from a size scale larger than atomic dimensions, the ac-
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tual shape of the dependence of ¾ on ± is of only secondary importance.

Instead, only some general features of this dependence have signi¯cance.

For example, the essence of behavior is captured by the area ¡0 under the

traction-displacement curve and the separation displacement ±cr or, equiv-

alently, by the value of ¡0 and the maximum value of traction ¾, say ¾∗,
within the range 0 < ± < ±cr. The idea that the physical process of material

separation can be captured by a cohesive zone is then extended to represent

separation mechanisms other than atomic adhesion or cohesion. For exam-

ple, such a cohesive rule could represent the ductile growth of microvoids to

coalescence, the growth of microcracks to eventual linkup, or the rupture of

grains or ligaments bridging the opening behind the advancing crack edge.

In each case, it is assumed that the behavior within such a planar layer can

be represented in terms of the relationship between a traction ¾ applied on

the plane of separation by the surrounding material and an average open-

ing of the faces of the surrounding material across that plane. The layer

is assumed to be characterized by two parameters, the work per unit area

¡0 that must be supplied to reduce the resisting traction to zero and the

maximum resisting stress ¾∗ that is encountered in doing so. The region

of the plane of an interface fracture in which separation is described in this

way has been termed the embedded process zone by Hutchinson and Evans

(2000).

Although the embedded process zone has been introduced in terms of

symmetric or mode I opening of an interface crack, there is no fundamen-

tal impediment to extending the description to including combined tensile

and shear cohesive traction resisting the opening and relative sliding of the

separating surfaces (Needleman 1990). The net work done per unit area in

overcoming opening resistance can be associated with such interaction in

a number of ways. Likewise, the ratio of a maximum shear traction to a

maximum tensile traction is a measure of the mode mixity of the separa-

tion process, as represented by the phase angle in Section 4.2.4. As usual

in material characterization, the identi¯cation of a suitable description of

the embedded process zone for any particular material system must be pur-

sued synergistically by means of conceptual postulates and corresponding

experimental con¯rmation or refutation.

Advancing to a larger size scale, the process zone described above is

imagined to be embedded within a region of plastically deforming material,

for which the strain magnitudes are su±ciently small to admit a continuum

plasticity description for the region. This level is depicted in the left central

portion of Figure 4.14. The size of the plastic zone, Rf in the ¯lm or Rs in

the substrate, is determined largely by the magnitude of the yield stress ¾Y
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compared to ¾∗, the maximum cohesive stress needed to drive the separation

process, and by the strain hardening properties of the plastically deforming

material. This size tends to increase with increasing values of the ratio

¾∗=¾Y and with decreasing values of the strain hardening rate. In many

cases of practical interest, either Rf or Rs will be equal to zero.

The de¯ning characteristics of plastic deformation are that the re-

sponse at a material point is dependent on the strain history of the point

and that stress{strain response is irreversible. As a crack begins to advance

along an interface between materials, one or both of which are elastic-plastic,

a zone of plastically deforming material begins to take shape, with the ex-

tent of plastic deformation depending on the amount of growth. Once the

crack has advanced a distance on the order of the thicker of the plastically

deforming zones, the nature of the plastically deforming regions approaches

a steady state condition, as suggested in Figure 4.14. Thereafter, each ac-

tive plastic zone leaves behind a layer of plastically deformed but partially

unloaded material in its wake. Energy is dissipated through plastic °ow

in the active plastic zone. If the amount of work dissipated in this way,

measured per unit area of the fracture formed, is denoted by ¡p then the

total amount of work per unit area of fracture surface that must be pro-

vided to sustain crack growth is the sum of work absorbed in the process

zone plus the energy dissipated through plastic deformation, that is, the

sum ¡0 + ¡p. If the thicknesses of the plastically deformed layers accom-

panying crack growth are small compared to ¯lm thickness or other overall

dimensions of the sample, then the value of ¡p+¡0 retains the character of

¡ as a material parameter in the Gri±th criterion. On the other hand, if the

size of either of the plastic regions approaches the ¯lm thickness, then ¡p
will depend on sample dimensions. However, ¡0 may retain its character as

being independent of material con¯guration in either case. Thus, measure-

ment of ¡ for a particular delamination process, along with an estimate of

¡p on the basis of continuum plasticity modeling, still provides an estimate

of ¡0 for the process.

4.3.2 Effects of processing and interface chemistry

The methods used to fabricate multilayered structures, the level of conta-

mination introduced at the interface during processing, the composition of

the layers and the interfaces between them, and the chemical and moisture

content of the surrounding environment can have a signi¯cant e®ect on in-

terface fracture resistance. From phenomenological observations of interface
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Fig. 4.15. Di®erential interference contrast optical micrograph of the interface be-
tween a 125 ¹m thick Ni{20 at.% Cr ¯lm and a 2.5 mm thick, transparent sapphire
layer. This is one of the two similar interfaces in a three-layer structure where
the thin metal ¯lm was sandwiched symmetrically between two sapphire layers;
the interface was produced by liquid phase bonding. The metal ¯lm contained a
sulfur concentration of up to 200 ppm. The contamination of the interface by S,
along with processing by liquid phase bonding, resulted in local debonds which are
revealed as the lighter regions. Note that the debonds encompass grain boundaries,
and the presence of these debonds leads to an interface fracture energy of only 2{7
J/m2. Reproduced with permission from Gaudette et al. (2000).

fracture mechanisms, some general trends can be identi¯ed and these are

summarized in this section.

When contaminants and segregants weaken the interface, islands of

delaminated regions typically form ahead of an advancing interface crack.

The coalescence of such weak patches generates crack advance along the

interface during which the resistance to crack growth along the interface ¡

remains essentially unchanged from the initiation of growth onward. The

dependence of interface fracture energy on crack growth is similar to that

shown by the dashed line in the diagram in the upper right portion of Fig-

ure 4.14. In e®ect, the interface is too weak to generate a stress ¾∗ su±cient

to induce plastic deformation in the ¯lm or substrate, even if either or both

of these materials are typically susceptible to plastic °ow. Figure 4.15 shows

an example of such a failure mechanism at the interface between a Ni{20

at.% Cr alloy and a transparent ®{alumina (sapphire) crystal which was

produced by liquid phase bonding.

When both the ¯lm and substrate materials are resistant to plastic
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determination, the toughness of a sharp interface between two dissimilar

materials can be very low, typically on the order of 1 J/m2. In such cases,

brittle crack growth is likely to occur along the interface with the tip of

the crack remaining atomically sharp during extension. The failure mecha-

nism in this case may involve the atomic decohesion process implied by the

fracture energy expression in (4.31).

Reaction products, segregants and contaminants present along inter-

faces can signi¯cantly diminish the resistance to interface fracture. Along

interfaces between Ti and Al2O3, for example, contaminants lead to the

formation of intermetallic phases. The segregation of C is known to be a

primary factor in the embrittlement of interfaces between Al2O3 and Au

and between Al2O3 and Ni, whereas S segregation reduces the toughness

of interfaces between Al2O3 and Ni. Such interface embritllement is also

exacerbated by stress corrosion, particularly that arising from moisture in

the environment. When interfaces are produced without contaminants and

reaction products, high fracture toughness values are realized even when

the metallic layer side of the interface is non-epitaxial, highly incoherent

and polycrystalline. Such `clean' interfaces can be produced by employing

one of the following two processing strategies:

{ Alloy additions are made to the metallic layer side of the interface

to `getter' the contaminants, such as C or OH−, by forming reaction

products or precipitates and facilitatiing unexpurgaed metal{oxide

bonding. For example, the interface between pure Ni and Al2O3 has

a low fracture energy, typically 10 J/m2, due in part to its suscepti-

bility to moisture-induced stress corrosion. However, experiments by

Gaudette et al. (1997) reveal that when 20 at.% Cr is added to Ni,

Cr-carbides form near the interface thereby gettering C, and that the

resulting interface between the Ni{Cr alloy and Al2O3, which cannot

be fractured, has a fracture energy ¡ well in excess of 100 J/m2. Fig-

ure 4.16 shows an example of a crack along such an interface which

accommodates external loading by blunting. In this ¯gure, the resid-

ual crack opening ± upon complete unloading from a tensile stress is as

much as 0.3 ¹m. Given the Ni{Cr alloy yield stress of ¾Y = 330 MPa,

this blunting is indicative of the fracture energy ¡ ¼ 100 J/m2.

{ Excluding contamination by adapting well controlled processing meth-

ods also facilitates the production of high toughness interfaces. Con-

sider as an example the interface between °-Ni(Cr) and ®-Al2O3.

When this interface is produced by solid-state di®usion bonding, the
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Fig. 4.16. Blunting of a crack along an interface between Ni and Al2O3 which is
toughened by an order of magnitude by the addition of 20 at.% Cr. Plastic °ow
in the metal causes the interface crack to blunt. Reproduced with permission from
Gaudette et al. (1997).

segregation of excess S to the interface is suppressed; experiments by

Gaudette et al. (2000) indicate that the resulting `clean' interface has

a very high fracture energy, in excess of 100 J/m2. If, on the other

hand, the interface bond between °-Ni(Cr) and ®-Al2O3 is produced

through a liquid phase at a temperature above the eutectic where

excess S is released to the interface region, very low fracture energies

in the range 2{7 J/m2 result.

The interface fracture energy for a given material system is a strong

function of the environment. While moist air embrittles the interface in

systems such as Ni{alumina, possibly due to the combined e®ects of C seg-

regation at the interface and reaction with water in the environment, resis-

tance to fracture can be signi¯cantly enhanced in dry environments such as

nitrogen. Figure 4.17 shows an example of a marked increase in the frac-

ture energy of a pure Ni{alumina interface from approximately 10 J/m2 to

in excess of 100 J/m2 when the fracture test environment is switched from

moist air (approximately 50-70% relative humidity) to dry N2. Table 4.2

provides a summary of measured interface fracture energies for a variety of

substrates, ¯lms and test environments.
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Fig. 4.17. Low interface fracture energy, ¡ ¼ 10 J/m2, of a pure Ni{Al2O3 interface
in ambient air. Upon switching from moist air to dry nitrogen, the interface fracture
energy rises to a value in excess of 100 J/m2. Adapted from StÄolken and Evans
(1998).

4.3.3 Effect of local phase angle on fracture energy

In the discussion of interface fracture in Section 4.2.5, it was recognized

that an interface fracture energy alone may not be su±cient to characterize

the delamination resistance of an interface, and that the level of resistance

could depend on the relative magnitude of shear traction to normal traction

acting on the interface ahead of the delamination. This stress ratio can be

represented by the phase angle Ã introduced in Section 4.2.4. Early studies

of the in°uence of phase angle on fracture energy were reported by Trantina

(1972), Anderson et al. (1974) and Mulville et al. (1978) for adhesively

bonded interfaces between aluminum and epoxy. The results of these studies,

as well as those of subsequent experimental studies involving other model

interfaces (Cao and Evans (1989); Charalambides et al. (1989); Wang and

Suo (1990) and Thouless (1990)), implied an apparent increase in work of

interface separation with increasing ratio of shear traction to tensile traction

on the interface. These investigations required adaptation of a variety of

specimen con¯gurations and testing methodologies from traditional fracture

mechanics for measuring interface fracture resistance; some of these methods
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Table 4.2. Values of interface fracture toughness at room temperature.

Substratea Film Γ (J/m2) Comment

Al2O3 Al 1 interface contaminated with C;
Al film covered with a Ta superlayer.(1)

>100 tough interface; crack blunting.(2, 3)

Au 2 interface contaminated with C.(4)

10 clean interface; moist air test(5, 6)

250 tested in dry air(4)

Ni 5—8 interface contaminated with S.(7)

10—40 tested in moist air.(7, 8)

> 200 dry environment; crack blunting.(8)

Ni(Cr) > 300 moist air test; crack blunting.(9)

Mo ∼ 2 generally brittle interface.(10)

Nb 1—20 tested in moist air.(10, 11)

Cu 120—250 tested in moist air(12)

Al—Cu 5.6 tested with a Ta superlayer(1)

Ta2N 0.5 deposited layer.(13)

Si W 5.5—9.0 substrate covered with thin SiO2 layer.(14)

Al—Cu 8 tested with W superlayer.(15)

SiO2 Cu 2 tested in moist air.(16)

20 interface coated with Cr.(10)

Cu(Cr) 10 tested in moist air.(16)

TiN 10.4±1.3 tested in moist air.(17)

Steel DLC > 100 interface coated with Cr.(10)

Fused untreated
silica epoxy 2.4 moist air test.(18)

Soda-lime untreated
glass epoxy 2.0 moist air test.(18)

a Data sources where further details on experiments and materials can be found: (1) J. A.
Schneider et al., Mater. Res. Soc. Symposium 522, p. 347 (1998). (2) J. M. McNaney et al.,
Acta Mater. 44, p. 4713 (1996). (3) B. J. Dalgleish et al., Acta Metall. Mater. 37, p. 1923
(1989). (4) D. M. Lipkin et al., Acta Mater. 37, p. 4835 (1998). (5) I. Reimanis et al., Acta
Metall. Mater. 39, p. 3133 (1991). (6) M. Turner and A. G. Evans, Acta Mater. 44, p. 863
(1996). (7) D. Bonnell and J. Kiely, Phys. Status Solidi 166, p. 7 (1998). (8) J. S. Stölken and
A. G. Evans, Acta Mater. 66, p. 5109 (1998). (9) F. A. Gaudette et al., Acta Mater. 45, p.
3503 (1997). (10) A. G. Evans et al., Acta Mater. 47, p. 4093 (1999). (11) H. Ji et al., Eng.
Fract. Mech. 61, p. 163 (1998). (12) I. E. Reimanis et al., J. Amer. Ceram. Soc. 80, p. 424
(1997).(13) N. R. Moody et al., Acta Mater. 46, p. 585 (1998). (14) M. D. Kriese et al., J.
Mater. Res. 14, p. 3019 (1999). (15) A. A. Volinksy, Ph.D. thesis, University of Minnesota,
Minneapolis (2000). (16) A. Bagchi and A. G. Evans, Interface Sci. 3, p. 169 (1996). (17). R.
H. Dauskardt et al., Eng. Fract. Mech. 61, p. 141 (1998). (18). J. E. Ritter et al., J. Mater.
Sci. 33, p. 4581 (1998).

are now widely used in thin ¯lm studies and these are described in detail in

Section 4.5.
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Liechti and Chai (1992) performed systematic experiments to deter-

mine the fracture toughness of glass{epoxy interfaces for local stress state

phase angle Ã in the range ¡60◦ < Ã < 90◦. They employed an edge-cracked

bimaterial specimen made by bonding epoxy and glass layers, each of thick-

ness 12.7mm; the edge crack was introduced by inserting a razor blade along

the interface and wedging it open over a length of 75mm. The specimen was

loaded in a specially built biaxial loading device which imposed relative dis-

placement of the clamped top and bottom surfaces of the specimen, thereby

tending to induce mode I opening of the interface crack, and relative shear-

ing displacement at the outer surface of the glass parallel to the interface

tending to induce mode II sliding of the interface crack. The elastic moduli

of the epoxy and glass layers are 2.03 GPa and 68.95 GPa, respectively,

and the corresponding Poisson ratios are 0.37 and 0.2, respectively. The

implied values of the Dundurs parameters for this material system are D1

= {0.937 and D2 = {0.188. Liechti and Chai (1992) de¯ned the local stress

state phase angle as the arctangent of the ratio of the local shear stress ¾xz
to the local normal stress ¾zz, evaluated at a distance 12.7mm ahead of the

crack edge along the interface.

The measured dependence of interface separation energy ¡ on Ã from

a series of experiments conducted on the glass{epoxy system is shown in

Figure 4.18. The value of ¡ is relatively una®ected by the phase angle

for 0◦ < Ã < 45◦, whereas it is strongly dependent on Ã when either

¡60◦ < Ã < 0◦ or 45◦ < Ã < 90◦; when strong mode II loading is lo-

cally imposed at the crack edge, the interface fracture energy is as much as

10 times higher than that for pure local mode I. This increasing work of frac-

ture with increasing relative local shear stress is considered a consequence of

inelastic deformation in the material layer at the interface (Tvergaard and

Hutchinson 1993) or frictional contact between the asperities of the crack

faces (Stringfellow and Freund 1993) which, in turn, can be in°uenced by

the roughness of the fracture surface. As will be seen in the next chapter, the

dependence of interface toughness on the stress state phase angle has impor-

tant implications for describing the growth of buckle driven delaminations

in ¯lm{substrate systems.

4.3.4 Example: Fracture resistance of nacre

Biomaterials such as teeth, bone and mollusk shell exhibit excellent strength and
fracture resistance; their mechanical strength is superior to that of many bulk
ceramics and synthetic composites. The fracture resistance of these biological ma-
terials is particularly striking in light of the fact that the major constituent phase
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Fig. 4.18. Experimentally determined interface fracture energy ¡ as a function of
the local stress state phase angle Ã for the epoxy{glass bilayer system. The mea-
surements were made using an edge-cracked bimaterial strip specimen on which
prescribed values of normal and shear displacements were imposed. The di®erent
symbols represent four di®erent sets of experiments conducted for this material
system. Adapted from Liechti and Chai (1992).

of the typical composite structure is very brittle. In this example, the structural
composition and possible failure mechanisms of nacre, commonly known as `mother
of pearl', are described in order to illustrate how biological multilayer systems may
o®er inspiration for design of structural materials over multiple length scales.

Fig. 4.19. Schematic of a cross-sectional view of the correlated inter-platelet
arrangement of aragonite `bricks' and interlamellar macromolecular organic `mor-
tar' material in the architecture of nacre.
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Nacre, the pearly interior of mollusk shells, is a layered composite with alter-
nating layers of a nanometer-scale biomacromolecular material and crystallograph-
ically aligned platelets of aragonite, a mineral form of calcium carbonate (CaCO3)
which is very brittle. The organic material occupies less than 5% of the volume of
the composite, yet the overall fracture energy of the structure is three orders of mag-
nitude higher than that of bulk CaCO3. Figure 4.19 schematically illustrates the
typical cross-section or edge-on view of nacre structure which is commonly found in
abalone, nautilus, pearl oyster and blue mussel shells (Currey (1976); Sarikaya et al.
(1995)). The multi-layered composite structure has a `brick and mortar' arrange-
ment with the hexagon-shaped aragonite bricks, with in-plane dimensions on the
order of microns and thickness on the order of several hundred nanometers, adhered
by an organic `mortar' which is a composite of proteins and polysaccharides.

Red abalone has typical shell diameters in excess of 20 cm and a shell thick-
ness in excess of 1.5 cm for specimens that are 10{12 years old. These dimensions
facilitate investigations of mechanical properties using standard bend and fracture
test geometries whereby the behavior of nacre can be directly compared with that
of engineering materials. For example, red abalone which is composed of approx-
imately 95% CaCO3 has a fracture toughness of 4{10 MPa

p
m (Currey (1976);

Sarikaya et al. (1995)). These values are approximately 20{30 times those of geo-
logically produced monolithic CaCO3. By comparison, polycrystalline Al2O3, SiN4

and ZrO2 ceramics have fracture toughness values of 3, 4 and 5 MPa
p
m, respec-

tively, at room temperature.

Fig. 4.20. Scanning electron micrographs showing the dominant deformation mech-
anisms observed in nacre of abalone. (a) Frictional sliding of aragonite platelets in
the highly strained region surrounding an indentation. (b) Ligaments of organic ma-
terial bridging the inter-platelet cracks. Reproduced with permission from Sarikaya
et al (1995).

Experimental studies of deformation and fracture in nacre indicate that
macroscopic inelastic strain is accommodated by massive shearing of the platelets
of aragonite and the stretching of the inter-platelet organic material that bridges
the interface cracks; see Figures 4.20(a) and (b). Figure 4.21(a) is a scanning
electron micrograph of polished and plasma-etched abalone nacre which was de-
formed in compression with the loading axis oriented at 45 degrees to the aragonite
platelet interfaces. Note that nanoscale asperities along the interfaces between the
aragonite platelets interact during frictional sliding to amplify frictional resistance
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to shear deformation. The distribution of these asperities on the surfaces of the
platelets necessarily engenders dilatation during shear displacement so that adja-
cent platelets can slide against each other in response to mechanical loading. The
result is the formation of inter-platelet microcracks.

(a) (b)

Fig. 4.21. Electron microscope images of the edge-on view of deformed nacre of
abalone. (a) Scanning electron micrograph showing contact between aragonite
platelets oriented at 45 deg. to the compression axis. Reproduced with permission
from Wang et al (2001). The polished and plasma-etched surface reveals nano-scale
asperities which are indicated by the white arrows. (b) Organic ligaments bridging
the aragonite platelets, as revealed by the transmission electron micrograph of a
cleaved abalone shell. The spacing between the aragonite platelets (the dark regions
at the top and bottom of the ¯gure) is approximately 600 nm. The organic adhesive
between the tablets had previously been stretched in an atomic force microscope.
The organic ligament, originally 30 nm long, elongated twenty times. Reproduced
with permission from Smith et al (1999).

The nucleation of colonies of microcracks aligned along preferential bands,

whose orientation depends on the direction of loading with respect to the arrange-

ment of the aragonite platelets, thus provides a mechanism for energy dissipation

and o®ers an alternative to catastrophic failure by the sudden propagation of a

dominant brittle crack. Such dilatation also accommodates the stretching of the

organic molecule forming the adhesive between the plates. Atomic force microscope

studies of the extension of the organic macromolecules exposed on the surface of

freshly cleaved nacre reveal that the protein molecules stretch in discrete jumps as

the folded domains pull open (Smith et al. 1999). Figure 4.21(b) is a transmission

electron micrograph showing the extension of organic ligaments which bridge the

aragonite platelets. Smith et al. (1999) suggest a modular stretching mechanism

whereby a particular molecule extends under local tensile stress; prior to its fracture,

another adjacent domain unfolds, absorbing energy in doing so. This sequential de-

formation of many domains is believed to result in a serrated load{displacement
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curve which is consistent with the high values of fracture energy exhibited by nacre.

Similar mechanisms, involving distributed microcracking and frictional sliding of

platelets as energy dissipation processes, and the bridging of the brittle constituent

platelets by stretched organic material as a means for toughening, were proposed by

Kamat et al. (2000) based on their experimental studies of the fracture resistance

of the shell of conch.

4.4 Film delamination due to residual stress

In this section, the phenomenon of spontaneous delamination of a strained

¯lm from its substrate is examined. The process is termed spontaneous

because it occurs without the action of applied loads or any other external

cause; it is driven exclusively by the release of elastic energy stored in the

¯lm as a result of the mismatch strain. For the time being, delamination

is presumed to occur by propagation of a delamination front, or interface

crack edge, along the interface between the ¯lm and the substrate. The

possibility that this advancing fracture will be de°ected out of the plane

of the interface and into either the ¯lm or the substrate will be considered

later in this chapter. Furthermore, for the time being, the speci¯c energy ¡,

representing the work per unit area of interface which must be supplied to

advance a delamination zone according to the Gri±th condition as described

in Section 4.2.1, is presumed to be a constant for any particular material

system. In other words, ¡ is assumed to be independent of the state of stress

in the materials or of any other details of the process itself. The validity

of this simplifying assumption will be examined subsequently in light of

experimental observations.

The physical system that provides the basis for discussion in this sec-

tion is depicted in Figure 4.22. A ¯lm of thickness hf is bonded to a rel-

atively thick substrate; both materials are presumed to be linearly elastic.

When completely bonded, the ¯lm carries an equi-biaxial elastic strain of

magnitude ²m due to a mismatch of some physical origin with respect to

the substrate. The associated biaxial stress magnitude is ¾m and the state

of stress far ahead of the delamination front is indicated in the ¯gure. A

delamination front is assumed to advance in the x¡direction along the in-

terface, resulting in partial relaxation of the elastic strain in the ¯lm. The

state of stress behind the delamination front is also indicated in the ¯gure,

where ¾a is the magnitude of the unrelaxed stress component ¾xx acting in

the x¡direction following delamination. The strain in the direction parallel
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Fig. 4.22. Schematic diagram of the front of a zone of delamination between a ¯lm
and its substrate and advancing as a line in the x¡direction. The stress state prior
to delamination is equi-biaxial stress ¾m, and the stress acting in the x¡direction
is reduced to the level ¾a following delamination.

to the delamination front is locally una®ected by the delamination process,

so the stress in the y¡direction relaxes to the level ¾yy = ºf¾a+ (1¡ ºf)¾m.

It is important to recognize that Figure 4.22 may be interpreted at

two di®erent scales of observation. If a delamination front is straight over

distances which are very large compared to hf , then the scale of observation

represented by the ¯gure is essentially the entire ¯lm and ¾a = 0 because

the edge of the ¯lm is stress free. On the other hand, if the delamination

front is curved, with radius of curvature large compared to hf , then the scale

of the ¯gure is local to the region of the front; in this case, the front appears

to be straight on a local scale and the front curvature is represented through

a nonzero value of the unrelaxed stress ¾a. Examples of both situations will

be illustrated in this section.

As already noted, the state of stress in the ¯lm is essentially homoge-

neous biaxial tension or compression at distances far ahead and far behind

the delamination front compared to hf . On the other hand, for material

points close to the edge of the delamination zone, the state of stress is ex-

pected to be very non-uniform and to be highly concentrated. While the

details of this stress distribution play little role in the conceptual develop-

ment of this section, a few observations made on the basis of elementary

arguments reveal the full nature of this stress distribution.

A two-dimensional representation of the system in Figure 4.22 is shown

in part (a) of Figure 4.23. The remote homogeneous stress component ¾xx
that acts in the x¡direction for jx=hf j À 1 is indicated and, due to the
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Fig. 4.23. The superposition scheme leading to the conclusion that the state of
stress on the interface near the edge of the delamination zone depicted in Figure 4.22
depends only on the di®erence between stress in the ¯lm ahead of and behind the
delamination front.

fact that ¾a 6= ¾m, some traction must be transmitted across the interface

for x > 0. Part (b) of Figure 4.23 shows an equilibrium situation with a

uniform stress ¾xx = ¡¾a, ¾yy = ¡ºf¾a ¡ (1 ¡ ºf)¾m throughout the ¯lm.

In this case, no traction is transmitted across the interface and the strain in

the ¯lm in the y¡direction is everywhere ¡²m. The result of superimposing

the ¯elds of parts (a) and (b) is shown in part (c) of Figure 4.23. The stress

state far ahead of the delamination front is ¾xx = ¾m¡¾a, ¾yy = ºf(¾m¡¾a);

the stress state far behind the front is ¾xx = 0, ¾yy = 0; the strain in the

y¡direction in part (c) is everywhere zero. Thus, it is the stress ¾m ¡ ¾a
that must be balanced by the interface traction over x > 0. Based on a

comparison of part (c) with Figure 4.4, it becomes clear that the interface

traction in part (c) of Figure 4.23, and therefore for part (a) as well, is

exactly the same is that discussed in Section 4.1 except that the distribution

is scaled by the magnitude ¾m ¡ ¾a rather than by ¾m alone. Furthermore,

the deformation in part (c) is plane strain deformation everywhere. Thus,

even though this stress distribution does not play a role in the Gri±th

condition, it is recognized that its principal features are already in hand.

The elastic strain energy density associated with a biaxial state of
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stress in the ¯lm is, in terms of stress components,

U =
1

2Ef

h
¾2xx + ¾2yy ¡ 2ºf¾xx¾yy

i
: (4.33)

The reduction in potential energy of the system due to advance of the de-

lamination front provides the energetic driving force, or the con¯gurational

force, for that process. When the potential energy reduction is expressed

per unit area of interface over which delamination occurs, it de¯nes the en-

ergy release rate for applied boundary loading which was introduced earlier

in this chapter. For the stress states shown in Figure 4.22, the di®erence

in elastic strain energy per unit area of interface between material ahead

and behind the front, plus the work done by the applied stress ¾a in a unit

advance of the delamination front, yields the energy release rate

G =
1¡ º2f
2Ef

(¾m ¡ ¾a)
2hf : (4.34)

If the calculation is based on the equivalent stress state in part (c) of Fig-

ure 4.23, the driving force may be determined as a change in strain energy

per unit area of interface without reference to an external potential energy.

The same result is obtained once again.

It is noteworthy that the expression (4.34) does not depend on the

properties of the substrate, a feature that could have been anticipated. The

assumption of steady-state advance of the delamination front implies that

the mechanical ¯elds in the substrate translate without alteration during

delamination, and there is no exchange of energy between the substrate and

its surroundings. Furthermore, these results are derived under the tacit

assumption that the restrictions which underlie the Stoney formula are in

place. Within this range of behavior, the ratio of the elastic strain energy

in the substrate to the elastic strain energy in the ¯lm, both measured per

unit area of interface, is approximately hfMf=hsMs. As a result, the energy

density itself in the substrate is small compared to the energy change in the

¯lm associated with delamination. Consequently, energy variations in the

substrate have only a minor in°uence on the value of G.

4.4.1 A straight delamination front

If the delamination front is straight and the ¯lm edge is free then the energy

release rate is given in terms of system parameters by (4.34) with ¾a = 0.

According to the Gri±th condition, the delamination front will advance or
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not, depending on whether G is greater than ¡ or less than ¡, the para-

meter that characterizes the resistance of the interface to separation. The

relationship among the system parameters that distinguishes between these

two possibilities is

1¡ º2f
2Ef

¾2mhf = ¡ , (1 + ºf)Ef
2(1¡ ºf)

²2mhf = ¡ ; (4.35)

expressed in terms of mismatch stress or strain, respectively.

For a given material system, the ¯lm thickness at which it is ¯rst

possible to drive a delamination spontaneously is the critical thickness

(hf)cr = 2
(1¡ ºf)¡

(1 + ºf)Ef²2m
= 2

¹Ef¡

¾2m
: (4.36)

The result has several noteworthy features. At this level of modeling, the

critical thickness for delamination depends on substrate properties only

through their in°uence on the values of both the mismatch strain ²m and

the separation energy ¡. The general form of (4.36) could have been antic-

ipated on the basis of dimensional arguments alone; the analysis provides

the numerical factor 2.
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Fig. 4.24. Ratio of the driving force for delamination to its steady-state value ap-
proached far from the ¯lm edge versus the delamination zone size for three values
of D1. The con¯guration is shown in the inset. Adapted from Yu et al. (2001).
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Taken at face value, the result (4.35) implies that the ¯lm will sponta-

neously separate from its substrate over the entire area of the interface once

a delamination has begun to propagate. This is not necessarily so, however.

One reason is that the local value of energy release rate at a place on the

delamination front can be in°uenced by local curvature of the front. This

issue is addressed in the next section. A second reason is that the energy

release rate for a delamination near a ¯lm edge, within a distance of hf of

the edge say, is less than the value for a steadily propagating delamination.

Thus, there is an initiation barrier to the onset of delamination at a ¯lm

edge or at a through-the-thickness cut in the ¯lm. While no unambiguous

analytical results are available for describing the transition to steady-state

as a delamination grows inward from the edge of a ¯lm, the magnitude of

the e®ect can be estimated by means of numerical calculations.

A detailed numerical study of this problem specially designed to give

accurate results near the edge of the ¯lm was carried out by Yu et al. (2001),

who showed that the e®ect is very small for the onset of delamination from

a free edge of the ¯lm on a °at substrate surface. For example, it was

shown that the value of G was already more than 90 percent of its steady-

state value, as given in (4.34), when the delamination front has advanced

a distance of only 0:05hf from the edge. Thus, the e®ect of the initiation

barrier is minor in this case.

The driving force for delamination of a ¯lm from the surface of a

substrate in the form of a 90 degree wedge, rather than a °at substrate,

was also analyzed by Yu et al. (2001). The free edge of the bonded ¯lm

in this case was assumed to be at the corner of the wedge; see the inset

in Figure 4.24. In contrast to the case of a substrate on a °at surface,

this con¯guration revealed a substantial energetic barrier to initiation of

delamination of the ¯lm. The ratio of the driving force G to its steady-state

value, labeled Gss here, is shown in Figure 4.24 for D2 = 0 and D1 = 0:5,

0:0 and ¡0:5. For the case when the elastic properties of the ¯lm and

substrate are the same, G does not increase beyond 0:9Gss until the size of

the delamination zone has grown to more than about ten times the ¯lm

thickness.

4.4.2 Example: Delamination due to thermal strain

Consider a thin ¯lm of aluminum, 1 ¹m in thickness, which is deposited at 220 ±C
so as to cover partially a (100) Si substrate, which is 300 ¹m thick and 200 mm in
diameter. The thermoelastic properties of the Al ¯lm are Ef = 70 GPa, ºf = 0:35,
and coe±cient of thermal expansion ®f = 23 £ 10¡6 ±C¡1. The corresponding
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properties of the Si substrate are Es = 130 GPa, ºs = 0:28 and ®s = 3£10¡6 ±C¡1.
The ¯lm{substrate system is stress-free at the deposition temperature.

(a) Determine the fracture energy of the interface if the energy release rate
due to the mismatch strain of the ¯lm with respect to the substrate at a
temperature of 20 ±C is just enough to propagate a straight delamination
front along the interface.

(b) In an attempt to facilitate the deposition of thicker aluminum ¯lms, the
processing conditions were modi¯ed in such a way that the interface separa-
tion energy was guaranteed to be at least 5 J/m2. Find the thickness of the
aluminum ¯lm for which spontaneous delamination of a straight front would
occur at the minimum guaranteed interface separation energy.

Solution:

(a) The mismatch strain in the Al ¯lm with respect to the substrate at room
temperature is

²m = (®s ¡ ®f)¢T = 4:0£ 10¡3: (4.37)

For this mismatch strain, the energy release rate is found from (4.34) to be

G =
1¡ º2

f

2Ef
¾2
mhf = 1:1 J=m

2
(4.38)

in the absence of any externally applied loads. Since this value of G is found
to be just enough to initiate interface separation, ¡ = 1.1 J/m2.

(b) For ¡ = 5 J/m2, the critical ¯lm thickness (hf)cr at which spontaneous
delamination can occur along the interface is found from (4.36) to be

(hf)cr = 2
(1¡ ºf)¡

(1 + ºf)Ef²2m
= 4:5¹m: (4.39)

4.4.3 An expanding circular delamination front

The same physical system that was considered in the preceding section for

the case of a straight delamination front provides the basis for discussion of

the e®ect of front curvature in this section. A ¯lm of uniform thickness hf is

bonded to a much thicker substrate over a large area. When fully bonded,

the ¯lm is under the action of an equi-biaxial stress of ¾m which arises

from a mismatch of some physical origin with respect to the substrate. The

strength of the interface between the ¯lm and the substrate is characterized

by an energy of separation of magnitude ¡ per unit area of interface. Finally,

suppose that the system parameters are such that a straight delamination

front would grow spontaneously according to the analysis of the preceding

section, that is,
1¡ ºf
2Ef

¾2mhf > ¡: (4.40)
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Fig. 4.25. Schematic diagram of a delamination zone expanding outward from the
free edge of a circular hole in the ¯lm. The expansion is driven by a residual stress
in the ¯lm.

How is the behavior modi¯ed if the delamination front is curved rather than

straight?

Suppose that the ¯lm completely covers the substrate surface initially.

Then, the ¯lm is cut through its thickness down to the substrate surface

over a circle of radius b À hf as indicated in Figure 4.25. The ¯lm material

inside the circle is removed and, outside the circle of radius b, a circular

delamination front begins to grow outward. When the front is very near the

¯lm edge of radius b, the local conditions are very much like those discussed

the preceding section, and the front advances spontaneously.

Consider the situation when the delamination front has advanced to

a radius r = a where r is the radial distance measured from the center of

the circular cut. Within the annular region b < r < a, the ¯lm material is

completely separated from the substrate, and the edge at r = b is free of

traction. The edge at r = a is still connected to the bonded portion of the

¯lm across the delamination front so that, in general, it is not free of stress.

Suppose that the state of stress in the ¯lm at r = a− is the radial stress

¾a = ¾rrjr=a− ; the state of stress is necessarily radial due to the symmetry

of the con¯guration. The use of the notation ¾a for this stress anticipates

that it plays exactly the role of ¾a in Figure 4.22. The corresponding radial

displacement of the edge of the annular disk at r = a, measured from its

fully relaxed stress-free con¯guration, is given by the classical Lamµe solution
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from plane stress elasticity to be

ua = urjr→a− =
a3¾a

(a2 ¡ b2)Ef

"
(1 + ºf)

b2

a2
+ (1¡ ºf)

#
: (4.41)

Because the outer edge of the annular region at r = a is still at its unrelaxed

position, the circumferential strain there is essentially ²m so that

ua
a

= ²m =
(1¡ ºf)¾m

Ef
(4.42)

if the displacement is to be continuous at r = a. Thus, if this radial dis-

placement is eliminated by combining the expressions (4.41) and (4.42), an

expression for ¾a as a function of a is obtained as

¾a
¾m

=
a2=b2 ¡ 1

a2=b2 + (1 + ºf)=(1¡ ºf)
: (4.43)

1 2 3 4 5 6

a / b

0.0

0.2

0.4

0.6

0.8

1.0

σ a 
/  σ

m

ν = 0

ν = 1/4

ν = 1/2

Fig. 4.26. Ratio of the stress ¾a resisting delamination due to front curvature to the
mismatch stress ¾m versus the size of the lamination zone for the system depicted
in Figure 4.25.

It is evident from this result that the stress restraining the ¯lm has the

value ¾a = 0 when a = b, and that it increases monotonically as a=b increases

from the value 1. Note also that ¾a=¾m asymptotically approaches unity as

a=b ! 1. Plots of ¾a=¾m versus a=b are shown in Figure 4.26 for ºf = 0, 14
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and 1
2 . From the condition (4.40), it is certain that the delamination front

would advance some distance from its initial position at a = b. From the

asymptotic result that ¾a=¾m ! 1 as a=b ! 1, when considered in light

of the general expression for driving force given in (4.34), the delamination

front cannot advance to inde¯nitely large values of a for any nonzero value

of ¡ because it eventually runs out of driving force.

The value of a at which advance of the delamination front must stop,

say aΓ, is the value at which the Gri±th condition

1¡ º2f
2Ef

(¾m ¡ ¾a)
2hf = ¡ (4.44)

is ¯rst satis¯ed, with ¾a given by (4.43). For a < aΓ, the driving force G
exceeds ¡ so that the front continues to advance. On the other hand, the

driving force is less than ¡ for a > aΓ, and hence this range is inaccessible.

The resulting relationship can be cast in the non-dimensional form

2¡Ef
(1¡ º2f )hf¾

2
m

=
4£

(1¡ ºf)a
2
Γ=b

2 + (1 + ºf)
¤2 : (4.45)

Graphs of normalized separation energy versus aΓ=b are shown in Figure 4.27

for ºf = 0, 14 and 1
2 .

Farris and Bauer (1988) introduced an experimental approach to mea-

sure the separation energy ¡ based on the geometrical con¯guration under

discussion here. Motivated by this approach, the separation energy is ex-

pressed as a function of aΓ in (4.45), rather than the other way around, to

anticipate the interpretation of measurements. The material parameters of

the ¯lm, the ¯lm thickness and the mismatch stress are presumably known

on the basis of measurements made separately from any delamination ex-

periments. The radius b is controlled in the experiment, and therefore its

value is known. Thus, if aΓ can be observed in an experiment, a value for ¡

can be inferred on the basis of (4.45).

The relationship (4.45) between the ¯nal radius aΓ of the delamination

zone and the corresponding separation energy ¡ was established by adapt-

ing some general concepts of fracture mechanics. The same result can be

obtained by direct appeal to energy methods. The total elastic energy in the

¯lm between the free surface at r = b and some remote circular boundary,

say at r = R > a, is

E = ¼a¾auahf + ¼(R2 ¡ a2)hf¾
2
m=Mf : (4.46)

If ua from (4.41) and ¾a from (4.43) are substituted into this expression,
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Fig. 4.27. Normalized interface separation energy implied by the extent of the de-
lamination zone.

equilibrium requires that

¡@E
@a

¯̄̄̄
σm

= 2¼a¡; (4.47)

which again yields (4.45).

The conclusions of the analysis in this section are independent of the

sign of ¾m. From a practical point view, however, the annular portion of

the ¯lm would tend to buckle out of plane if ¾m < 0. This is a mode of

deformation that is not included in the analysis, and the conclusions are

therefore invalidated if buckling occurs. Film buckling due to compressive

¾m is discussed in the next chapter.

The symmetry of the con¯guration depicted in Figure 4.25 with a

circular delamination zone renders the analysis of delamination simple and

transparent. If this symmetry is lost, the situation becomes more complex

and the delamination zone shapes which can be observed are surprisingly

rich in detail. For example, Choi and Kim (1992) introduced a cut into a

polyimide ¯lm on a glass substrate and observed the resulting growth of a

delamination front from the cut. Because the local conditions varied along
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the edge of the delamination zone, insight could be gained into the nature

of the delamination process in terms of the local stress ¯elds.

4.4.4 Phase angle of the stress concentration field

Under the conditions of ¯lm delamination represented by Figure 4.22, the

state of stress along the interface immediately in advance of the delamina-

tion front can be characterized by the stress intensity factors KI and KII,

provided that the nonlinear process zone is suitably small. In light of the

discussion of the superposition scheme represented by Figure 4.23, the load-

ing parameter in the system that gives rise to interfacial stress is ¾m ¡ ¾a.

The only length scale in the con¯guration is the ¯lm thickness hf . Finally, it

is noted that both the ¯lm and substrate materials are linearly elastic solids

with their associated elastic moduli and Poisson ratios. The phase angle of

the local stress ¯eld can be characterized in a simple way on the basis of

these observations.

The stress analysis under consideration is such that both KI and KII

must vary linearly with ¾m ¡ ¾a, and both must vanish when ¾m ¡ ¾a = 0.

To render the expressions for stress intensity factors in terms of system

parameters dimensionally consistent, each stress intensity factor must be

proportional to (¾m¡¾a)
p
hf . The proportionality factor in each case must

be dimensionless, it cannot depend on ¾m ¡ ¾a, and it cannot depend on

hf because there is no other length parameter available for forming a di-

mensionless ratio. Thus, the proportionality factor can depend only on the

elastic constants in dimensionless combinations, that is, on the parameters

D1 and D2 de¯ned in (4.29). The development to follow is restricted to the

case when D2 = 0, so that the proportionality factors depend only on D1,

the sti®ness ratio.

Suppose that the proportionality factors for KI and KII are denoted

by pI and pII, respectively, so that KI = pI(¾m ¡ ¾a)
p
hf and similarly for

KII. The energy release rate for advance of the delamination front is given

by (4.34). If this result is substituted for G in (4.30), it is evident that the

proportionality factors must satisfy

1
2 (1¡D1) = p2I (D1) + p2II(D1) (4.48)

identically in D1. The relationship (4.48) implies the existence of a single

function of D1, say !(D1), such that

pI =
q
1
2(1¡D1) cos!(D1) ; pII =

q
1
2(1¡D1) sin!(D1): (4.49)

The value of !(D1) can be determined only through solution of the relevant
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boundary value problem. A numerical solution of the elasticity problem

represented by the con¯guration depicted in Figure 4.22 has been provided

by Suo and Hutchinson (1990). The solution of the corresponding problem

when the ¯lm is idealized as an elastic plate was described by Shield and Kim

(1992) and is determined by numerical solution of the integral equations in

(4.93). If pI and pII are determined from the boundary value problem, then

(4.48) can serve as a useful check on the consistency of the results.

Of main interest here is the phase angle Ã of the stress state within the

stress concentration ¯eld at the edge of the delamination zone, as de¯ned in

(4.28). From the foregoing discussion, it is evident that the phase depends

only on the nondimensional ratio of material parameter D1 (for D2 = 0) as

de¯ned in (4.29) according to

Ã = arctan
KII

KI
= arctan

pII(D1)

pI(D1)
= !(D1): (4.50)

The dependence of ! on D1 (for D2 = 0) is shown in Figure 4.28 from

Suo and Hutchinson (1990) and from numerical solution of the equations

in (4.48). When the ¯lm and substrate materials have identical elastic con-

stants, that is, when D1 = D2 = 0, the elasticity solution yields ! ¼ 52:1◦

while the solution based on the plate idealization yields ! ¼ 48:6◦. The

discrete points in the ¯gure are the numerical results reported by Suo and

Hutchinson (1990) and the line through these points represents the expres-

sion

!(D1) ¼ 52:10 + 8:691D1 + 6:450D2
1 + 4:893D3

1; (4.51)

which is obtained as a useful approximate ¯t, with ! expressed in degrees.

In the foregoing discussion, it has been tacitly assumed that ¾m¡¾a >

0. If this is not the case, the phase angle lies in a di®erent quadrant of the

KI; KII¡plane in (4.50); for example,

!j(σm−σa)<0 = ¡¼ + !j(σm−σa)>0; (4.52)

where !j(σm−σa)>0 is the quantity graphed in Figure 4.28.

4.4.5 Delamination approaching a film edge

The energetic driving force for ¯lm delamination given in (4.34) is based on

the presumption of steady advance of a delamination front at the interface

between a uniform ¯lm and its substrate. In view of the strong interaction

between the ¯lm and the substrate near the ¯lm edge indicated by the results

on load transfer length in this region given in Figure 4.8, for example, the
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Fig. 4.28. Crack tip phase angle Ã for the con¯guration shown in Figure 4.22 versus
sti®ness ration D1 for D2 = 0. The dashed line represents an estimate of Ã based
on the results for the plate model shown in Figure 4.5.

driving force for delamination can be expected to depart signi¯cantly from

the steady-state result (4.34) near a ¯lm edge.

This free-edge e®ect was studied in detail by He et al. (1997) and Yu

et al. (2001). A new method for analyzing a fairly wide class of such edge

con¯gurations, again based on numerical solution of singular integral equa-

tions, was introduced by Yu et al. (2001). They studied both the emergence

of delaminations from ¯lm edges and the approach of delamination fronts

toward ¯lm edges.

To examine the change in delamination driving force in the vicinity

of edge, consider the plane strain con¯guration shown in the inset of Fig-

ure 4.29. This diagram represents a straight delamination front approaching

the free edge of a ¯lm, with the substrate extending far beyond the edge

of the ¯lm; this arrangement is termed an interior ¯lm edge con¯guration.

The width of the portion of the interface that is still intact is denoted by a

in this case. When the value of a=hf is very large compared to unity, the

delamination driving force G has the value given by (4.34), here denoted by

Gss to emphasize its role as a steady-state value. It is reasonable to antici-

pate that Gss=G will vanish as a=hf ! 0. The main point in analyzing this
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Fig. 4.29. Normalized driving force for a delamination front approaching a ¯lm
edgeversus the size of the remaining intact portion of the interface between the front
and the free edge. I diagram of the con¯guration The con¯guration is illustrated in
the inset, and the response is two-dimensional generalized plane strain deformation
. Results are presented for three values of D1 with D2 = 0. The steady-state value
of energy release rate G is given in (4.34). Adapted from Yu et al. (2001).

con¯guration is to understand the nature of the transition between these as-

ymptotic limits and, in particular, to determine the length scale over which

this transition occurs.

The results obtained by Yu et al. (2001) for Gss=G versus a=hf with

D1 = ¡0:5; 0:0; 0:5 and D2 = are shown in Figure 4.29. It is evident that

the edge e®ect is quite far reaching in this case. For example, for the case

with D1 = 0, Gss=G is greater than 0.8 only for a=hf > 10 and is greater than

0.9 only for a=hf > 20. It was noted in Section 4.4.1 that there is virtually

no transition length for initiation of a delamination at an interior ¯lm edge,

and the result for approach of a delamination toward an interior free edge

is in striking contrast to this observation.

The phase angle Ã of the interface stress state at the edge of delamina-

tion front as it approaches the ¯lm edge rotates from its positive steady-state

value toward 90 degrees as a=hf ! 0. Consequently, as the value of driving

force diminishes with diminishing a=hf , the phase angle Ã becomes larger,

implying an increasing work of fracture ¡(Ã) for typical material systems

showing a phase angle sensitivity in their fracture energies. These e®ects
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combined to make an interior ¯lm edge resistant to completion of delamina-

tion.

4.5 Methods for interface toughness measurement

The measurement of interface fracture toughness is a signi¯cantly greater

challenge than the measurement of fracture resistance of homogeneous bulk

materials. For one thing, the geometries associated with interfaces of prac-

tical interest, especially those between thin ¯lms and their substrates or

adjoining layers, severely constrain the design of test specimens and load-

ing mechanisms. Furthermore, in many situations, the processing of thin

¯lm structures in su±cient quantities and dimensions in order to facilitate

tests to extract reproducible fracture resistance parameters that are inde-

pendent of specimen geometry is a severe practical limitation. In addition,

mismatch strains in layered structures can induce signi¯cant inelastic de-

formation which, in turn, can restrict choices of experimental methods for

determining interface fracture resistance.

Well developed test methods that are commonly employed to mea-

sure the fracture properties of homogeneous materials can also be used,

with appropriate modi¯cations, for the determination of interface fracture

response in layered materials. However, great care must be exercised to

account properly for residual stress which can in°uence the energy release

rate G and the local stress state phase angle Ã in layered structures. Among

the various fracture testing techniques available for homogeneous materials,

those in which geometric conditions inherently facilitate the stable advance

of a crack are preferred for interface toughness measurements. Examples

include the double cantilever crack specimen, the symmetric or asymmetric

bend crack specimen, and compression test methods involving the Brazilian

disk or double cleavage drilled compression specimens. In addition, there

exist experimental methods, such as the so-called superlayer test, the peel

test and the bulge or blister test, which have been developed speci¯cally

for estimating the interface fracture energies between thin ¯lms and their

substrates. Each of these methods is brie°y described, with the exception of

the peel test and the bulge test. The latter two experimental con¯gurations

rely on an understanding of deformation within the geometrically nonlin-

ear range for their proper interpretation, and these con¯gurations will be

discussed in Chapter 5 once the requisite background is developed.
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4.5.1 Double cantilever test configuration

Figure 4.30 schematically shows the adaptation of the double cantilever crack

specimen, discussed in Section 4.2.1, for determining the interface fracture

properties between a thin ¯lm and a surrounding layer of much greater thick-

ness. A debond of length a is introduced at the interface between the thin

¯lm and one of the adjoining materials; in many ¯lm{substrate systems this

debond crack can easily be introduced by depositing a thin layer of carbon

between the ¯lm and the substrate during sample preparation. The onset

and subsequent stable growth of fracture from the initial precrack under

imposed boundary displacement is characterized in terms the energy release

rate G. The relationship between G and the imposed displacement was es-

tablished in Section 4.2.1. The mismatch in elastic properties between the

thin ¯lm and the surrounding layers introduces local in-plane shear loading

on the crack plane which can alter the crack edge stress ¯eld from that of

a homogeneous double cantilever specimen. However, the nearly symmetric

loading con¯guration and the much smaller thickness of the ¯lm compared

to the thickness of the adjoining layers essentially promote mode I fracture.

Fig. 4.30. The double cantilever interface crack specimen con¯guration under im-
posed diplacement conditions.

Considerable plastic deformation can occur if the thin ¯lm is made of

a ductile metal, and there is no way to separate the actual work of interface

separation from the work dissipated in plastic deformation. In any case, if

the delamination advances with a more or less steady local stress ¯eld, the

change in energy that de¯nes the energy release rate is taken to be that

given in Section 4.2.1 as

G =
3 ¹Esh

3
s

8a4
±∗ = ¡ : (4.53)
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Thus, measurement of G as a function of length a during delamination

growth provides an estimate of ¡. As described by Oh et al. (1988) and

Evans et al. (1999), the double cantilever specimen has been used to evalu-

ate the fracture energy of interfaces between thin ¯lms of such materials as

Al and Cu and substrates such as Al2O3 and glass.

4.5.2 Four-point flexure beam test configuration

Figure 4.31 shows an example of a symmetric composite con¯guration con-

taining two substrates of identical dimensions between which ¯lms of much

smaller thickness are present; the ¯lms may be single layers or multilayers.

This entire layered system is subjected to symmetric four-point bend load-

ing with either the bending moment or the end rotation of the specimen

midsection being imposed. A central notch is introduced, by indentation

or some other technique, through the thickness of the layer(s) that exist

above the interface at which the fracture toughness is to be determined. A

symmetric delamination precrack connected to the notch is also introduced.

Such a debond can be produced along the interface by depositing, during

the specimen preparation stage, a layer of carbon over the area in which the

delamination precrack is desired.

� � � � � � � �  � � � 	 1 � � � � �  � �

� � � � 	 � � 	 � � �  � � � � � �

Fig. 4.31. The four-point °exure specimen.

Within the region of uniform bending moment, the sample is subjected

to a uniform bending moment. Consequently, a steady state value of the

energy release rate G can be used as a measure of the crack driving force

provided that the length of the crack lying along the interface is much greater

than hs. This value of G, which is independent of the debond length a, is

calculated for the case of applied loading by appeal to elastic beam theory

as

G =
21P 2L2

16Esh3s
; (4.54)

where PL=2 is the bending moment per unit width, with P=2 being the
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load perin an unit width along each loading line and L the spacing between

the outer and inner loading lines, hs is the substrate thickness or the ap-

proximate half thickness of the bend specimen, and Es and ºs denote the

elastic modulus and Poisson ratio, respectively, of the substrate material

(Charalambides et al. 1989). If the depth of the con¯guration in the direc-

tion into the ¯gure is large, then Es should be replaced by the plane strain

modulus ¹Es. Again, the deformation of the ¯lm material is neglected in this

calculation.

The °exure beam is subjected to either a ¯xed load or a ¯xed load

point displacement. When the load is ¯xed, the energy release rate is con-

stant and hence the crack advances under steady conditions when it is con-

tained along the interface between the inner loading lines. A displacement

transducer is usually attached in the vicinity of the notch to measure the

vertical displacement. A plot of the load as a function of the displacement

typically provides a positive linear initial slope when there is no extension of

the pre-exising debond crack along the interface; the de°ection here is merely

an outcome of the linear elastic deformation of the loading system. At some

critical load, corresponding to the critical value of the energy release rate

¡ for the interface, the load{displacement plot exhibits an abrupt change

of slope which signi¯es the onset of crack advance. Slow, time-dependent

subcritical crack growth resistance along the interface can also be measured

using the °exural beam test specimen by monitoring the change in crack

length per unit time as function of the energy release rate G solely in re-

sponse to mechanical loading, or to environmentally assisted fracture along

the interface.

Symmetric three-point or four-point bending of notched and pre-cracked

rectangular beams has long been used as a common test method for deter-

mining the tensile fracture toughness of homogeneous materials. Asymmet-

ric bending of notched and pre-cracked rectangular beams has also been

employed as a means of imposing di®erent combinations of mode I and

mode II loading, as described by Suresh et al. (1990) for mixed-mode frac-

ture of ceramic materials. The arrangement shown in Figure 4.31 can also

be modi¯ed to impose di®erent combinations of local mode I and mode II

loads for interface delamination in the layered material. Analyses of the

driving force for mixed-mode fracture along the interface between a thin

¯lm and a substrate in the four-point °exure specimen have been presented

by Charalambides et al. (1989).

An example of the use of the symmetric four-point °exure specimen

for the experimental determination of interfacial fracture resistance in a

multi-layer thin ¯lm structure is now considered. Figure 4.32 shows a typ-
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Fig. 4.32. Scanning electron micrograph of the metallization, di®usion barrier and
ILD layers in a typical multilayer thin ¯lm structure used in microelectronic devices.
Note the presence of a delamination crack at the interface between the SiO2 ILD
and the TiN di®usion barrier, the fracture along which can limit the yield and
reliability of the device. The top layer is also Si; the two outer layers of Si of the
same thickness provide a symmetric multilayer structure within which the thin ¯lms
are sandwiched. Each Si layer (only a small portion of which is shown in this ¯gure)
is approximately 600 ¹m thick. Reproduced with permission from Dauskardt et al.
(1998).

ical multilayer thin ¯lm structure containing an Al{Cu metallization layer

and a SiO2 interlayer dielectric (ILD) ¯lm, which is used in microelectronic

devices. A TiN layer is deposited as a barrier material to inhibit di®usion

of Al and Cu during the thermal excursions induced by processing and to

enhance adhesion with the ILD. However, debonding of the ILD{TiN inter-

face and the ensuing delamination of the ILD layer itself can substantially

diminish device yield during the fabrication of the microelectronic devices or

reduce mechanical integrity during subsequent service. Figure 4.32 shows an

example of a delamination along the ILD{TiN interface, which was induced

in the vicinity of a ¯ne-scale indentation.

In order to determine the critical fracture initiation toughness ¡ as well

as the tendency for subcritical crack growth along the interface, Dauskardt

et al. (1998) employed the symmetric four-point °exure test geometry. The

thin ¯lm structure, similar to that shown in Figure 4.32, was fabricated on a

Si wafer substrate using standard sputtering methods for the metal and the

TiN layers, and using plasma-enhanced CVD for the ILD ¯lm. In order to

create a symmetric multilayer thin ¯lm stack, a second Si wafer was di®usion

bonded to the top surface of the ¯lm stack; a thin layer of Cr was used to

enhance adhesion at the bonded surface along with Cu which can be bonded

at relatively low temperatures. The copper surfaces were di®usion bonded

at 400 ◦C for 4 h in a vaccum press under 12 MPa pressure.

A topic of particular concern in fracture studies of such multilayer
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Fig. 4.33. Experimentally measured rate of growth of the delamination along the
TiN{SiO2 interface in 45% relative humidity laboratory air environment as a func-
tion of the energy release rate G for the symmetric multilayer structure shown in
Figure 4.32 with the thickness of the Al{Cu layer of 0.65 ¹m. The thin ¯lm multi-
layer structure, sandwiched between two identical Si layers, was tested for interface
delamination growth using a symmetric four-point °exure test method, similar to
that shown in Figure 4.31. Adapted from Dauskardt et al. (1998).

structures is the possibility of energy dissipation due to plastic deformation

of the metallic thin ¯lm layers. For the particular case of the foregoing multi-

layer stack comprising very thin metal ¯lms, the resulting interface fracture

toughness results have been found to be essentially independent of specimen

and crack geometry due to the constraints imposed by the surrounding brit-

tle layers. Thus, the energy release rate G is considered to be an appropriate

parameter for charcterizing the onset and progression of interface debonding

although plastic yielding of the entire metal ¯lm may occur at the debond

edge. The phase angle for this multilayer °exure specimen was Ã » 43◦. A
multitude of tests conducted in this study con¯rmed that the interface °ex-

ure test provides an accurate and reproducible measure of interface fracture

energy for the thin ¯lm structure under consideration.

Figure 4.33 shows the rate of slow, time-dependent subcritical crack

growth, measured using the symmetric four-point °exure specimen geome-

try, along the TiN{SiO2 interface in the multilayer structure as a function
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of the energy release rate G. Note that the interface delamination advances

subcritically at energy release rate values as small as 60% of the fracture

energy of ¡ ¼ 10.6 J/m2. As shown in the ¯gure, the debond growth rate

has a power-law variation with G. The observed propensity for subcritical

fracture of the debond has been ascribed by Dauskardt et al. (1998) to en-

vironmentally assisted cracking in the humid air environment, analogous to

the stress corrosion cracking of SiO2 glass in moist air.

4.5.3 Compression test specimen configurations

Fig. 4.34. The Brazilian disk interface fracture specimen.

The use of a compressive load applied to a layered structure comprising

one or more brittle materials is convenient from an experimental standpoint

because such an approach obviates the need for gripping the test specimen

to induce tensile stress. A technique that exploits this feature involves the

so-called Brazilian disk specimen con¯guration which has long been used to

evaluate the mixed-mode fracture properties of brittle solids such as ceramic

materials (Atkinson et al. (1982); Shetty et al. (1987); Wang and Suo (1990)

and Huang et al. (1996)). The basic features of this method, adapted for

interface fracture studies, are shown schematically in Figure 4.34. In this

con¯guration, a thin ¯lm is processed as a layer that is sandwiched between

two much thicker `substrate' materials, with the specimen prepared in the

shape of a circular disk of radius R and uniform thickness. An initial pre-

crack or debond of length 2a is introduced arti¯cially along the interface of

interest as, for example, by depositing a thin layer of carbon between the

¯lm and the substrate with the speci¯c purpose of preventing formation of

a bond at that interface. A compressive load P per unit thickness is ap-



304 Delamination and fracture

plied with its line of action inclined at an angle ' to the interface containing

the debond crack, as shown in Figure 4.34. Pure mode I tensile fracture

conditions arise locally at the debond in the homogeneous sample with a

central crack when the loading axis coincides with the crack line, or with

' = 0. If the ¯lm layer is very thin, then the remotely applied load on the

edge of the delamination zone is pure mode I. Locally, the phase angle is

not zero at the edge of the delaminationf when ' = 0, in general. A par-

ticularly appealing feature of this test specimen is that, by changing ', the

local stress state phase angle Ã can be systematically altered over the entire

range 0 ∙ Ã ∙ 90◦. For a homogeneous material, the crack edge opening

and shear stress intensity factors, KI and KII, respectively, for the Brazilian

disk specimen are of the form

KI =
PpI
R

r
a

¼
; KII =

PpII
R

r
a

¼
; (4.55)

where pI and pII are non-dimensional functions of the relative crack size a=R

and the load angle '. Analyses of stress intensity factors for Brazilian disk

specimens of bimaterials were described by O'Dowd et al. (1992). This spec-

imen, like the double cantilever beam and four-point °exure test geometries,

is also well suited for assessing the fracture properties of interfaces in ma-

terials that can be joined by techniques such as di®usion bonding, welding,

explosion cladding or brazing.

The double cleavage drilled compression or DCDC test, which is drawn

schematically in Figure 4.35, is another compression test con¯guration for

interface fracture toughness evaluation. This method, ¯rst developed by

Jansson (1974), typically comprises a rectangular block of a symmetrically

layered specimen at the center of which a thin layer of a metal or adhesive

is located. One or both of the outerlayers is usually made of a transparent

material such as a sapphire single crystal or glass so that the crack can be

imaged directly with the aid of a microscope during the interface fracture

experiment. The DCDC specimens are usually prepared by di®usion bond-

ing of a thin metal ¯lm, such as aluminum, gold or platinum, to sapphire

substrates with a f0001g crystallographic orientation. A circular hole is

drilled at the center of the rectangular specimen, as shown in Figure 4.35,

so as to create a stress concentration from which fracture is nucleated under

controlled conditions. Compressive loading parallel to the interfaces in the

layered system causes tensile stresses to develop at the poles of the hole

where cracks nucleate. These cracks then advance along an interface.

For the particular case where the entire rectangular beam of the DCDC

specimen is made of a homogeneous brittle solid with elastic modulus Es and
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Fig. 4.35. Schematic diagram of the double cleavage drilled compression specimen
con¯guration. The shaded area denotes the interface debond.

Poisson ratio ºs, the energy release rate for fracture is estimated to be

G =
¼¾2R
¹Es

∙
hs
R

+

µ
0:235

hs
R

¡ 0:259

¶
a

R

¸−2
(4.56)

for values of the dimensions within the ranges hs=R ∙ a=R ∙ 15 and 2 ∙
hs=R ∙ 4; this approximation was obtained as a reasonable ¯t to the results

of a ¯nite element calculation of specimen deformation (Michalske et al.

(1993) and He et al. (1995)). In this expression, hs is half the thickness

of the specimen, R is the radius of the circular hole, a is the length of the

symmetric debond emanating from the upper or lower end of the hole, and

¾ = P=2hs is the nominal compressive stress due to the applied load P .

Since the energy release rate decreases with crack growth at a ¯xed applied

load, crack growth is inherently stable in this test geometry.

If the DCDC specimen is fabricated with the con¯guration shown in

Figure 4.35 but with the thin ¯lm sandwiched between two symmetrically

con¯gured layers of di®erent materials, then the energy release rate for the

interface crack is more complicated than that given in (4.56), because the

stress ¯eld is no longer symmetric with respect to the crack plane giving

rise to mixed mode applied loading. The local stress intensity factors for

the interface crack in the DCDC specimen, as well as the phase angle Ã of

the delamination zone edge, can be determined as functions of the Dundurs

parameters D1 and D2 following the results presented by He et al. (1995)

and Suo and Hutchinson (1989).
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4.5.4 The superlayer test configuration

As is evident from the foregoing discussion, the application of external load-

ing to drive delamination at the interface between a ¯lm and its substrate is

a challenging experimental task. In those cases in which the energy stored in

the bonded ¯lm is not su±cient to drive delamination spontaneously, some

additional driving force is essential. Several experimental con¯gurations

that rely on externally applied loading have been discussed in the foregoing

sections. An approach which provides an alternative to externally applied

loading is the use of a strained superlayer. The basic idea is to deposit a

second ¯lm { the superlayer { on top of a ¯lm that is bonded to a relatively

thick substrate under conditions in which the elastic energy stored in the

superlayer is su±cient to drive delamination of the interface between the

¯lm and the substrate. The resulting con¯guration is called the superlayer

test con¯guration; it is depicted in Figure 4.36.

For example, for metallic ¯lms less than 1¹m in thickness and with

processing induced residual stress smaller than about 100 MPa, the driving

force G for spontaneous delamination is less than about 0:1 J/m2. How-

ever, most interfaces of practical signi¯cance require a work of separation ¡

that is substantially greater in magnitude than this available driving force.

Therefore, it is necessary to elevate the driving force for delamination from

that available due to processing alone, but to do so without altering the

properties of the ¯lm or of the interface being examined. This can be ac-

complished by means of the superlayer con¯guration, provided that several

conditions are met: (i) the process of depositing the superlayer on the ¯lm

must not change the microstructure of the ¯lm or the properties of the ¯lm-

substrate interface to be interrogated, (ii) the superlayer ¯lm must develop

a relatively large residual tensile stress upon deposition in order to drive de-

lamination, and (iii) the interface between the superlayer and the ¯lm must

remain intact as delamination occurs between the ¯lm and the substrate.

Consider the superlayer con¯guration depicted in Figure 4.36. The

equi-biaxial mismatch strain in the ¯lm of thickness hf is ²m and in the

superlayer of thickness hsl is ²sl. The stored elastic energy per unit area of

¯lm-substrate interface is Mf²
2
m +Msl²

2
sl prior to delamination. Far behind

an advancing straight delamination front, the bilayer consisting of the ¯lm

and superlayer, now free from the substrate, becomes curved. The amount

of curvature depends on the properties of the materials, the magnitudes of

the mismatch strains and the thicknesses of the ¯lms, and it is determined

by the conditions of zero net force and zero bending moment in the detached

bilayer. If the delamination growth is assumed to occur under conditions of
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Fig. 4.36. Schematic diagram of a bilayer ¯lm on the surface of a relatively thick
substrate. The second ¯lm can contribute to the driving force for delamination of
the ¯rst ¯lm from the substate and/or alter the stress state phase angle at the edge
of the delamination zone.

plane strain deformation, general expressions for the driving force G have

been provided by Hutchinson and Suo (1992) and Evans and Hutchinson

(1995). For the case when Mf = Msl and ²m = 0, the driving force reduces

to

G = 1
2
¹E²2slhsl

"
h3slc30 + h2slhfc21 + hslh

2
f c12 + h3f c03

(hf + hsl)3

#
(4.57)

where c30 = (1+º)2, c21 = 3+6º+2º2, c12 = 3+6º+4º2 and c03 = 1+2º

in terms of the common value of the Poisson ratio.

Bagchi et al. (1994) have used the superlayer test to determine the

separation energies of Cu thin ¯lms on silica substrates. In their approach,

a thin strip of carbon is ¯rst deposited onto the substrate so as to create a

debond precrack over an area along the interface. The desired thickness hf
of Cu ¯lm is then deposited onto the substrate over a region that includes

the prepared debond zone. Subsequently, a Cr superlayer of thickness hsl is

deposited on top of the ¯rst ¯lm by electron beam evaporation. When the

Cr layer thickness exceeds a certain critical value, spontaneous delamination

ensues. Upon delamination, the bilayer ¯lm develops a curvature ∙ which,

for the case when Mf = Msl and ²m = 0, depends on the system parameters

according to

∙ =
6hfhslº²sl
(hf + hsl)3

: (4.58)

Knowledge of this curvature, along with the values of other system para-

meters, can be used to extract the interface separation energy ¡ using the
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��

Fig. 4.37. Steady advance of a crack in the x¡direction through a thin ¯lm. Crack
growth is driven by the residual biaxial tensile stress ¾m existing prior to cracking.

methods outlined in the earlier sections of this chapter. The superlayer con-

¯guration was also used by Zhuk et al. (1998) to study the strength of an

interface between a metal ¯lm and a polymeric substrate.

An interesting aspect of the bilayer ¯lm con¯guration is the potential

for in°uencing the phase angle Ã of the stress state at the edge of the de-

lamination zone without otherwise altering the interface. Few results of a

general nature are available for this con¯guration. However, the dependence

of phase angle on the ratio hf=hsl for the case when both ¯lm layers and the

substrate have identical elastic properties and when ²m = 0 was studied by

Suo and Hutchinson (1989). Through numerical analysis of the underlying

elasticity problem, it was concluded that the phase angle Ã would be zero

for the thickness ratio hf=hsl = 2:87.

A rough estimate of the thickness ratio that results in Ã = 0 can be

obtained on the basis of the following reasoning. For the case considered by

Suo and Hutchinson (1989), the elastic mismatch strain across the interface

prior to delamination is zero, and the substrate is unstrained. Therefore,

the conditions that the extensional strain of the ¯lm surface z = 0+ after

delamination must still be zero may correspond to a relatively small value of

shear stress on the interface at the delamination front; a nonsingular value

of shear stress ¾xz = 0 corresponds to the condition that Ã = 0, provided

that the normal stress ¾zz is still singular and positive. The methods of Sec-

tion 2.2 can be used to show that this condition on strain implies that hf=hsl
must have the value 2. While the estimate is crude, it may provide a useful

indicator of behavior for arbitrary combinations of material parameters and

¯lm thicknesses in cases for which other indicators are not available.
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4.6 Film cracking due to residual stress

If a thin ¯lm is bonded to a substrate, and if that ¯lm is subject to a resid-

ual tensile stress as a result of elastic mismatch with the substrate, then

the stress can be partially relaxed by formation of cracks in the ¯lm. In

this section, the behavior of through-the-thickness cracks within the ¯lm is

considered. First, the behavior of an isolated, fully formed crack is exam-

ined and, subsequently, the mechanics of formation of an array of cracks is

considered.

4.6.1 A surface crack in a film

The phenomenon considered in this section is depicted in Figure 4.37, which

shows a through-the-thickness crack advancing in a ¯lm bonded to a rela-

tively thick substrate. Initially, the ¯lm is subjected to an equi-biaxial tensile

stress of magnitude ¾m, and this stress is partially relieved by the process

of cracking. Indeed, it is the elastic energy stored in the ¯lm due to this

stress that provides the driving force for the cracking process. The crack is

presumed to have been nucleated at a °aw in the material or at a surface

damage site; the nucleation process is complex and some of its features are

discussed later in this section. For the time being, it is assumed that the

crack has expanded to a length in the x¡direction which is much greater

than hf . The plane of the crack is the xz¡plane, and the crack faces with

outward normal vectors in the §y¡direction are free of traction. Under

these conditions, the ends of the crack no longer interact to any signi¯cant

degree, and the process of growth of each end can be viewed as a steady-state

process as seen by an observer traveling along the ¯lm surface with the point

at which the crack edge intersects the ¯lm surface. The point of view is that

even if crack nucleation sites are present in the material, extensive cracking

can occur only if cracks which are formed can actually grow into ¯lm cracks

which are long compared to ¯lm thickness. In other words, it is presumed

that behavior is dominated by crack growth rather than nucleation.

The cracking process is considered in the context of the Gri±th frac-

ture theory. For the time being, the materials are assumed to be isotropic

and elastic, and the ¯lm and substrate are assumed to have the same elastic

properties, that is, Es = Ef and ºs = ºf . Relaxation of this restriction is

considered subsequently. In the con¯guration shown in Figure 4.37, crack

opening is symmetric so the phase angle Ã of the stress state at the crack

edge is zero. The energies of separation of the homogeneous ¯lm and sub-

strate materials are denoted by ¡f and ¡s, respectively.

The basic idea is that the crack will advance if the elastic energy re-



310 Delamination and fracture

leased from the system in the course of that growth equals (or exceeds) the

energy of separation of the fracture surface created in the process. The fact

that the process is steady-state makes it possible to compute these energy

changes at points far ahead and far behind behind the curved fracture front

compared to hf where the deformation ¯elds are essentially two-dimensional

plane strain ¯elds. Tacit in this argument is the assumption that the leading

edge of the crack, along with its complicated three-dimensional deformation

¯eld, will advance in a self-similar way. This is a reasonable expectation be-

cause the environment of the moving crack edge is unchanged as it advances.

The process of crack extension is then completely equivalent to conversion

of the state of the material far ahead of the advancing crack to the state

far behind, a conversion which can be accomplished under two-dimensional

plane strain conditions.

Suppose that the ¯nal or steady-state depth of penetration of the crack

is ac which may be smaller than, equal to, or larger than the ¯lm thickness

hf . The amount of work per unit crack advance in the x-direction which

must be supplied to overcome the resistance of the material is

Wc = hf¡f

8<:
ac=hf ; ac ∙ hf

1 + (ac=hf ¡ 1) ¡s=¡f ; ac > hf :
(4.59)

For the fracture to proceed spontaneously, this amount of work must be

drawn from the background elastic ¯eld.

The calculation of the elastic energy released from the background

¯eld under two-dimensional plane strain conditions, say Wm, in terms of the

system parameters proceeds in the following way. Suppose a crack moves

into an elastic half space in a direction normal to the traction free surface of

the half space. The state of the crack is considered for all depths ´ between

zero and ac. In the process of growing inward from the surface, the crack

negates a normal traction of magnitude ¾m on the crack plane for 0 < ´ < hf
but no additional applied traction is relieved for hf < ´. Suppose that the

energy release rate for advance of the crack into the material, say G(´), is
known for all ´ in the range 0 < ´ < ac. Then the energy released from the

background elastic ¯eld per unit distance advance of the steady state crack

in the x¡direction in Figure 4.37 is

Wm =

Z ac

0
G(´) d´ : (4.60)

Thus, if the energy release rate G(´) is known for the two-dimensional plane

strain state far behind the moving crack edge then Wm can be calculated

from it by means of (4.60).
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Fig. 4.38. The solid curve shows the driving force G for insertion of a crack in the
thin ¯lm as a function of crack depth ´. The dashed curve shows the corresponding
con¯gurational force Wm de¯ned by (4.60) tending to extend the crack depicted in
Figure 4.37 steadily in the x¡direction.

From elastic fracture mechanics (Tada et al. 1985), it is known that

G(´) is given approximately by

G(´) = hf¾
2
m

¹Ef

8>>>>><>>>>>:
¼c2e

´

hf
; 0 < ´ ∙ hf

4

¼

´

hf

Ã
1:69¡ 0:47

hf
´

+ 0:032
h2f
´2

!
arcsin2

hf
´

; hf < ´

(4.61)

to within 1% of the results of a detailed numerical solution. The number ce =

1:1215 is a well-established numerical coe±cient that arises in describing the

crack tip singularity of an edge crack in elastic fracture mechanics (Tada et

al. 1985). This function G(´) is plotted in Figure 4.38. The energy release

rate increases linearly from zero, as it must on dimensional grounds alone,

as the crack depth increases from ´ = 0 toward ´ = hf . As the crack

depth increases beyond ´ = hf , the crack is forming in a region of the body

which is not stressed due to mismatch. Consequently, the energy release

rate diminishes with further increase in crack depth. For the case when
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´ À hf , the net forces of magnitude ¾mhf which tend to open the crack

are essentially concentrated forces acting at the the corners of right angle

wedges.

The energy release rate has been shown to be

G(´) ¼ hf¾
2
m

¹Ef

4¼

¼2 ¡ 4

hf
´

(4.62)

for ´ À hf by Freund (1978), independently of the approximate result given

in (4.61), which provides another check on the quality of the approximation.

The result of calculating Wm according to (4.60) is also shown in

Figure 4.38 as the dashed curve. The general features of the dependence

of Wm on ac are readily anticipated from the properties of G(´) due to the

relationship W Im(ac) = G(ac). The value of Wm increases parabolically with

crack depth as the depth increases from ac = 0 to ac = hf . Thereafter,

the value of Wm continues to increase with ac beyond ac = hf but at a

diminishing rate.

Whether or not a through-the-thickness crack will form in the ¯lm is

determined by a comparison of the energy supply, represented by Wm, to the

energy required for fracture, represented by Wc. According to the Gri±th

condition, a crack cannot grow if Wm < Wc for all admissible values of ac.

If cracking is con¯ned to the ¯lm, then the most easily achieved crack depth

is ac = hf . To see this, it is only necessary to observe that Wm increases

quadratically with ac=hf while Wc increases linearly. Thus, if Wm = Wc for

some ac < hf , then Wm > Wc for any crack depth ´ in the range ac < ´ < hf .

In other words, there is always a surplus of driving force which will tend to

grow the crack deeper. The crack depth in the ¯lm at which the condition

Wm = Wc is first satis¯ed, without a surplus of driving force, is ac = hf .

The critical thickness hf for ¯lm cracking at the given level of mismatch ¾m
which is implied by Wm = Wc is then

(hf)cr =
2

¼c2e

¡f ¹Ef
¾2m

: (4.63)

It is important to recall that this result applies only when the elastic moduli

of the ¯lm and the substrate are the same.

Suppose that conditions are favorable for formation of a crack in the

¯lm. Can the crack grow to depths greater than hf , that is, can it pene-

trate into the substrate? To pursue the answer to this question, consider

the schematic diagram of Wm and Wc versus ac=hf in Figure 4.39. The

graphs have been drawn so that Wm = Wc with ac=hf = 1; in other words,
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conditions are such that hf = (hf)cr. The change in slope of Wc versus ac=hf
represents the change in fracture resistance ¡s of the substrate material with

respect to the resistance ¡f in the ¯lm. The change in slope of Wm versus

ac=hf , on the other hand, re°ects the fact that the crack surface traction

which is relieved by crack growth extends through the ¯lm but not into the

substrate. With this understanding, the answer to the question posed above

is clear; it hinges on the relative slopes of the two graphs at ac=hf ! 1+. The

crack will not tend to penetrate into the substrate if dWm=dac ∙ dWc=dac
there. Alternatively, this condition can be stated as G(hf) ∙ ¡s. Using the

explicit expressions in (4.59) and (4.61), the condition can be expressed in

terms of system parameters as

¼c2ehf¾
2
m

¹Ef
∙ ¡s : (4.64)

But, from (4.63), the left side of the inequality is 2¡f so it becomes simply

2¡f ∙ ¡s : (4.65)

Thus, the crack will not tend to penetrate into the substrate as long as

the fracture resistance of the substrate material is at least twice as large

as the resistance of the ¯lm material. This condition is predicated on the

assumption that hf is just equal to the critical value given in (4.63). If, in

fact, hf > (hf)cr then crack penetration into the substrate is more likely.

The details can be pursued by scaling the solid curve in Figure 4.39 upward

but leaving the dashed curve unchanged. The depth of penetration will be

de¯ned by the rightmost intersection point of the two curves.

There are other inferences to be drawn from the sketch in Figure 4.39.

For example, if (4.65) is not satis¯ed, that is, if the fracture resistance of the

substrate is less than twice the fracture or resistance of the ¯lm, then the

crack can penetrate into the substrate even though the condition (4.63) may

not be satis¯ed. With reference to Figure 4.39, for example, this will be the

case if Wm < Wc at ac=hf = 1 but Wm = Wc for some ac=hf > 1 where the

two curves are tangent to each other. This depth is a stable position of the

crack and it arises at the smallest value of hf for ¯xed ¾m at which crack

growth can occur in this case.

When the elastic properties of the ¯lm and the substrate materials

di®er signi¯cantly, the behavior can be altered from that for the case of

equal properties. The qualitative in°uence of modulus di®erence can be

anticipated from simple cases with extreme modulus di®erences, all other

things being equal. For example, suppose that a crack approaches the ¯lm-

substrate interface from within the ¯lm, and that the substrate sti®ness is
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Fig. 4.39. The solid curve shows the driving force Wm tending to extend a ¯lm
crack versus the depth of penetration of that crack. The dashed curve shows the
material resistance to extension as the function of depth, drawn in this case for
¡s > 2¡f .

much greater than that of the ¯lm. Under such conditions, the substrate

constrains the ¯lm from giving up its stored elastic energy to drive crack

growth more than it does in the case of equal sti®nesses. Thus, crack for-

mation in the ¯lm is more di±cult in the case of a relatively still substrate.

Similarly, if the substrate material is relatively compliant compared to the

¯lm material, then it permits relaxation of residual stress over a relatively

large volume of ¯lm material. This implies that more stored energy can be

extracted to drive the crack than is available in the case of equal sti®nesses,

so crack formation in the ¯lm is less di±cult in the case of a relatively

compliant substrate than in the case of equal sti®nesses.

A quantitative basis for these ideas has been provided by Beuth (1992)

for the case of steady-state advance of a surface crack in an isotropic elas-

tic ¯lm bonded to an isotropic elastic substrate. Under circumstances of

steady-state crack propagation, the conditions on system parameters that

are necessary for growth can be expressed in terms of the states of plane

strain deformation which exist far ahead of and far behind the advancing

crack segment; see Figure 4.37. The four material parameters ºf , Ef , ºs,
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Fig. 4.40. The driving force G for insertion of a crack in a ¯lm-substrate system
under plane strain conditions for D2 = 0 and ¹Es= ¹Ef = 1=4, 1 and 4. The middle
curve reproduces the result shown by a solid curve in Figure 4.38. Numerical data
provided by Vijay Shenoy, Indian Institute of Science, Bangalore (999).

Es enter these conditions only through two dimensionless combinations, the

Dundurs parameters D1 and D2 which were de¯ned in (3.98) and reintro-

duced in (4.29). To illustrate the e®ect of modulus di®erence between the

¯lm and substrate, the two cases with D1 = ¡0:6 and 0.6 are compared

to the equal modulus case of D1 = 0, all with D2 = D1=4. These cases

correspond to ¹Es = 4 ¹Ef and ¹Es = ¹Ef=4, both with ºf = ºs =
1
2 , for example.

Attention is again focused on the plane strain deformation ¯eld far

behind the steadily advancing portion of the crack edge. The dependence

of energy release rate G(´) on the crack depth ´ from the free surface is

illustrated in Figure 4.38 for D1 = D2 = 0. The deviation from this behavior

for D1 6= 0 can be anticipated. For ´=hf ¿ 1, the e®ect of the substrate

is minimal, so the initial slope will be unchanged for any value of D1. As

´ increases across the thickness of the ¯lm, a compliant (sti®) substrate

will enhance (retard) relaxation of stored energy in the ¯lm, so that G(´)
will increase more (less) rapidly with ´ than for the case when D1 = 0. The

behavior for the particular cases when D1 = 0:6 ( ¹Es = ¹Ef=4) and D1 = ¡0:6

( ¹Es = 4 ¹Ef) are shown in Figure 4.40, as obtained by numerical simulation.

The energy release rate is unbounded as ´ ! hf in the former case and it is

zero as ´ ! hf in the latter case. For either ´ > hf or ´ < hf , the stress ¯eld

is square-root singular at the crack edge for any combination of material
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Fig. 4.41. The driving force Wm for extension of a crack along the ¯lm, as de¯ned
by (4.60), calculated from the results in Figure 4.40 versus ¯nal crack depth ac for
the case when the ¯lm and substrate have di®erent elastic constants.

parameters. When ´ = hf , however, the singularity in the stress ¯eld at the

crack edge di®ers from being square-root singular for dissimilar materials

(Zak and Williams 1963), being stronger or weaker in a way consistent with

the results of Figure 4.40.

The strong in°uence of the interface persists as the crack edge emerges

into the substrate, as is evident in Figure 4.40. As the crack edge moves

further into the substrate, the energy release rate has the asymptotic be-

havior given in (4.62). This behavior is independent of the properties of the

¯lm. Thus, the large di®erences observed in Figure 4.40 for ´=hf > 1 are

due primarily to the fact that energy release rate G(´) is scaled by the ¯lm

modulus ¹Ef in the normalization rather than any physical e®ect.

The dependence of recovered elastic energy Wm per unit length as

the propagating segment of the crack advances along the ¯lm is indicated

in Figure 4.41 for the same cases as were illustrated in Figure 4.40. While

quantitative conclusions of various kinds can be drawn for any particular

system from this type of analysis, only some general qualitative observa-

tions are included here. It is evident from Figure 4.41 that a decrease in

substrate sti®ness from the level of the ¯lm sti®ness (or, more properly, an
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increase in D1 from D1 = 0) will tend to enhance growth of a surface crack.

Furthermore, if such a crack grows, it will likely penetrate some distance

into the substrate. On the other hand, an increase in the sti®ness of the

substrate with respect to the ¯lm will tend to make crack growth more dif-

¯cult at a given level of mismatch, and it will make penetration of the crack

through the full thickness of the ¯lm or into the substrate less likely than

for the case of equal properties.

4.6.2 A tunnel crack in a buried layer

Suppose that a ¯lm of thickness 2hf is buried between two relatively thick

layers of material, which will again be called the substrate material, and that

the ¯lm carries a residual equi-biaxial mismatch tensile stress of magnitude

¾m with respect to the substrate material. A tunnel crack is a crack that

forms on a plane that is perpendicular to the plane interfaces between the

¯lm and its con¯ning layers and which is large in extent in a direction parallel

to the interface compared to hf ; see Figure 4.42. The crack edges, which

are separated by the distance 2ac and which are parallel to the interfaces,

are stationary far behind the advancing edge. The crack grows by advance

of the portion of crack edge which threads across the thickness of the ¯lm.

If this portion is far from the surface of the solid (for a crack growing in

from an edge) or is far from the other advancing segment at the remote end

(for an interior crack) then the advancing part of the crack responds to a

spatially uniform environment and the process is steady-state as viewed by

an observer traveling with that part. The analysis of the process closely

follows that developed for an isolated crack in a surface ¯lm which was

outlined in Section 4.6.1. For the time being, the two materials are assumed

to have identical elastic properties.

The steady-state width of the tunnel crack is 2ac which may be less

than, equal to or greater than 2hf . The amount of work per unit crack

advance in the x¡direction which must be supplied to overcome material

resistance is

Wc = 2hf¡f

8<:
ac=hf ; ac ∙ hf

1 + (ac=hf ¡ 1) ¡s=¡f ; ac > hf :
(4.66)

For the fracture to proceed, this amount of work must be drawn from the

background elastic ¯eld.

The energy release rate G(´) at total crack width 2´ for each crack

edge far behind the advancing portion of the tunnel crack, measured per
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Fig. 4.42. Schematic diagram of steady advance of a tunnel crack in a strained
layer embedded between two relatively thick substrates. Crack growth is driven by
residual stress in the buried layer.

unit length along the edge, is

G(´) = ¼hf¾
2
m

¹Ef

8>>><>>>:
j´j
hf

; 0 < j´j ∙ hf

2

¼

s
j´j
hf

arcsin2
hf
j´j ; hf < j´j :

(4.67)

It follows immediately that Wm, the total elastic energy released per unit

advance of the propagating portion of the crack, is

Wm = 2

Z ac

0
G(´) d´

(4.68)

=
8¾2mh

2
f

¼ ¹Ef

8>>>>>><>>>>>>:

¼2a2c
8h2f

; ac ∙ hf

"
a2c
h2f

¡ 1

#1/2
arcsin

hf
ac

+
a2c
2h2f

arcsin2
hf
ac

+ ln
ac
hf

; ac > hf :

Note that this result applies only when the elastic properties of the ¯lm and

the substrate are the same. The variation of Wm and Wc with crack depth

ac resembles that shown in Figure 4.39 for the case of a surface crack. A

necessary condition for a tunnel crack to form when ¡s ¸ 2¡f at mismatch

stress ¾m is

(hf)cr =
2

¼

¡f ¹Ef
¾2m

(4.69)
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and this crack will form across the full thickness of the layer, that is, with

ac = hf .

4.6.3 An array of cracks

The formation of a through-the-thickness crack in a ¯lm subjected to a

residual or applied tensile stress relieves that stress in the ¯lm material at

points adjacent to the crack path. At points in the ¯lm at some distance

from the crack path, the stress remains unrelaxed due to the constraint

of the substrate. Consequently, a long crack that is parallel to the ¯rst

formed crack can also form. Indeed, an array of parallel cracks over the

entire ¯lm surface is likely, and the point of the discussion in this section

is to provide an estimate of the dependence of the spacing between cracks

in such an array on the ¯lm thickness hf and the mismatch stress ¾m. The

discussion is limited to the case when the equi-biaxial mismatch stress is

uniform throughout the ¯lm, the elastic properties of the ¯lm and substrate

are nominally the same, and hs=hf is su±ciently large so that the behavior

is insensitive to the substrate thickness hs. Furthermore, it is assumed that

the cracks grow through the thickness of the ¯lm to the depth hf , but that

they do not penetrate into the substrate. There is no fundamental barrier to

relaxation of these limitations, but the relatively simple system is su±ciently

rich in physical detail to reveal the principal features of behavior.

The simplest conception of the phenomenon of crack array formation

is depicted in Figure 4.43. This system has all the features of the crack

formation process illustrated in Figure 4.37, except that a periodic array of

cracks is formed instead of only a single isolated crack. The crack-to-crack

spacing is ¸, and the array extends inde¯nitely in the positive and negative

y¡directions. A particular feature of this situation is that the propagating

segment of each crack is identical to that of every other crack, and that

these segments advance in unison in the x¡direction. This feature will be

reconsidered below.

The process of advance of the propagating segments of the cracks can

be understood in terms of an energy balance. Some energy is absorbed in

the process of forming the fractures as they grow and, at the same time,

internal stress is relieved in the ¯lm which reduces the stored elastic energy

as the cracks grow. For steady advance of the propagating segments of the

cracks, the energy change per unit crack advance is completely equivalent

to the energy change due to removal of a slice of material of unit thickness

in the x¡direction from far ahead of the advancing crack segments, intro-

duction of an edge crack array in this slice under plane strain conditions,
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Fig. 4.43. A periodic array of cracks advancing steadily through a thin ¯lm, driven
by residual stress in the ¯lm.

and insertion of this crack slice back into the system at some section far

behind the advancing crack segments. This reasoning makes it clear that

the energy balance can be enforced through a two-dimensional plane strain

deformation process.

The underlying two-dimensional con¯guration is evident in Figure 4.43

on a section for some ¯xed negative value of x for which jx=hf j À 1. The

energy per period of length ¸ that is consumed as each propagating crack

segment advances a unit distance is Wc = hf¡f where ¡f is the speci¯nic

fracture energy of the ¯lm material. The initial elastic energy per period

per unit crack advance is ¾2mhf¸=Mf . This stored energy is partially relieved

to drive the crack growth process. The energy released per period per unit

crack advance necessarily has the form

Wm =

Z hr

0
G(´) d´ = f(¸=hf)¾

2
mh

2
f = ¹Ef (4.70)

on dimensional grounds alone, where G(´) is the energy release rate for each

crack advancing through the ¯lm under plane strain conditions. The nondi-

mensional factor f(¸=hf) must be determined by means of stress analysis.

It can be expected to be an increasing function of its argument, and to have

the asymptotic behavior that f(¸=hf) ! 0:63¼ as ¸=hf ! 1, consistent

with (4.61).

The energy release rate per crack for growth of a periodic array of
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edge cracks normal to the free edge of a solid under plane strain conditions

is given in graphical form by Tada et al. (1985). This result can be ¯t to

any desired degree of accuracy by use of elementary functions, and then

integrated to obtain Wm according to (4.70), which yields the total energy

released by each crack in the array as it grows from the free surface of the

¯lm to the ¯lm-substrate interface at depth ac = hf . In particular, the

function f(¸=hf) can be determined. An approximate form of this function

that provides a compromise between accuracy and simplicity is

f(¸=hf) ¼ 0:63¼
³
1¡ e−λ/3hf

´
: (4.71)

Once this function is known, the condition for minimum crack spacing ¸min
is determined by Wm = Wc. If the spacing falls below ¸min, then Wm < Wc

or there is insu±cient energy available to drive each of the fractures without

external in°uence. Thus, ¸min must satisfy the condition

f(¸min=hf) =
¹Ef¡f
¾2mhf

: (4.72)

When the approximation (4.71) is used, this equation can be inverted to

yield the dependence of ¸min=hf on the normalized ¯lm characteristic stress

¾m

q
hf= ¹Ef¡f , and the result is shown in Figure 4.44 where it is labeled

as simultaneous formation. As might be expected, the dependence has a

vertical asymptotics at ¾m

q
hf= ¹Ef¡f = 0:71 which is the value corresponding

to the isolated crack limited obtained when ¸min=hf ! 1 in (4.63). As

¾m
q
hf= ¹Ef¡f is increased above the threshold value, the minimum spacing

decreases monotonically.

Among the various simpli¯cations which were incorporated in the fore-

going discussion of the process of formation of a distributed array of surface

cracks, perhaps the most extreme is that the propagating segments of these

cracks advance in unison along the ¯lm. It is likely that cracks which are

nucleated from the most severe defects form ¯rst, and grow to lengths which

are large compared to hf . As the mismatch is increased through continued

temperature change or increased external load, cracks form from the less

severe defects. Whether or not these cracks can then grow into additional

long surface cracks depends on their proximity to previously formed cracks.

To consider this sequential nature of crack formation, the condition

that the propagating segments of the forming cracks advance in unison is

relaxed. Instead, it is assumed that a periodic array of cracks ¯rst forms

in the ¯lm at spacing 2¸; the mechanics of formation of this initial array is

not an issue in this discussion. After these cracks are fully formed and their



322 Delamination and fracture

0.5 1.0 1.5 2.0

σm (hf / Ef Γf )
1/2 - normalized film stress

0

2

4

6
λ m

in
 /  h

f -
 c

ra
ck

 s
pa

ci
ng

sequential formation

simultaneous formation

Fig. 4.44. The minimum spacing possible for an array of cracks formed simultane-
ously, as in Figure 4.43, or sequentially, as an Figure 4.45, versus residual stress in
the ¯lm. The arrow identi¯es the stress at which cracking ¯rst becomes possible as
de¯ned by the condition (4.63).

propagating segments have advanced into remote regions, it is assumed that

a second set of cracks is formed, with each member of this set being located

midway between two cracks of the earlier formed set. The propagating

segments of the second set are again assumed to advance more or less in

unison, as illustrated in Figure 4.45. It is the mechanics of formation of this

second set that is of interest here. The ¯nal state of the system is again

a periodic array of surface cracks with spacing ¸, but the second set of

cracks must form under conditions somewhat di®erent from those prevailing

when the ¯rst set was formed. Nonetheless, the energetics of formation

can again be expressed in terms of the function f(¢) which was introduced

earlier in this section. The main result follows from comparisons of the plane

strain deformation states which exist (i) prior to formation of any cracks,

(ii) following formation of the ¯rst set at spacing 2¸ but prior to formation

of the second set, and (iii) following formation of the second set of cracks to

produce a periodic array at spacing ¸.

The elastic energy density per unit area of interface stored in the ¯lm

prior to formation of any cracks is U0 = ¾2mhf=Mf , as before. Then, following

formation of the ¯rst set of cracks but prior to formation of the second set,
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Fig. 4.45. A periodic array of ¯lm cracks formed sequentially. First, an array with
spacing 2¸ is formed. Then, a second array, with its members midway between
adjacent cracks of the ¯rst formed set, is inserted.

the energy density per unit area of interface is reduced to

U1 =
¾2mhf
Mf

¡ f(2¸=hf)
¾2mh

2
f

2 ¹Ef¸
: (4.73)

Likewise, if both sets of cracks are formed simultaneously, the energy density

per unit area of interface would be reduced to

U2 =
¾2mhf
Mf

¡ f(¸=hf)
¾2mh

2
f

¹Ef¸
: (4.74)

Thus, the energy release per unit advance of each crack formed in the second

set is

Wm = 2¸ (U1 ¡ U2) =
¾2mh

2
f

¹Ef
[2f(¸=hf)¡ f(2¸=hf)] : (4.75)

The smallest value of ¸ for which formation of the second set of cracks

is energetically possible, say ¸min, is established by the condition Wm =

Wc = hf¡f . For a value of ¸ smaller than ¸min, the relationship Wm < Wc

implies that spontaneous crack formation is not possible. The condition

Wm = Wc in this case implies that

2f(¸min=hf)¡ f(2¸min=hf) =
¹Ef¡f
¾2mhf

: (4.76)



324 Delamination and fracture

This equation can also be inverted to yield the dependence of ¸min=hf on

¾m

q
hf= ¹Ef¡f , and the result is shown in Figure 4.44 where it is labeled

as sequential formation. The present assumption on sequential formation

of ¯lm cracks, which is thought to be more realistic than that of simulta-

neous formation, predicts a substantially larger minimum spacing than was

found for the case of simultaneous formation. Experimental data supporting

the sequential formation conjecture as being more realistic are reported by

Thouless et al. (1992) and by Delannay and Warren (1991). Among situa-

tions of this type, perhaps the most realistic would be to establish threshold

conditions for insertion of the last crack into a periodic array. The impli-

cations of this approach have not yet been examined for cracks, but the

corresponding situation for dislocations is discussed in Chapter 6.

4.6.4 Example: Cracking of an epitaxial film

A In0:25Ga0:75As ¯lm is grown epitaxially on a thick InP substrate, resulting in a
state of equi-biaxial tension. The mismatch strain can be estimated to be ²m = 0:02
from the lattice parameters shown in Figure 1.17 and the rule of mixtures method
of inferring lattice mismatch of alloys implied by (1.15). Assume the ¯lm material
to be isotropic with elastic modulus Ef = 76:8GPa and Poisson ratio ºf = 0:32.
Furthermore, assume the moduli of the substrate to have the same values, although
the elastic sti®ness of the substrate is actually only about 75% that of the ¯lm. The
fracture energy of the ¯lm material is ¡f = 1:6 J/m2.

(a) Determine the value of ¯lm thickness hf at which through-the-thickness
cracks can be expected to appear in the ¯lm during growth.

(b) If the cracks do not penetrate into the substrate, estimate the crack spacing
when the ¯lm thickness hf has increased to twice the thickness determined
in part (a).

(c) Discuss the likelihood of crack penetration into the substrate.

Solution:

(a) The mismatch stress is ¾m = Mf²m = 2:26GPa in this case. The critical
thickness for onset of ¯lm cracking can be estimated from (4.63) to be

(hf)cr =
2

¼c2e

1:6£ 76:8£ 109

2:262 £ (1¡ 0:322)£ 1018
= 13:6 nm : (4.77)

(b) An expression for the minimum spacing of ¯lm cracks, assuming that they
do not penetrate into the substrate, is given in (4.76). Adopting the ap-
proximation for the function f( ) provided in (4.71), the minimum crack
spacing when the ¯lm thickness is twice the critical thickness is estimated
from (4.76) to be

¸min = ¡6(hf)cr ln

µ
1¡

q
¹Ef¡f=1:26¼¾2

m(hf)cr

¶
= 99:9 nm (4.78)
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for hf = 2(hf)cr.
(c) For this system, the fracture energies of the ¯lm and substrate materials are

very similar. Consequently, the condition ¡s ¸ 2¡f for con¯nement of the
fractures to the ¯lm material given in (4.65) is not met and it is likely that
the cracks will penetrate into the substrate immediately upon formation.
As a result of crack penetration into the substrate, the actual crack spacing
likely will be less than that anticipated in part (b). This expectation is borne
out by the experimental observations of Wu and Weatherly (1999).

4.7 Crack deflection at an interface

In Section 4.4, conditions for delamination growth at a ¯lm-substrate in-

terface were considered under the tacit assumption that the fracture was

naturally con¯ned to propagate in the interface. Similarly, in Section 4.6,

conditions for crack growth through the thickness of the strained ¯lm in a

direction normal to the ¯lm-substrate interface, and possibly into the sub-

strate, were considered. Again, it was tacitly assumed that the fracture

plane was always perpendicular to the interface. In reality, a crack grow-

ing along an interface may prefer to kink out of the interface and into the

interior of one of the materials, or a crack approaching an interface from

one of the joined materials may prefer to de°ect into the interface rather

than to continue across it. Thus, the circumstances which admit this kind

of crack de°ection behavior are examined in this section for conditions of

plane strain deformation.

While the details of any particular situation can become complicated,

the strategy is simple and fundamental. The state of a planar crack edge

at any position is represented by the current value of energy release rate G,
which is the con¯gurational force tending to drive the crack forward, and

by the local phase angle Ã, which characterizes the degree of shear loading

compared to tensile loading on the extension of the crack plane ahead of

the crack edge. The material resistance to crack advance in this state is

represented by the local work of fracture ¡(Ã), where the possibility that

this material speci¯c quantity depends on the local phase angle is made

explicit. From any such state, it is now imagined that the crack can sample

its prospects for further growth in any direction, including the possibility

of continued straight ahead planar growth. This sampling is done for any

possible direction of growth by sending out a virtual crack extension, or kink,

which is very short compared to any other dimensions in the con¯guration.

Let !k denote the angle of de°ection of this kink from the plane of the main

crack; !k = 0 corresponds to straight ahead growth. The sign convention
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adopted for !k is such that a crack will tend to kink with !k > 0 when both

KI > 0 and KII > 0. Associated with the leading edge of this kink is an

energy release rate or driving force Gk and a local stress state phase angle Ãk.

The material into which the crack kinks resists the formation of this kink

by requiring that the work of fracture per unit area must be at least ¡k(Ãk),

where again this work of fracture may depend on the local phase angle. The

critical condition for crack advance is then de¯ned by the smallest value of

applied loading (represented by ²m, ¾m or some other parameter) for which

Gk = ¡k(Ãk) at some !k, with Gk < ¡k(Ãk) for all other values of !k. If

!k turns out to be zero then straight ahead growth is preferred; otherwise,

crack de°ection to a direction de¯ned by !k 6= 0 is preferred. To summarize,

continued growth of the crack in its own plane occurs with G = ¡(Ã) while

Gk < ¡k(Ãk) for all possible !k. On the other hand, growth of an oblique

kink in a direction !maxk occurs with Gmaxk = ¡k(Ãk) while G < ¡(Ã) where

Gmaxk = max−π<ωk<π
Gk (4.79)

at some ¯xed load level and !maxk is the direction in which Gk achieves

its maximum value. This implies that the outcome of competition be-

tween straight ahead cracking and kink crack formation depends on whether

the ratio G=Gmaxk is greater than or less than the fracture resistance ratio

¡(Ã)=¡k(Ãk), respectively.

This general strategy is next applied to consider the possibility of

a delamination crack on a bi-material interface de°ecting into one or the

other of the joined materials, and the possibility of a crack approaching a

bi-material interface de°ecting into the interface rather than arresting or

continuing across the interface. This development is limited to the case of

joined isotropic elastic materials with the material parameters restricted by

D2 = 0 where the material parameter D2 is de¯ned by (4.29). This avoids

the ambiguity which arises from the oscillatory stress concentration ¯eld

when D2 6= 0.

4.7.1 Crack deflection out of an interface

Consider ¯rst the situation in which the main crack lies in the interface

between the ¯lm and substrate under two-dimensional conditions, as illus-

trated in Figure 4.22. The equi-biaxial stress due to mismatch which exists

far ahead of the delamination front is ¾m and the stress remaining in the

¯lm on a section far behind the delamination front with normal in the di-

rection of delamination advance is ¾a. As was illustrated in Figure 4.23, the

stress ¯elds in the ¯lm and substrate in this con¯guration di®er from the
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stress ¯elds in a plane strain con¯guration by, at most, spatially uniform

equilibrium stress ¯elds, and the interfacial stress distributions are identical

in the two con¯gurations. The plane strain con¯guration that is equivalent

(in this sense) is that illustrated in part (c) of Figure 4.23 where the loading

factor is ¾m¡¾a. The superposition of the equilibrium plane strain ¯eld with

uniform stress ¾xx = ¡(¾m¡¾a) in the ¯lm and zero stress in the substrate

reduces the con¯guration to that illustrated in part (a) of Figure 4.46. In

this con¯guration, there is no residual stress far ahead of the delamination

front, and the delamination process is driven by the resultant force per unit

depth of magnitude (¾m ¡ ¾k)hf acting far behind the delamination front.
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Fig. 4.46. Part (a) shows a delamination crack propagating along the ¯lm-substrate
interface. In part (b), the possibility that the crack edge de°ects out of the interface
is considered, with the new direction of growth being inclined at an angle !k to the
interface plane.

For the time being, suppose that ¾m > ¾a > 0 which corresponds to

a ¯lm with residual tensile stress. For this case, it was noted in Section 4.4

that the phase angle of the stress concentration ¯eld at the edge of a de-

lamination is approximately Ã = 52:1◦ and that KI > 0. Because the phase

of a delamination crack with this type of loading is constant, the interfacial

fracture energy will be written simply as ¡, as before, thus suppressing any

dependence of this quantity on Ã under these special conditions.

For the loading present in the ¯lm delamination process, a state of

large tensile stress is generated in a direction from the edge of the delami-

nation zone corresponding to !k > 0, and the tendency for formation of an

alternative crack path is toward kink formation into the substrate. The frac-

ture resistance of the substrate, a homogeneous material, will be denoted by

the speci¯c fracture energy ¡k(Ãk) = ¡s for any Ãk. For the cases of interest,

it is found that Ãk ¼ 0 or the stress state at the edge of the kink crack is
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essentially mode I. The critical condition for a delamination to de°ect out

of the interface and into the substrate is then

Gmaxk

G >
¡s
¡

(4.80)

and, by implication, such crack kinking is unlikely if the inequality is re-

versed.
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Fig. 4.47. The ratio of driving force for the kink crack in Figure 4.46(b) versus kink
angle. Gk is normalized by the value of energy release rate G for continued growth
of the delamination crack in the interface.

The fracture mechanics parameters for an elastic interface crack de-

°ecting out of the interface into one of the joined materials has been deter-

mined numerically by He and Hutchinson (1989b). From their results, it can

be shown that the energy release rate for the kink segment in Figure 4.46,

which is small in length compared to hf , depends on the kink angle !k as

shown in Figure 4.47 for Ã ¼ 52:1◦. From this plot, it is evident that

Gmaxk

G ¼ 1:76 ; !maxk ¼ 62◦ (4.81)

where !maxk is the kink angle at which Gk takes on its maximum value and

G is the energy release rate which prevailed prior to formation of the out-of-

plane kink crack. It was also demonstrated by He and Hutchinson (1989b)
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Fig. 4.48. The plane spanned by two nondimensional combinations of system pa-
rameters, with (¾m¡¾a)

2hf=2 ¹Ef¡ representing crack driving force and ¡s=¡ repre-
senting substrate fracture resistance, with both measures normalized by the same
interface separation energy. Based on the developments in this chapter, the plane
can be divided into regions in which no cracking is possible, only substrate fracture
is possible, only interface delamination is possible, and either interface or substrate
fracture is possible.

that Ãk ¼ 0 at !k = !maxk , so the direction of kink formation selected on the

basis of a maximum energy release rate condition essentially corresponds

with the direction selected on the basis of a requirement of purely mode

I crack growth in a homogeneous material. The immediate implication of

the result in (4.81) is that a delamination crack formed between a ¯lm in

tension and its unstressed substrate will be con¯ned to the interface as

long as ¡s=¡ > 1:76, whereas crack de°ection into the substrate is likely if

¡s=¡ < 1:76.

The results described in the foregoing discussion can be combined

with the basic delamination criterion of Section 4.4 to produce the interface

crack de°ection behavior diagram shown in Figure 4.48. The material and

geometrical parameters of the system are combined into two key nondimen-
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sional ratios, (¾m ¡ ¾a)
2hf=2 ¹Ef¡ and ¡s=¡, and the plane with the values

of these ratios varying along rectangular axes can be divided into zones of

behavior as illustrated. In labeling one zone as `substrate cracking only', it

is presumed that the substrate crack can be formed from some interfacial

°aw that did not grow as a delamination crack or perhaps that the substrate

crack can be formed at the ¯lm edge. Finally, recall that systems are being

considered for which ¾m > ¾a > 0.

The behavior map shown in Figure 4.48 was based on numerical results

obtained for the particular case when D1 = D2 = 0. The crack kinking

boundary value problem was also analyzed by He and Hutchinson (1989b)

for several nonzero values of D1. To illustrate the in°uence of variations

in the value of D1 on system response, the lines representing the critical

condition Gmaxk =G = ¡s=¡ for D1 = 0:5 and ¡0:5 have been included an

Figure 4.48; for these two values of the sti®ness ratio, the phase angles of

the edge stress concentration are seen from Figure 4.28 to be approximately

Ã ¼ 59◦ and Ã ¼ 48◦, respectively. It is evident from these limited results

that D1 < 0 (substrate sti®er than ¯lm) suppresses crack de°ection into the

substrate whereas D1 > 0 enhances such crack de°ection, all other things

being equal.

4.7.2 Crack deflection into an interface

In Section 4.4, the conditions which are necessary for a strained thin ¯lm

to separate spontaneously from its substrate by growth of a delamination

crack were considered and, in the preceding subsection, the possibility of that

delamination crack kinking into the substrate was considered. Similarly, the

conditions that are necessary for formation of a through-the-thickness crack

to form in a strained ¯lm in tension were considered in Section 4.6. In this

subsection, the possibility of such a crack either advancing into the substrate

or kinking into the interface between the ¯lm and substrate is considered.

Indeed, the possibility of advance of such a crack into the substrate when the

¯lm and substrate materials have identical elastic properties was addressed

in (4.64) and (4.65), but the circumstances are generalized here to include

both a di®erence in properties between the materials and the competition

between advance of the crack into the substrate versus kinking into the

interface. The strategy for determining the outcome of the competition

which was outlined in the introduction is followed in this discussion.

Suppose that a crack extends through the thickness hf of an isotropic

elastic ¯lm from its free surface to the interface with an isotropic elastic

substrate under plane strain conditions. The crack is presumed to have
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Fig. 4.49. A through-the-thickness crack in a ¯lm is illustrated in part (a). Parts
(b), (c) and (d) depict the possibilities that the crack will extend a small distance
¢a into the substrate, in one direction along the interface, and in both directions
along the interface, respectively.

formed in order to partially relieve the residual equi-biaxial tensile stress

¾m in the ¯lm, so the crack opening is symmetric with respect to the crack

plane. The substrate thickness is assumed to be much greater than hf . The

crack edge lies in the interface, and the material in the vicinity of the edge

is depicted in part (a) of Figure 4.49. The elastic near-tip stress ¯eld in the

neighborhood of the crack edge is singular, but not necessarily square root

singular for general combinations of material parameters D1 and D2. As

noted above, attention here is restricted to the case of D2 = 0 but D1 is

arbitrary for the time being. Under these conditions, the local stress ¯eld in

terms of the polar coordinates indicated in part (a) of Figure 4.49 has the

universal form (Zak and Williams 1963)

¾ij(r; µ) =
ko

(2¼r)λo
§oij(µ) (4.82)

plus less dominant terms, where §oij is a known function of angular coor-

dinates (but its explicit form is inconsequential for present purposes), ¸o
is an exponent in the range ¡1 < ¸o < 0, and ko is a stress intensity fac-

tor which is independent of r and µ and which has physical dimensions of

force£(length)λo−2. For any value of D1, the exponent ¸o is determined by

the equation

cos¸o¼

1¡ 4¸o + 2¸2o
+D1 = 0 (4.83)

A plot of ¸o versus D1 implied by (4.83) is shown in Figure 4.50, where it

can be seen that the singularity is stronger than (weaker than) square root

if the plane strain modulus of the ¯lm material is greater than (less than)

the plane strain modulus of the substrate material.

The main crack is now imagined to advance from its position in the

interface in one of three possible ways; the three ways are represented by

parts (b), (c) and (d) of Figure 4.49. The crack samples its prospects for

advance by extending in its own plane a distance ¢a into the substrate
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Fig. 4.50. The strength of the singularity in stress, as de¯ned in (4.82), versus the
sti®ness ratio D1.

beyond the interface (part (b) of Figure 4.49) or by extending along the

interface either as a single kink of length ¢a (part (c) of Figure 4.49) or as

a double kink each of which is of length ¢a (part (d) of Figure 4.49). In

each case, it is assumed that the sampling length ¢a is small compared to

hf .

In the case of advance of the crack into the substrate, the con¯guration

remains symmetric with respect to the crack plane and the crack advances

in mode I. The magnitude of the stress relieved by crack advance is set by

ko so, due to requirements of dimensional consistency, the mode I stress

intensity factor of the added growth segment must depend on ko and ¢a

according to

KI = CI ko¢a1/2−λo (4.84)

where CI is a dimensionless function of D1 which must be determined from

the solution of the relevant boundary value problem. From (4.24), it follows

that the corresponding energy release rate or crack driving force is

G =
K2
I
¹Es

=
C2I k

2
o¢a1−2λo
¹Es

: (4.85)

For a crack that advances as a kink in the interface, either a single kink
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or a symmetric double kink, as depicted in parts (c) or (d), respectively, of

Figure 4.49, the local ¯eld near the edge of a kink has a nonzero phase angle

Ã, in general. The state of opening of the kink cracks is some combination

of mode I and mode II in both cases. The respective stress intensity factors

of the kink cracks will be denoted by KIkn and KIIkn where n = 1 for a single

kink and n = 2 for a double kink con¯guration. The mode II stress intensity

factors di®er in algebraic sign but not in magnitude for the two crack edges

in the case of double kinking. For either single or double kinking, the stress

intensity factors are necessarily proportional to ko due to the linearity of

the underlying boundary value problem. Furthermore, the requirements of

consistency of physical dimensions dictate that the expressions for the stress

intensity factors in terms of other variables must have the form

KIkn = CIknko¢a1/2−λo ; KIIkn = CIIknko¢a1/2−λo (4.86)

where CIkn and CIIkn are dimensionless quantities depending on D1; these

coe±cients must be determined from the solutions of the pertinent boundary

value problems. The energy release rate corresponding to the stress intensity

factor expressions in (4.86) is, from (4.30),

Gkn =
K2
Ikn

+K2
IIkn

¹Es(1 +D1)
=

k2o¢a1−2λo
³
C2Ikn + C2IIkn

´
¹Es(1 +D1)

(4.87)

The quantity Gk2 is the energy release rate for one of the kinks in the case

of double kinking. From (4.28), the stress concentration ¯eld phase angle

corresponding to (4.86) is

Ãkn = arctan

∙
KIIkn

KIkn

¸
= arctan

∙
CIIkn
CIkn

¸
(4.88)

where Ãk2 is the phase angle for the right going kink in part (d) of Fig-

ure 4.49.

Note that both the energy release rate G for crack penetration into

the substrate given by (4.85) and the energy release rate Gkn for single or

double interface kink formation depend on the increment of crack advance

¢a in the same way. Consequently, the ratio of Gkn to G, which speci¯es

the relative energy release for kink crack formation of some length ¢a to

substrate penetration to the same depth, is independent of ¢a. This ratio,

which is given by

Gkn
G =

C2Ikn + C2IIkn
(1 +D1)C2I

; (4.89)

depends solely on the sti®ness ratio D1 for D2 = 0. The dependence of the
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parameters CI, CIkn and CIIkn has been determined by He and Hutchinson

(1989b) through numerical solution of the relevant elastic crack boundary

value problems, and values are tabulated by He et al. (1994). The ratio

Gkn=G versus D1 implied by these results is shown in Figure 4.51 for both

single and double interface kink formation, and the crack edge phase angles

for single and double kinking are shown in Figure 4.52; recall that Ã = 0 for

substrate penetration by straight ahead crack growth.
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Fig. 4.51. Ratio of the energy release rate for incremental crack extension along
the interface, as in part (c) or (d) of Figure 4.49, to the energy release rate for
incremental crack extension into the substrate, as in part (b) of Figure 4.49, versus
the sti®ness ratio D1. Note that the di®erence between single and double kinking
into the interface is minor.

Several useful observations follow immediately from these results. For

one thing, the two curves in Figure 4.51 are nearly identical over the full

range of values of D1. Consequently, the tendencies toward single and dou-

ble kinking may be considered to be essentially the same for any practical

purposes. Secondly, the graphs of Gkn=G versus D1 are quite °at over the

range ¡0:5 < D1 < 0:5 which implies that a sti®ness di®erence between the

¯lm and substrate materials does not have a large in°uence on the competi-

tion between extension of a ¯lm crack into the substrate versus extension as

a single or double kink along the interface for sti®ness ratios in this range.
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Fig. 4.52. Phase angle of a right-going interface kink crack, as illustrated in parts
(c) and (d) of Figure 4.49, versus the sti®ness ratio D1. Note that the di®erence
between single and double kinking into the interface is minor.

Yet another useful observation from Figure 4.52 is that the stress concen-

tration phase angles for the cases of single and double kinking depend on

D1 in much the same way. Thus, even in cases when the interface fracture

resistance ¡(Ãkn) depends on the local phase angle, the resistance to a single

kink or each of a pair of double kinks can be viewed as being about the same

for any practical purposes.

Finally, the outcome of the competition between crack penetration

into the substrate versus interface kink crack formation is determined by

comparing Gkn=G to the fracture resistance ratio ¡(Ã)=¡s where ¡(Ã) is the

fracture resistance of the interface at the appropriate phase angle and ¡s
is the fracture resistance of the substrate material to mode I crack growth.

For example, at D1 = 0, the ratio is approximately 0.26. Thus, a ¯lm crack

will likely penetrate into the substrate upon extension if 0:26¡s < ¡ but will

likely de°ect into the interface if 0:26¡s > ¡. The fracture resistance ¡ is

that at a phase angle of roughly Ãkn ¼ ¡40◦.
For any speci¯ed value of D1, the results of the foregoing discussion

can be combined with the basic ¯lm cracking criterion of Section 4.6 to

produce a cracking behavior diagram. Such a diagram is illustrated here
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for the case when D1 = 0, that is, when the ¯lm and substrate elastic

properties are the same. The ¯lm of thickness hf is presumed to carry an

initial equi-biaxial mismatch tensile stress ¾m. The fracture resistance of the

¯lm material, the substrate material and the interface are denoted by ¡f , ¡s
and ¡ where the last is understood to be the value at the appropriate phase

angle. The material and geometrical parameters are combined into three

nondimensional groups, namely, ¾2mhf=
¹Ef¡f , ¡=¡f and ¡=¡s. The plane with

rectangular coordinates of ¾2mhf=
¹Ef¡f versus ¡=¡f can then be divided into

regions of behavior representing ¯lm cracking and interface delamination or

dedonding. The use of ¡=¡s as a parameter in this plane allows the further

reduction of this plane into regions concerned with crack penetration into

the substrate, as well. The behavior map for ¡=¡s < 0:26 is fundamentally

di®erent from that for ¡=¡s > 0:26, so the map is illustrated for each of

these two cases separately in parts (a) and (b), respectively, of Figure 4.53.

The horizontal dividing line in the behavior diagram follows directly

from (4.63). The inclined dividing line separating the region in which ¯lm

cracking is possible from the region in which interface dedonding also be-

comes possible is determined by combining two pieces of information. For

D1 = 0, the energy release rate for the ¯lm crack when it meets the in-

terface is ¼c2e¾
2
mhf=

¹Ef from (4.61), and the driving force varies continuously

with crack length as the crack penetrates into the substrate; see Figure 4.38.

Then, from Figure 4.51 with D1 = 0, it is seen that Gkn = 0:26G. Thus, if

¡ is the fracture resistance of the interface, the critical condition dividing

those circumstances which admit crack kinking into the substrate from those

which do not is

¾2mhf
¹Ef¡f

=
1

0:26¼c2e

¡

¡f
= 1:03

¡

¡f
(4.90)

which is the equation of the dividing line. Finally, the line dividing those

circumstances which admit penetration of the ¯lm crack into the substrate

from those which do not follows from (4.64) in the case of equality, that is,

¾2mhf
¹Ef¡f

=
1

¼c2e

¡s
¡f

=
1

¼c2e

¡s
¡

¡

¡f
(4.91)

This line falls above or below the line de¯ned by (4.90), depending on

whether ¡=¡s < 0:26 or > 0:26, respectively. These are the two possi-

bilities illustrated in parts (a) and (b) of Figure 4.53 for arbitrary choices of

the ratio ¡=¡s in the appropriate ranges.

The mechanics of the growth of cracks approaching interfaces is a topic

of broad interest for layered coatings that are used for thermal, environmen-

tal and tribological protection of surfaces. Experimental observations of the
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Fig. 4.53. Plane of the dimensionless groups of system parameters, in the form of
¾2
mhf= ¹Ef¡f versus ¡=¡f , divided into ranges of fracture behavior based on conclu-

sions formed in this chapter. The upper (lower) diagram applies for the case in
which ¡=¡s < 0:26 (> 0:26).

e®ects of mismatch in material properties across interfaces on the growth of

cracks subjected to monotonic and cyclic loading have been considered by

(Suresh et al. 1993) and (Suresh 1998).
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Fig. 4.54. The composite beam, formed by gluing to polymeric beams together
end-to-end, is loaded in three-point bending. A semi-circular surface crack in the
glue that joins the two beams is shown in the enlarged view of the glue joint on the
right. Adapted from Suresh (1998).

4.8 Exercises

1. The double cantilever beam (DCB) is a widely used fracture test specimens
for both brittle and ductile materials. Consider the DCB specimen schemat-
ically shown in Figure 4.9. From the discussion presented in Section 4.2.1,
answer the following questions.

(a) Calculate the energy release rate G for the double cantilever specimen
subjected to a tensile opening load P .

(b) Derive an expression for the mode I stress intensity factor KI in terms
of the applied load, the specimen geometry and elastic properties of
the double cantilever specimen.

(c) Discuss how calibrations of G and KI for the double cantilever speci-
men may be obtained experimentally using measurements of compli-
ance changes during crack growth.

2. Two polymeric beams are glued together using an epoxy adhesive as shown
in Figure 4.54. The air bubbles trapped in the adhesive during the joining
process lead to the formation of several °at, circular, disk-like cracks in the
adhesive; these cracks are aligned parallel to the interface between the two
plastic beams. The dominant °aw is usually a semi-circular (thumb-nail)
crack located along the interface in the adhesive near the outer surface of
the composite beam. The average radius of such a crack is a = 1:2mm.
The dimensions indicated in Figure 4.54 are: L = 1.7 m, W = 10 cm,
and B = 7.5 cm. If the fracture toughness of the epoxy is 0:8MPa

p
m,

calculate the maximum load P which the beam can support, assuming elastic
deformation. For the semi-circular crack, the mode I stress intensity factor
is KI ¼ 0:71¾max

p
¼a where ¾max is the maximum opening stress at the

outer ¯ber of the composite beam.
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3. A single crystal thin ¯lm of a SiGe alloy, with 80 atomic percent Si and the
rest Ge, is grown epitaxially at room temperature on a f100g silicon substrate
which is 600 ¹m thick. The mean lattice parameter of the alloy is 0.5476 nm
while that of Si is 0.5431 nm. The biaxial moduli of the ¯lm and substrate
materials are 173 GPa and 180.5 GPa, respectively, while the corresponding
Poisson ratios of the two materials are xx and 0.27, respectively. If the
fracture energy of the interface between the ¯lm and the substrate, which is a
f100g plane of the two materials, is 1 J/m2, and if spontaneous delamination
occurs along the interface at the ¯lm edge due to the epitaxial mismatch
strain in the ¯lm, determine the thickness of the ¯lm.

4. In the discussion of the double cantilever con¯guration in Section 4.2.1 and
Section 4.2.2, it was assumed that the load or displacement was imposed
directly on the sample. In an actual experiment, loading must be imposed
through an apparatus that has an elastic compliance of its own. Re-examine
the double cantilever con¯guration depicted in Figure 4.9 assuming that the
loading apparatus is represented by a pair of springs, each of compliance
Cm, in series with the sample, so that the relationship between the applied
loading P and the load point de°ection ±p is

±p =

µ
CM +

4a3

¹Eh3

¶
P (4.92)

instead of (4.11). The compliance of the loading apparatus cannot a®ect
the load at which fracture begins but it can alter the stability of crack
advance. Determine the value of Cm separating the range of stable growth
from the range of unstable growth in terms of crack length a and other
system parameters.

5. In Section 4.4.3, the growth of a delamination zone along the interface be-
tween a stressed ¯lm and substrate was considered. It was found that a
delamination zone with a circular front growing outward from the free edge
of the circular hole would eventually be arrested. Consider the complemen-
tary case of a circular delamination front that is contracting in size. A ¯lm
of thickness hf on a relatively thick substrate, with residual biaxial stress
¾m, is cut through its thickness down to the substrate over a circle of radius
b À hf . The ¯lm material outside the circle is removed, and a circular de-
lamination front begins to grow inward from the free edge. Assume that the
work of fracture ¡ is uniform over the interface, and determine whether or
not the delamination front can be arrested before the circular patch is fully
delamination from the substrate.

6. In Section 4.4.5, it was observed that the driving force of an interface delam-
ination approaching a ¯lm edge is in°uenced signi¯cantly at distances from
the edge that are large compared to ¯lm thickness. Study this phenomenon
quantitatively by adopting the membrane ¯lm model for the case when the
elastic properties of the ¯lm and substrate are the same.

(a) Assuming that the ¯lm edge is at x = a and that the delamination
zone occupies the region x < 0, derive an integral equation governing
the interfacial shear stress q(x) in the interval 0 < x < a.
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(b) Solve the integral equation numerically to determine the strength of
the singularity in q(x) as a=hf ! 0+ relative to the result in (4.1).

(c) Estimate Gss=G versus a=hf for this case and compare the result to
the data graphed in Figure 4.29.

7. In the discussion of Section 4.6.1, steady advance of a crack along a ¯lm
due to residual tension in the ¯lm was considered. It was assumed from
the outset that the crack depth would be equal to ¯lm thickness, and it
was subsequently veri¯ed that this would indeed be the case provided that
¡s ¸ 2¡f . Consider the particular case in which ¡s = ¡f , and estimate the
depth of penetration of the steady crack into the substrate, assuming that
any crack kinking is suppressed.

8. Assuming that deformation can be adequately described by means of ele-
mentary beam theory, derive the expression for energy release rate for the
four-point °exure beam test con¯guration given in (4.54).

9. Derive the pair of coupled integral equations which govern the residual inter-
facial traction components p(x) and q(x) for a plate with a free edge bonded
to a substrate, as illustrated in Figure 4.4. The state of residual stress arises
from a mismatch strain ²m in the plate with respect to the substrate. The
derivation is carried out by enforcing equilibrium of the isotropic elastic ma-
terials in the absence of external loading and continuity of deformation across
the interface during relaxation of the edge stress. Show that the results can
be put in the form (cf. Shield and Kim (1992))

1

¼

Z 1

0

p(»)

» ¡ x
d» ¡ 1¡ 2ºs

2(1¡ ºs)
q(x) =

¡3k

h3
f

Z x

0

x[(x¡ 2») p(»)¡ hfq(»)]d» +
3k

h3
f

Z 1

x

»[»p(») + hfq(»)] d»

1

¼

Z 1

0

q(»)

» ¡ x
d» +

1¡ 2ºs
2(1¡ ºs)

p(x) =

¡k

2
¾m +

2k

hf

Z x

0

q(») d» +
3k

h2
f

Z x

0

(» ¡ x) p(») d» (4.93)
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Film buckling, bulging and peeling

Interface delamination and ¯lm fracture induced by residual stress in the

thin ¯lm were the focus of discussion in the preceding chapter where models

were developed within the framework of linear elastic fracture mechanics.

Such analyses did not account for the actual separation of the ¯lm from

its substrate. However, there are delamination processes for which trans-

verse de°ection of the ¯lm away from the substrate becomes an important

consideration in a variety of practical applications. Examples include:

{ transverse buckling instability of a ¯lm in compression, as in the case

of a ceramic thermal barrier coating or a diamond-like carbon wear

resistant coating on a metallic substrate, as illustrated in Figure 5.1,

{ the bulging of a segment of a thin ¯lm away from the substrate un-

der the in°uence of an applied pressure, which is a deformation mode

of interest for the assessment of residual stress, interface fracture en-

ergy and mechanical properties in ¯lm{substrate systems and MEMS

structures, and

{ the forcible peeling of a ¯lm from its substrate as a means of evalu-

ating the adhesion energy of the interface between the ¯lm and the

substrate.

This chapter deals with the transverse or out-of-plane de°ection of a

thin ¯lm, and it includes quantitative descriptions of the phenomena asso-

ciated with the buckling, bulging or peeling of a ¯lm from its substrate. A

common thread throughout the discussion is that system behavior extends

beyond the range of geometrically linear deformation. Consequently, aspects

of ¯nite or nonlinear deformation must be incorporated to capture essential

features of behavior. The progression of delamination associated with trans-

341
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film

substrate

Fig. 5.1. A cross-sectional micrograph of an electron-beam physical vapor deposited
yttria-stablized zirconia ¯lm which is partially delaminated from the nickel-base
superalloy substrate. This ceramic layer and the interlayers comprising the bond-
coat and thermally grown oxide serve as the thermal-barrier coating system in gas
turbine engines, as described in Section 1.2.4. Reproduced with permission from
Padture et al. (2002).

verse de°ection is modeled by invoking the principles of linear elastic fracture

mechanics in the immediate vicinity of the delamination front where local

deformation is typically within the range of geometrically linear response

(Hutchinson 1996). Features of the models developed are compared with

available experimental observations wherever appropriate.

5.1 Buckling of a strip of uniform width

Consider a thin elastic ¯lm which is bonded to a much thicker substrate.

Let the ¯lm be subjected to an equi-biaxial mismatch stress of magnitude

¾m which, for the present discussion, is assumed to be compressive, that

is, ¾m < 0. The elastic strain energy density in the ¯lm is ¾2m(1 ¡ ºf)=Ef .

Suppose that some portion of the interface is not actually bonded, so that

the ¯lm is free to de°ect laterally away from the substrate over this portion.

Whether or not the ¯lm actually does de°ect spontaneously is determined

by the energetics of the situation. Upon de°ection, the lengths of material

line elements along the midplane of the ¯lm increase, in general, implying

a reduction in strain energy associated with extensional deformation. How-

ever, lateral de°ection is also accompanied by bending deformation which

leads to some increase in strain energy. If the consequent net change in en-

ergy is negative, the ¯lm undergoes spontaneous lateral de°ection over the

debonded region, that is, the ¯lm buckles. This propensity for buckling is

suppressed if the net change in energy is positive. The critical state for onset

of buckling or bifurcation of equilibrium states is determined by the neutral

condition which discriminates between theses two ranges of behavior.

The foregoing qualitative picture of ¯lm buckling makes no mention

of energy changes in the portion of the ¯lm outside the buckle zone, which
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remains bonded to the substrate; it also does not address the energy change

in the substrate itself. The reason for the tacit neglect of such e®ects is

that the detached portion of the ¯lm is usually regarded as being very com-

pliant compared to the still-bonded portion of the ¯lm or compared to the

substrate. Consequently, the edge of the buckled portion of the ¯lm at the

boundary of the detached region can be viewed as being rigidly clamped

along this boundary. With this assumed constraint, the buckled portion of

the ¯lm nonetheless exerts forces and moments on the still-attached por-

tions of the ¯lm. The changes in magnitude of these interaction forces and

moments due to buckling are determined by the post-buckling con¯guration

of the ¯lm. If the lateral extent of the buckled region is not very large com-

pared to hf or if the con¯guration at the edge of the buckle region is not

actually very sti®, the edge compliance can possibly in°uence the condition

for buckling, as well as the post-buckling response, as shown by Yu and

Hutchinson (2002).

An important consequence of lateral buckling of a portion of the ¯lm

is that it induces a driving force for expansion of the size of the buckled

region. Prior to buckling, the traction transmitted across the ¯lm{substrate

interface is zero even for points in the still-bonded portion of the interface,

as was discussed in Chapter 2. After buckling, the stress state in the ¯lm is

no longer spatially uniform adjacent to the buckle; a traction is necessarily

induced on the interface to maintain equilibrium. Furthermore, the transi-

tion in stress state from the unrelaxed condition in the still-bonded region to

the relaxed condition within the buckled region occurs quite abruptly across

the boundary of the buckled area of the interface. This leads to stress con-

centrations on the interface at the edge of the buckled region. Such stress

concentrations can in°uence the subsequent growth in size of a buckled re-

gion or a change in its shape due to ongoing delamination.

In order to examine the phenomenon of ¯lm buckling and possible

subsequent delamination, this section begins with a description of the sim-

plest case of buckling under plane strain conditions. This is followed, in

subsequent sections, by analysis of circular buckles, secondary buckling phe-

nomena and buckles with perimeters of other shapes.

5.1.1 Post-buckling response

Consider a ¯lm of thickness hf on the plane surface of a relatively thick

substrate. A rectangular coordinate system is introduced with the xy¡plane

coinciding with the ¯lm midplane and the z¡direction coinciding with the

outward normal direction to the substrate as shown in Figure 5.2. Prior
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Fig. 5.2. Schematic showing the two-dimensional pro¯le of a straight-sided buckle
with the associated nomenclature.

to formation of a buckle, the stress in the ¯lm is the uniform equi-biaxial

mismatch stress ¾m < 0. For purposes of discussion in this section, it is

assumed that the interface is not bonded over the strip ¡a < x < a, ¡1 <

y < 1. The origin of coordinates is on the ¯lm midplane prior to lateral

de°ection.

Suppose that a buckle forms in the ¯lm with a two-dimensional pro¯le

as sketched in Figure 5.2. The buckle-induced displacement of a point lo-

cated on the midplane of the ¯lm depends only on its pre-buckling position

x; the components of displacement in the x¡ and z¡directions are u(x)

and w(x), respectively. Once the buckle forms, the normal force tx(x) per

unit length in the y¡direction acting on any cross-section x = constant is

reduced in magnitude from its initial value of tm = ¾mhf < 0. The reduc-

tion in force at the edge of the buckled region is ta ¡ tm, where ta = tx(a)

is a positive quantity. The parameter ta is introduced because only this

change in internal force in the ¯lm a®ects the stress acting on the interface;

a spatially uniform compressive force can always be added to any state of

stress without a®ecting the traction acting on the interface, as indicated in

the introduction to Chapter 2. A bending moment mx(x) acting on the ¯lm

cross-section x = constant and measured per unit length in the y¡direction

is also induced by ¯lm buckling. The deformation of the ¯lm associated with

buckle formation can be determined by means of elastic plate theory under

the assumption that the edges of the buckle are clamped at x = §a. The

stress resultants tx(x) and mx(x) can be calculated from the deformation.

These quantities can be used, in turn, as input into a fracture mechanics
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analysis to assess whether or not the buckle can drive further delamination

of the ¯lm.

In the particular problem being discussed in this section, all deforma-

tion ¯elds over the midplane are independent of y and are represented in

terms of the coordinate x as illustrated in Figure 5.2. As noted by Fung

(1965), equilibrium deformation within the buckle can be described by means

of the nonlinear von K¶arm¶an equations for thin plates. Such an analysis is

predicated upon several assumptions and observations, as listed below.

{ As is the case with most plate theories, the governing equations are

expressed in terms of ¯elds de¯ned over the midplane surface of the

undeformed plate or over the uniformly compressed midplane of the

plate prior to buckling. Deformation at material points away from

the midplane is described in terms of these ¯elds.

{ The through-the-thickness variation of ¯elds are assumed to be con-

sistent with the plane stress approximation and elementary bending

theory. In particular, a kinematic assumption is adopted whereby

material lines which are initially straight and perpendicular to the

midplane of the plate or ¯lm remain so during deformation, and the

in°uence of tractions acting on planes parallel to the midplane is

assumed to be negligibly small.

{ The central idea of the von K¶arm¶an theory is to account for the fact

that the cumulative e®ect of small midplane curvature over distances

large compared to the thickness of the ¯lm can result in relatively

large rotation of the midplane, which is represented here by wI(x).
This rotation makes a potentially signi¯cant contribution to the ex-

tensional strain of the midplane, approximately 1
2w
I(x)2, which may

be of the same order of magnitude as the direct extensional strain

uI(x). This geometrically nonlinear term is therefore retained in the

strain{displacement relationship, but the material response continues

to follow the linear Hooke's law. The same line of reasoning was fol-

lowed in the analysis of geometrically nonlinear deformation of thin

¯lms on substrates in Section 2.5.

If these features are incorporated into the model, the strain-displacement

relations take the form

²xx(x; z) = ²m + uI(x) + 1
2w
I(x)2 ¡ zwII(x) ; ²yy(x; z) = ²m; (5.1)

where z = 0 coincides with the unde°ected midplane of the ¯lm. The in-
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plane normal force in the ¯lm is related to the displacement components

through

tx(x) = ¹Efhf [²m(1 + ºf) + uI(x) + 1
2w
I(x)2]; (5.2)

where, as before, the symbols Ef , ºf , ¹Ef and hf denote the elastic modulus,

Poisson ratio, plane strain modulus and thickness of the ¯lm, respectively.

Note that tx(x) = ¾mhf = tm when u(x) = 0 and w(x) = 0. Similarly,

the resultant bending moment acting on a cross-section identi¯ed by its

x¡coordinate is

mx(x) =
¹Efh

3
f

12
wII(x): (5.3)

The elastic strain energy density 1
2
¹Ef [²

2
xx + ²2yy + 2ºf²xx²yy] can be

expressed in terms of the initial state and the relaxation displacement com-

ponents u(x) and w(x). The total potential energy of the ¯lm, which is

equal to the elastic energy in the absence of externally applied loads, can be

obtained by integration of the strain energy density over the volume of ¯lm

material per unit depth in the y¡direction within the buckled region. The

integration on z can be carried out explicitly. The principle of stationary

potential energy then implies that, for the ¯lm to be in equilibrium, the

elastic de°ections u(x) and w(x) must satisfy the di®erential equations

[uI(x) + 1
2w
I(x)2]I = 0;

(5.4)

wIIII(x)¡ 12
¹Efh

3
f

wII(x)tx(x) = 0

within the region ¡a < x < a, where the prime denotes di®erentiation with

respect to x. The ¯rst equilibrium equation (5.4)1 implies that tx(x) as

given by (5.2) is a constant, and its value is therefore necessarily equal to

tx(a) = ta. The second equilibrium equation (5.4)2 then takes the form

wIIII(x)¡ 12 ta
¹Efh

3
f

wII(x) = 0 ; ¡a < x < a: (5.5)

Even though the deformation is in the geometrically nonlinear range, the dif-

ferential equation governing w(x) is linear. This is a fortuitous outcome that

follows naturally from the nonlinear von K¶arm¶an plate theory. A solution

of (5.5) is sought subject to the boundary conditions

w(§a) = 0 and wI(§a) = 0; (5.6)

which imply that the edges of the buckle are clamped, as discussed above.
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Once w(x) is known, the in-plane displacement u(x) can be found from

(5.4)1 and the boundary condition u(§a) = 0.

The di®erential equation in (5.5) and the boundary conditions (5.6)

have the form of an eigenvalue problem for a one-dimensional continuous

system where the variable ta represents the eigenvalue. The eigenvalue of

least magnitude for which a nontrivial solution exists is

ta = ¡¼2 ¹Efhf
12

µ
hf
a

¶2
: (5.7)

No positive eigenvalues exist in this case. The compressive force in the ¯lm

cannot be increased by buckle formation, so that ¢ta ´ ta ¡ tm > 0. The

expression (5.7) provides a relationship between the size a of the debonded

region and the compressive force in the ¯lm following buckle formation. The

constraint that ¢ta is necessarily positive implies that the smallest debond

size which will result in buckle formation in a ¯lm with compressive stress

¾m is

am =
¼hf
2

s
¹Ef

3j¾mj : (5.8)

Alternatively, the compressive stress level required to induce a buckle in a

¯lm with debonded zone of size am is

¾m = ¡¼2 ¹Ef
12

µ
hf
am

¶2
; (5.9)

which is the expression obtained by solving (5.8) for ¾m. For a debonded

zone of size am, a stress smaller in magnitude than j¾mj in (5.9) does not

produce a buckle. Likewise, for a compressive stress of magnitude j¾mj, a
debonded zone smaller than am in (5.8) does not produce a buckle. The ¯lm

force ta can be expressed in terms of am and ¾m, with the result that

¢ta = ta ¡ tm = jtmj
Ã
1¡ a2m

a2

!
: (5.10)

The shape of the buckle prescribed by the di®erential equation (5.5)

is

w(x) =
1

2
w0

∙
1 + cos

¼x

a

¸
; (5.11)

where w0 = w(0). The task remaining is to establish a relationship between

the force reduction ¢ta and the de°ection w0. This relationship follows
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from the constitutive equation (5.2) and the di®erential equation (5.4)1.

The strain in the y¡direction is unchanged by buckling. The force change

has the spatially uniform value ¢ta over ¡a < x < a, as noted above.

Integration of (5.4)1 over ¡a < x < a, with the constraint that u(§a) = 0

and the explicit expression (5.11) for w(x), yields

w20 =
16a2

¼2
¢ta
hf ¹Ef

: (5.12)

This result, which completes the analysis of the post-buckling response of the

con¯guration, enables determination of the edge bending moment mx(a) =

ma from (5.3) as

ma =
¹Efh

3
f

12
wII(a) =

jtmjhfp
3

a2m
a2

s
a2

a2m
¡ 1 : (5.13)

Graphs of the normalized edge stress resultant force (ta ¡ tm)=jtmj
and moment ma=jtmjhf versus a=am are shown in Figure 5.3. It is observed

that the bending moment ma increases from zero at a = am to a maximum

value, and then it decreases as a=am becomes large. The compressive stress

reduction ¢ta, on the other hand, increases monotonically from zero at

a = am, becoming asymptotic to ¢ta=jtmj = 1 as a=am becomes large,

implying that the compressive force ta is almost completely relaxed once a

has increased to about 3am. The stress resultant ratio ma=hf(ta¡ tm) is also

shown by the dashed line in Figure 5.3. This ratio has a strong dependence

on buckle size, implying that the phase angle Ã of the state of stress on the

interface adjacent to the buckle varies signi¯cantly as the buckle grows in

size due to delamination; the phase angle is de¯ned in (4.28). This variation

of the phase angle will be taken into account in the discussion of buckle

driven delamination in the next subsection.

The process of buckle driven delamination can be described in either

of two ways. One point of view is that the mismatch stress in the ¯lm is the

independent variable. As the stress is increased, it induces buckling from

debonded zones, followed by delamination. The goal then is to determine

the size of the delamination as a function of the ¯lm stress according to

some delamination criterion. An alternate point of view is that the size of

the zone of delamination is the independent variable. For a ¯xed level of

¯lm stress, the goal is to determine the size of buckles which form and the

¯nal size which can be achieved by buckle-driven delamination. The latter

point of view is pursued next.
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Fig. 5.3. Variation of the normalized edge stress resultant force (ta ¡ tm)=jtmj and
moment ma=jtmjhf (solid lines), and the normalized edge moment ma=hf(ta ¡ tm)
(dashed line) as functions of the normalized debond size a=am.

5.1.2 Driving force for growth of delamination

Conditions governing the expansion of the zone of delamination within the

buckled region of the ¯lm through the propagation of its edges can be deter-

mined from the deformation ¯eld. Such an analysis requires determination

of the energy release rate G at the edge of the buckle and the phase an-

gle Ã of the stress state. According to the Gri±th condition introduced in

Section 4.2.1, the edges will move with G equal to the work of separation

¡(Ã).

Without loss of generality, it is assumed that any delamination takes

place symmetrically at both edges of the buckle; if only one edge moves, there

is a compensating shift in the reference point from which a is measured and

the expressions obtained remain valid. The total elastic energy in one-half

of a buckle of total width 2a is expressed generally in terms of the stress

resultants as

W (a) =
1

2 ¹Efhf

Z a

0

"
tx(x)

2 +
1¡ ºf
1 + ºf

t2m +
12

h2f
mx(x)

2

#
dx: (5.14)

This is the elastic energy per unit length along the crest of the buckle. The

resultant force has the spatially uniform value ta which is given in terms of
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a in (5.7). The resultant moment is determined by the post-buckling shape

(5.11), which is also a known function of a. Substitution of these ¯elds into

(5.14) and evaluation of the integral leads to the expression

W (a) =
t2m

2 ¹Efhf

"
1¡ ºf
1 + ºf

a+ 2
a2m
a

¡ a4m
a3

#
: (5.15)

When the edge of the buckle at x = a is advanced a unit distance,

the associated reduction in the elastic energy in one-half of the buckle is

¡W I(a). In addition, as a delamination front advances along the interface,

the area of the still-bonded portion of the ¯lm is diminished. This reduction

in area provides an additional contribution to the energy release rate equal

to the initial elastic energy in the ¯lm per unit area of interface, namely,

(1 ¡ ºf)t
2
m=Efhf . Thus, the total energy release rate for each edge of the

buckle is

G(a) = (1¡ ºf)t
2
m

Efhf
¡W I(a): (5.16)

From (4.34) and the discussion in Section 4.4.1, the plane strain energy

release rate for advance of a straight delamination front from a free edge is

Gm =
t2m

¡
1¡ º2f

¢
2Efhf

: (5.17)

Combining (5.15) through (5.17) and noting that tm = ¾mhf , the total

driving force for each edge of the delamination is written as

G(a) = Gm
Ã
1¡ a2m

a2

!Ã
1 + 3

a2m
a2

!
; Gm =

¾2m
¡
1¡ º2f

¢
hf

2Ef
: (5.18)

Since buckling is precluded for a < am, the range of relevance of the ex-

pression in (5.18) is a > am. A plot of G(a)=Gm versus a=am is shown in

Figure 5.4. It is observed that G(a) increases from zero at a = am. It

overshoots the value of G = Gm, reaching a maximum value of G = 4Gm=3
at a = am

p
3, and then gradually approaches G = Gm asymptotically from

above as a=am becomes large compared to unity.

5.1.3 Phase angle of local stress state at interface

For any particular material system, the delamination resistance of the inter-

face is characterized by a fracture energy ¡(Ã) per unit area which depends

on the phase Ã of the stress state acting on the interface immediately in
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Fig. 5.4. A plot of the total energy release rate for each edge of a straight-sided
buckle G(a)=Gm versus the normalized buckle size a=am.

advance of the delamination front, in general. This concept was discussed

in Chapter 4. The delamination is postulated to advance according to the

condition that

G(a) = ¡(Ã) : (5.19)

As noted in the preceding chapter, available data for such processes suggest

a phenomenological expression for fracture energy of the form

¡(Ã) = ¡Ic
h
1 + tan2 ´cÃ

i
; (5.20)

where ¡Ic gives the separation resistance under a purely opening-mode local

stress state and ´c is a parameter in the range 0 ∙ ´c ∙ 1; this latter pa-

rameter represents the in°uence of phase angle on delamination resistance.

When ´c = 0 the interface toughness is independent of the phase of stress

state, whereas when ´c = 1 the interface toughness is independent of the

shear traction on the interface ahead of the delamination zone. In the lat-

ter case, G = ¡ reduces to K2
I =

¹Es(1 + D1) = ¡Ic for D2 = 0 where, as

noted in Chapter 4, Es is the elastic modulus of the substrate and D1 and

D2 are Dundurs parameters. A value of ´c of roughly 0.7 or 0.8 gives a

representation of resistance consistent with the data reported in Chapter 4.

Determination of the phase angle Ã requires consideration of the lo-
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cal stress state at the edge of the buckled zone. Invoking the superposition

argument depicted in Figure 4.23, it follows that the singular stress distri-

bution on the interface is established by loading that acts at some distance

behind the edge, as shown in Figure 5.5. This distance need only be on the

order of the ¯lm thickness hf . The loading parameters ¢ta = ta ¡ tm and

ma have the interpretations prescribed in (5.7) and (5.13), and the state of

deformation in this reduced con¯guration is plane strain.

1
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� �

� � � � � 	 � � 	 � � � - � � �
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Fig. 5.5. Schematic showing the combination of pure bending and extension at a
distance behind the delamination front which is on the order of the ¯lm thickness.

At a distance behind the delamination front which is on the order of

hf , the state of deformation is essentially a combination of pure bending and

pure extension. With ¢ta and ma of ¯xed magnitude and applied at some

material cross-section behind the front, advance of the delamination front

in Figure 5.5 results in a reduction in potential energy of the system. This

reduction per unit distance is represented by the energy release rate

G =
1

2 ¹Efhf

"
¢t2a + 12

m2
a

h2f

#
: (5.21)

At the edge of the delamination zone, the applied loading locally in-

duces stress distributions with edge singularities in the normal and shear

tractions on the ¯lm{substrate interface. The strengths of these singulari-

ties are again denoted by KI and KII. Each stress intensity factor must be

linear in both ¢ta and ma for small deformations and linear elastic material

response. Furthermore, in this reduced problem, hf is the only signi¯cant

physical length. It follows that KI and KII must each have the form

KI = ®It
¢ta

h
1/2
f

+ ®Im
ma

h
3/2
f

;

(5.22)

KII = ®IIt
¢ta

h
1/2
f

+ ®IIm
ma

h
3/2
f

;

where the unknown coe±cients are dimensionless. Based on the results in
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Section 4.1, both ®It and ®IIt can be expected to be negative. On physical

grounds, it can also be anticipated that ®Im > 0 and ®IIm < 0.

In terms of the stress intensity factors KI and KII, the energy release

rate is given by

G =
1

¹Ef(1¡D1)

³
K2
I +K2

II

´
(5.23)

according to (4.2). But (5.21) and (5.23) represent one and the same phys-

ical quantity. For these representations to be consistent, the unknown coef-

¯cients in (5.22) must satisfy the relationships

®It®Im + ®IIt®IIm = 0;

(5.24)

®2It + ®2IIt =
1
2(1¡D1) ; ®2Im + ®2IIm = 1

2(1¡D1):

All three relationships can be satis¯ed by introducing a single parameter !

such that

®It = ¡
q
1
2(1¡D1) cos! ; ®IIt = ¡

q
1
2(1¡D1) sin!;

(5.25)

®Im =
q
1
2(1¡D1) sin! ; ®IIm = ¡

q
1
2(1¡D1) cos!;

where the signs have been chosen so that the coe±cients have the character-

istics that were anticipated when ! falls within the range 0 < ! < ¼=2. The

boundary value problem illustrated in Figure 5.5 must be solved to deter-

mine the dependence of the parameter ! on D1; an analysis carried out for

this purpose, based on numerical solution of a singular integral equation, has

been reported by Thouless et al. (1987). However, based on the discussion

in Section 4.4 which involves the same physical system but with ma = 0, it

is clear that ! is precisely the quantity shown numerically in Figure 4.28.

With that understanding, the stress intensity factors are completely known

for the case of delamination buckling for any buckled zone size a.

Of particular interest is the phase angle Ã of the stress state at the

edge of the straight-sided buckle. In light of the results obtained in (5.22)

and (5.25), the de¯nition of phase angle (4.28) leads to the result that, in

the case of the straight-sided buckle,

Ã(a) = arctan

"
¡¢tahf sin! ¡ 2

p
3ma cos!

¡¢tahf cos! + 2
p
3ma sin!

#
; (5.26)

where ! = !(D1) is the function plotted in Figure 4.28; recall that it is
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assumed that D2 = 0 throughout this discussion. The algebraic signs of

the various contributions to phase angle indicate the quadrant of the phase

angle. For example, positive values of both ¢ta and ma induce negative

values of stress intensity factor KII, which implies a phase angle in the third

or fourth quadrant of the phase angle plane. Similarly, a positive value of

ma induces a positive value of stress intensity factor KI whereas a positive

value of ¢ta induces a negative KI. On physical grounds, the net value of

KI cannot be negative, a constraint which limits the range of applicability of

the solution being developed here. Thus, values of Ã in the fourth quadrant

of the phase plane are anticipated in the present case, that is, ¡90◦ ∙ Ã ∙ 0.
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Fig. 5.6. The dependence of local stress state phase angle Ã on the normalized
buckle size a=am for D1 = 0 ( ¹Ef = ¹Es), D1 = 0:5 ( ¹Ef = 3 ¹Es) and D1 = ¡0:5
( ¹Ef = ¹Es=3) for D2 = 0. The shaded region represents values of the phase angle
for which the mode I stress intensity factor is negative.

The stress resultants ¢ta and ma in (5.26) are both known explicitly

as functions of buckle size a. Furthermore, values of angle !(D1) are known

from Figure 4.28 for any combination of isotropic materials with D2 = 0.

The dependence of phase angle Ã on buckle size a is illustrated in Figure 5.6

for D1 = 0 ( ¹Ef = ¹Es), D1 = 0:5 ( ¹Ef = 3 ¹Es) and D1 = ¡0:5 ( ¹Ef = ¹Es=3).

From Figure 4.28, it is seen that !(¡0:5) ¼ 48◦, !(0) ¼ 52◦ and !(0:5) ¼
59◦. As was anticipated from the dependence of the stress resultant ratio

on delamination zone size shown in Figure 5.6, the phase angle Ã(a) varies
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signi¯cantly with buckle size a, decreasing from a value of about ¡35◦ when
a = am to about ¡90◦ when a has roughly doubled or tripled its initial

size, depending on the value of the material parameter D1. The region of

the plot in Figure 5.6 for Ã ∙ ¡90◦ is shaded to emphasize that this region

is inaccessible because negative values of KI must be ruled out on physical

grounds.
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Fig. 5.7. Normalized driving force G(a)=¡(Ã) plotted as a function of the normalized
buckle size for Gm=¡Ic = 1, 2 and 3, with the assumption that D1 = D2 = 0 and
that ´c = 0.7.

The important role of edge stress phase angle can now be illustrated

by combining the results obtained in (5.18), (5.20) and (5.26) in the form of

plots of G(a)=¡(Ã) versus a for several values of Gm=¡Ic in Figure 5.7. For

purposes of illustration, only the case with D1 = 0 and ´c = 0:7 is repre-

sented in the ¯gure. As seen from the graphs, the delamination condition is

not satis¯ed for any °aw size if Gm=¡Ic = 1. On the other hand, the curve for

Gm=¡Ic = 2 crosses G=¡(Ã) = 1 at two values of a=am. The interpretation

of the curve is as follows. The ratio Gm=¡Ic = 2 sets the level of mismatch

stress relative to interface strength for the system. At this stress level, any

strip debonded zone which is wider than 2am results in the formation of a

straight-sided buckle. Any buckle produced at a debonded zone of width

a > 1:15am results in further delamination of the ¯lm from the substrate.
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Finally, if a buckle broadens by advance of the delamination front at its

edges, it can grow no larger than the size a = 1:83am.

5.1.4 Limitations for elastic-plastic materials

The analysis of the thin ¯lm buckling phenomenon discussed in this section

is based on the assumptions that the material deformation is everywhere

within the elastic range, and that inelastic deformation associated with the

delamination front at the edge of the buckled zone is su±ciently localized

to fall within the range of applicability of linear elastic fracture mechanics.

The restriction that the overall deformation should be elastic can be

examined by considering the state of stress at the edge x = a of the buckled

zone. The membrane force resultant has the value ta < 0 throughout the

zone ¡a < x < a. On the other hand, the bending moment mx(x) varies

throughout the zone, but it is readily con¯rmed that it does so between the

limits of ¡ma and ma. The tensile stress ¾xx that is largest in absolute value

for this state of combined tension and bending is

¾max
j¾mj =

jtaj
jtmj + 6

ma

hf jtmj ; (5.27)

where the stress has been normalized by the absolute value of the initial

compressive stress in the ¯lm. A compressive stress of this magnitude arises

on the face of the ¯lm away from the substrate at x = §a. The quantity

¾max is the stress magnitude that is to be compared to a plastic yield stress,

say ¾Y, or perhaps to some other limiting stress magnitude.

The normalized maximum stress de¯ned in (5.27) is plotted versus

buckled zone size a=am in Figure 5.8. This stress has the value unity when

a = am, and it increases rapidly to a local maximum value of about 2.3

when a ¼ 1:25am. For larger values of a=am, the value of ¾max decreases

monotonically, approaching zero asymptotically as a=am ! 1. The stress

component ¾yy is also compressive but smaller in magnitude than ¾xx, and

the component ¾zz = 0 by the Kirchho® hypothesis. Consequently, the

maximum shear stress at this point is 1
2¾max. According to a maximum

shear stress yield criterion, this is the quantity to be compared to the shear

stress necessary to produce plastic °ow, say 1
2¾Y according to the Tresca

criterion, where ¾Y is a tensile yield stress for an elastic-plastic ¯lm material.

The strip buckling process can occur without general plastic deformation

provided that

2:3j¾mj ∙ ¾Y : (5.28)

A rough estimate of the limits on the range of applicability of elastic
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Fig. 5.8. Maximum tensile stress in absolute value at the edge of the buckled zone
versus normalized size of the buckled zone. The maximum tensile stress normalized
by j¾mj is de¯ned in (5.27).

fracture mechanics for the present problem can also be established. For a

tensile crack in an elastic solid, with the local ¯eld described in terms of an

elastic stress intensity factor K, the e®ective stress on the crack plane ahead

of the crack tip reaches the value of ¾Y at the the distance from the edge

of roughly K2=¾2Y (Rice 1968a). This quantity, which has the dimensions

of length, can serve as a rough estimate of the size of the inelastic zone

around the crack edge. If the crack, or delamination in the present case,

is at the stage of incipient growth, then G = K2= ¹Ef = ¡. The concepts

of elastic fracture mechanics are applicable provided that the inelastic zone

size is much smaller than the characteristic physical dimensions of the elastic

solid containing the crack. In the case of delamination buckling, the ¯lm

thickness hf is the length parameter to which a comparison should be made.

Thus, the requirement that

¹Ef¡

¾2Y
¿ hf (5.29)

provides a restriction on parameters which must be enforced if ¯lm behavior

is to be assessed within the framework of elastic fracture mechanics.
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5.2 Buckling of a circular patch

The case of a circular buckle can be described in the same way as that of

the straight-sided buckle, and it also involves essentially the same physical

system of a ¯lm of uniform thickness hf which initially is subjected to an

equi-biaxial compressive stress ¾m. This stress is partially relaxed over a

circular region of radius a as the ¯lm de°ects away from the substrate; the

¯lm remains bonded to the substrate over the remainder of the interface. If

the size of the buckled region increases by advance of the delamination front,

it is assumed that the shape of the delamination region remains circular. It

is not essential to assume that the shape also remains concentric but it is

convenient to do so. The analysis proceeds by determining the post-buckling

equilibrium con¯guration from which the energy release rate associated with

expansion of the buckled zone can be calculated. The energy release rate

is then compared to a measure of interface delamination resistance in order

to gain an understanding of the mechanics of delamination behavior. The

analysis is complicated signi¯cantly, however, by the fact that the equilib-

rium equations governing the post-buckling shape, corresponding to (5.5),

are not linear. This di®erence necessitates the use of numerical methods

for solution of the equilibrium equations. Two approaches to the problem

have been developed in the literature. In one approach, the ¯eld equations

are reduced to ordinary di®erential equations with the radial coordinate as

independent variable. These equations are not su±ciently transparent to

reveal general aspects of behavior, and numerical methods must be used

to extract useful information. Alternatively, the numerical ¯nite element

method provides a direct approach to the study of behavior.

An examination of the behavior of the system in the vicinity of the

edge of the delamination zone in the context of fracture mechanics shows

that the energy release rate is determined by the limiting values of the

resultant extensional force and resultant bending moment in the buckled

region of the ¯lm in the limit as the edge of the buckled region is approached.

This line of reasoning is developed in this section, largely following the

summary provided by Hutchinson and Suo (1992). Early contributions to

this problem were made by Thompson and Hunt (1973), Yin (1985) and

Chai (1990), among others. Notation introduced in the discussion of the

straight-sided buckle is retained to the extent possible.

5.2.1 Post-buckling response

Consider an axially symmetric buckle which forms on a circular region of

the interface of radius a. The depiction of the two-dimensional system in
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Fig. 5.9. Schematic representation of the edge force and bending moment for an
axisymmetric buckle which forms on a circular region along the ¯lm{substrate in-
terface.

Figure 5.2 applies here as well with only minor modi¯cations. The displace-

ment of a point on the midplane of the ¯lm due to buckle formation depends

only on its radial distance r from the axis of symmetry of the con¯guration.

The nonzero components of displacement of a point on the ¯lm midplane are

u(r) in the radial direction and w(r) in the transverse or z¡direction; the

displacement in the circumferential direction vanishes. These displacement

components are zero in the initially °at but uniformly stressed con¯guration

of the material. Upon formation of the buckle, the normal force tr(r) in the

radial direction, measured per unit length in the circumferential direction,

acting on any cross-section r = constant is reduced in magnitude from its

initial value tm = ¾mhf < 0. The reduction in force at the edge of the

buckle is ¢ta = ta ¡ tm > 0, where ta = tr(a). Prior to buckle formation,

the bending moment is everywhere zero in the ¯lm, but not so afterward.

The resultant bending moment mr(r) per unit length in the circumferential

direction acts on any cross-section r = constant. The edge bending moment

is ma = mr(a), as shown in Figure 5.9. The kinematic boundary conditions

at the edge of the ¯lm buckle are

u(a) = 0 ; w(a) = 0 ; wI(a) = 0; (5.30)

and, at the center of the buckle,

u(0) = 0 ; wI(0) = 0 (5.31)

due to symmetry and continuity.



360 Film buckling, bulging and peeling

One way to proceed with analysis of the circular buckle is to adopt

the von K¶arm¶an plate theory for small strain and moderate rotation. In this

case, the strain-displacement relations are

²rr(r) = ²m+uI(r)+ 1
2w
I(r)2¡zwII(r) ; ²θθ = ²m+

1

r
u(r)¡ z

r
wII(r): (5.32)

With expressions for strain in hand, the elastic energy density can be writ-

ten in terms of u(r) and w(r). Integration of the strain energy density over

the volume of the ¯lm 0 < r < a, 0 < µ < 2¼, ¡hf=2 < z < hf=2 yields an

expression for the total potential energy of the buckle as a functional of u(r),

w(r) over 0 < r < a. The Euler equations which determine the particular

functions for which the potential energy is stationary are the equilibrium

equations for the con¯guration in the form of a pair of coupled nonlinear or-

dinary di®erential equations for u(r) and w(r). Additional natural boundary

conditions follow from application of the variational principle. The di®er-

ential equations and the boundary conditions can be solved numerically, as

was done by Thompson and Hunt (1973), for example. Alternatively, the

equilibrium con¯guration can be studied within the framework of ¯nite de-

formation elasticity theory by means of the ¯nite element method. The latter

option is employed here, and speci¯c numerical results are discussed after

the mechanics of energy release at the edge of the buckle zone is considered.

The particular problem that has been solved approximately by means

of the ¯nite element method is the post-buckling response of a circular thin

plate which is constrained against transverse de°ection and midplane ro-

tation along its outer edge, that is, w(r) = 0, wI(r) = 0 and u(r) = 0 at

r = a. In the formulation adopted, the material response is linear elastic,

but the magnitude of the de°ection of the ¯lm midplane is unrestricted. The

post-buckling response is determined by ¯rst de°ecting the ¯lm laterally by

means of an arti¯cial pressure. A mismatch stress ¾m is then introduced

by increasing the temperature, with a nonzero coe±cient of linear thermal

expansion assigned to the material, while the arti¯cial pressure is gradually

relaxed to zero. The resulting equilibrium solution de¯nes a post-buckling

shape for a given buckle radius a and mismatch stress ¾m. A range of

post-buckling solutions can be obtained by ¯nding equilibrium solutions as

the mismatch stress ¾m is gradually increased or reduced by changing the

temperature imposed on the plate. For each level of ¾m, the corresponding

values of w(0), ta and ma can be determined.

The procedure is very accurate until the mismatch extensional stress

resultant tm becomes very close to the classical buckling load of the circu-

lar ¯lm or plate, that is, at an extensional stress resultant of tb. In other
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Fig. 5.10. Normalized transverse de°ection along the axis of symmetry following
buckling versus the normalized value of excess compressive stress in the ¯lm. The
¯gure shows the asymptotic prediction of post-buckling response (dashed line) and
¯nite element simulation (solid line) for hf=a = 0.05 nd ºf = 0.25.

words, for a À hf , the critical value of stress resultant tb, or the equivalent

mismatch stress ¾b = tb=hf , for buckling of a debond or blister of radius a

is determined by recourse to the results based on nonlinear plate theory for

buckling of a clamped circular plate subjected to an in-plane radial com-

pressive loading along its perimeter. The critical load of the lowest axially

symmetric buckling mode is

tb = ¾bhf = ¡1:2235
¹Efh

3
f

a2
: (5.33)

For a ¯xed value of the Poisson ratio, all results that are important for

present purposes can be expressed in terms of the ratio of tm to the buckling

load for the current buckle radius or, equivalently, in terms of the ratio

of the current buckle radius a to the smallest radius which is unstable at

the in-plane normal stress resultant tm. The latter option is followed here.

The results are not very sensitive to changes in the value of the Poisson
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ratio ºf , and all numerical results included have been obtained for ºf =
1
4 .

An asymptotically exact relationship between the compressive stress in the

unde°ected ¯lm and the transverse de°ection w(0) of the ¯lm along the

axis of symmetry following buckling was obtained by Hutchinson and Suo

(1992). In terms of the critical buckling stress resultant tb given in (5.33),

this asymptotic relationship is

w(0)

hf
=

s
tm=tb ¡ 1

cν
; cν = 0:2473

h
(1 + ºf) + 0:2231(1¡ º2f )

i
: (5.34)

Note that the parameter cν depends only on the Poisson ratio of the ¯lm.

The ratio w(0)=hf was also extracted from a ¯nite element simulation of the

buckling process for an elastic ¯lm with hf=a = 0:05 and ºf = 0:25, and the

result is illustrated by the solid curve in Figure 5.10. The asymptotic result

(5.34) has been evaluated for the same parameters, and the result is shown

as the dashed curve in Figure 5.10. The numerical results are in excellent

agreement with the asymptotic result where the latter is valid, namely, for

0 ∙ (tm=tb¡ 1) ¿ 1, and it diverges only moderately for much larger values

of the excess ¯lm stress.
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The smallest circular zone of delamination which is unstable in the

presence of a mismatch force tm < 0 is denoted by am and is given by

am = 1:106hf

s
¹Ef

j¾mj : (5.35)

This is the analog for a circular buckle of the quantity identi¯ed by the same

symbol for the straight-sided buckle in (5.8). For a buckle of this radius at

the compressive stress level ¾m, the edge stress resultants are ta = tm and

ma = 0. For any larger buckle a > am, the edge force ta is less in magnitude

than tm and the edge moment ma is greater than zero. Numerical results for

the normalized quantities ¢ta=jtmj and ma=jtmjhf versus a=am are shown in

Figure 5.11. It is seen from the ¯gure that ¢ta = ta¡ tm increases gradually

from zero as a increases from am at ¯xed tm, and that it approaches unity

as a becomes much larger than am. The edge bending moment, on the other

hand, increases from zero at a = am to a maximum value at about a=am = 2,

whereafter it decays very slowly in value with increasing values of a=am. The

dependence of the ratio ¢tahf=ma, which determines the magnitude of the

phase angle of the local interface stress state, is also shown in the same

¯gure.

5.2.2 Example: Temperature change for buckling of a debond

A 1 ¹m thick diamond-like carbon ¯lm is deposited at 500 ±C on a Ti alloy substrate.
The ¯lm with elastic modulus Ef = 500 GPa and Poisson ratio ºf = 0.2, is essentially
free of any internal stress at the deposition temperature. When cooled to the
temperature 20 ±C, however, an equibiaxial compressive mismatch stress of 5 GPa
is expected to exist in the ¯lm as a consequence of thermal mismatch with the
substrate. An unbonded circular patch, 30 ¹m in diameter, developed at the ¯lm{
substrate interface during ¯lm deposition. Determine whether the ¯lm buckles upon
cooling to 20 ±C? If so, determine the temperature at which buckling begins.

Solution:

Using the notation introduced in Section 5.2.1, the radius of the circular
region of debond at the interface a = 15¹m, the ¯lm thickness hf = 1 ¹m, and the
¯lm biaxial modulus ¹Ef = Ef=(1 ¡ º2f ) = 625 GPa. A temperature change ¢T =
480 ±C from the stress-free deposition temperature to room temperature, produces
a compressive mismatch stress ¾m = {5GPa. The mismatch stress necessary to
cause the ¯lm to buckle is given by (5.33) as

¾b = ¡1:2235
¹Efh

2
f

a2
= 2:83GPa: (5.36)

Since this compressive mismatch stress is smaller than that in the ¯lm upon cool
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down to room temperature, it is seen that the ¯lm buckles during cooling from the
deposition temperature. Noting that the compressive thermal mismatch stress in
the ¯lm varies linearly between 500 ±C and 20 ±C, from an initial value of zero to a
¯nal value of 5 GPa, the ¯lm mismatch stress which would cause the ¯lm to buckle
upon a decrease in temperature ¢Tb from the deposition temperature is

¾b = ¾m
¢Tb

¢T
) ¢Tb = 272 ±C: (5.37)

Thus, the temperature at which buckling begins is Tb = (500¡ 272) ±C = 228 ±C.

5.2.3 Driving force for delamination

Consider a portion of the edge of the delamination zone which is close to the

edge compared to a, as depicted in Figure 5.9. At this level of observation,

the edge is essentially straight and the state of deformation is generalized

plane strain. Far ahead of the delamination front (on this scale), the stress

state is uniform biaxial compression without bending. Far behind the front,

but still close to the edge, the stress resultants are the normal force ta and

the bending moment ma which were introduced above.

The superposition argument outlined in Figure 5.12 shows that the

energy release rate associated with advance of the delamination front due

to this loading depends only on ma and on the extensional force reduction

¢ta = ta ¡ tm. The stress state in (B) is a uniform equi-biaxial stress

of magnitude ¡tm; the state (C) is the superposition of states (A) and

(B). Because there is no energy release associated with advance of the front

in (B), the energy release rates for (A) and (C) are identical. This can

be seen by considering the portion of the ¯lm between the loaded end in

part (C) of Figure 5.12 and the delamination front. As the front advances,

its complicated nonuniform stress ¯eld advances self-similarly because the

loading on that region remains unchanged. A consequence is that the energy

of this region remains unchanged. Thus, the energy change which represents

the energy release rate can be calculated from the spatially uniform ¯elds

near the loaded end of the ¯lm segment behind the front. The elastic energy

due to advance of the front a unit distance increases, while the external

potential energy of the loading decreases. The anticipated spatial uniformity

of the stress ¯elds near the loaded end suggests the use of linear elastic plate

theory as a su±ciently accurate model. The state of deformation in part

(C) is essentially plane strain. In terms of the stress resultants ta and ma,

the elastic energy per unit length in the r¡direction (per unit length in

the circumferential direction) is (¢t2a=hf + 12m2
a=h

3
f )=2

¹Ef . Advance of the
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Fig. 5.12. (A) Schematic showing a uniform equi-biaxial force tm ahead of the
circular delamination front and an extensional force ta and bending moment ma

behind the front. (B) represents a state of uniform equi-biaxial compression. The
superposition of (A) and (B) leads to the stress state shown in (C).

delamination front a unit distance in the r¡direction with ¯xed loads ¢ta
and ma acting on the remote material boundary results in an increase of

elastic energy by that amount, but a decrease in external potential energy

of twice that amount. Thus, an analysis on this basis leads to

G(a) = 1

2 ¹Ef

Ã
¢t2a
hf

+ 12
m2
a

h3f

!
(5.38)

as the energy release rate for this con¯guration, which is identical to (5.21).

The main inference to be drawn from this result is that the energy release

rate for advance of the delamination front is determined by the edge loads

¢ta = ta¡tm and ma acting on the buckle. These loads must be determined

from the numerical simulation of post-buckling behavior, as described in the

preceding section.

The dependence of energy release rate on a=am implied by these stress

resultants is determined from the numerical results according to (5.38) and

is shown in Figure 5.13. The energy release rate is normalized by Gm which is

the energy release rate for advance of a delamination zone with both ta = 0
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Fig. 5.13. Normalized energy release rate G(a)=Gm plotted as a function of the
normalized buckle size a=am for the circular delamination.

and ma = 0 as determined in (5.18). The dependence of energy release rate

on Poisson's ratio is weak.

The ratio of stress resultants hf¢ta=ma has been included in Fig-

ure 5.11. This ratio determines the phase angle Ã of the interfacial stress

state at the edge of the delamination zone. The fairly strong dependence of

the stress resultant ratio on a implies that the phase angle of the edge stress

changes as the buckle expands, similar to the behavior that was observed for

the case of the straight-sided buckle. The dependence of phase angle Ã(a) on

buckle size implied by the ratio of stress resultants is shown in Figure 5.14

for three combinations of elastic properties of the ¯lm and substrate mate-

rials. With ºf ¯xed at the value 1
4 , the three cases are ¹Ef = ¹Es (D1 = 0),

¹Ef = 3 ¹Es (D1 = 0:5) and ¹Ef = ¹Es=3 (D1 = ¡0:5), all with D2 = 0. The

corresponding values of ! in (5.26) are approximately 52◦, 48◦, and 59◦,
respectively.

For the case of a straight-sided buckle, the ratio of the delamina-

tion driving force G(a) to the phase-angle-dependent delamination resistance

¡(Ã) was shown in Figure 5.7 for a particular choice of the parameter ´c
introduced in (5.20) and for three values of the system parameter Gm=¡Ic.
A similar representation could be produced for the case of a circular buckle.
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An alternate representation in terms of a mode-adjusted driving force, which

is somewhat more readily interpreted, was introduced by Hutchinson et al.

(1992) in their discussion of the circular buckle. In the present context, the

mode-adjusted driving force for delamination is de¯ned as the nondimen-

sional quantity [G(a)=Gm][¡Ic=¡(Ã)]. The dependence of this mode-adjusted

driving force on buckle size a=am for ¯xed ¾m is shown as the solid curves

in Figure 5.15 for six values of the parameter ´c and for the particular case

when the ¯lm and substrate have identical elastic properties. A given level

of ¯lm stress is most e®ective in causing delamination when ´c = 0, and

the e®ectiveness diminishes as ´c increases. This ordering of the curves of

mode-adjusted driving force versus buckle size could have been anticipated

by recalling that ´c is a measure of the relative importance of shear e®ects in

driving delamination; an increasing ´c corresponds to decreasing importance

of local shear stress on delamination.

The set of dashed curves included in Figure 5.15 shows the depen-

dence of the mode-adjusted driving force on buckle size for a straight-sided

buckle. Thus, the ¯gure permits a direct comparison of the mode adjusted

driving force for the circular and straight-sided buckles for a given set of
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Fig. 5.15. Mode-adjusted driving force for circular delamination, de¯ned as the
nondimensional quantity [G(a)=Gm][¡Ic=¡(Ã)], versus the normalized circular buckle
size a=am for ¯xed ¯lm mismatch stress ¾m for six values of ´c (solid curves), for the
particular case where the ¯lm and substrate have no elastic mismatch and where
ºf = 1

4
. The dashed curves show the corresponding results for the straight-sided

buckle.

system parameters, namely, the elastic constants, ¾m, hf , ¡Ic and ´c. For

the straight-sided buckle, the point of zero driving force is shifted slightly to

the right of the corresponding point for a circular buckle because the value

of am in the former case is approximately 0.82 times its value in the latter

case. Also, a slight kink is evident in the dashed curves at a value of a=am
of roughly 3.5. This kink corresponds to the amount of buckle advance at

which the buckle edge phase angle Ã falls below ¡90◦, an eventuality which

must be ruled out on physical grounds. Therefore, for a=am greater than

roughly 3.5, the value of Ã is held at ¡90◦. The comparison of the two

cases suggests that, in the early stages of advance of buckle delamination,

the driving force for the straight-sided buckle is larger than for a circular

buckle. For larger amounts of growth of the delamination zone, on the other

hand, the relative magnitudes of the driving forces is reversed for all values

of ´c. This feature may be a contributing factor in creating the irregular

shapes of delamination buckling patterns commonly observed (Hutchinson

et al. 1992).
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5.2.4 Example: Buckling of an oxide film

Oxide ¯lms of di®erent thicknesses were thermally grown at a temperature of
1200 ±C on a relatively thick metal alloy substrate. Upon cooling to room tem-
perature (20 ±C), the oxide ¯lms were found to develop a large equi-biaxial resid-
ual compressive stress, primarily as a consequence of its thermal contraction mis-
match with the substrate. The elastic modulus and Poisson ratio for the ¯lm are
Ef = 400GPa and ºf = 0:25, respectively, at room temperature, and the coe±cients
of thermal expansion for the ¯lm and the substrate are ®f = 8 £ 10¡6 ±C¡1 and
®s = 14£ 10¡6 ±C¡1, respectively.

(a) Determine the size of the smallest edge debond at the interface between the
¯lm and the substrate which would form a straight-sided buckle when the
oxide{alloy system is cooled to room temperature in the series of experiments
in which the ¯lm thickness was 5 ¹m.

(b) Experiments on interface fracture toughness, such as those described in Sec-
tion 4.5, indicate that the mode I separation energy for the interface between
the oxide and the alloy is approximately ¡Ic = 28 J/m2 for hf = 5 ¹m, and
that the value of the parameter ´c in (5.20) is 0.7. Assuming that the elastic
mismatch between the ¯lm and the substrate does not have a noticeable
in°uence on the growth of the delamination, describe if and how a straight
buckle produced at the ¯lm edge would propagate.

(c) In another set of experiments, circular imperfections were found along the
¯lm{substrate interface for a ¯lm thickness of 5 ¹m. If complete debonding
occurs along the ¯lm{substrate interface over the area of such imperfections,
determine the smallest imperfection size which would cause spontaneous
de°ection of the ¯lm away from the substrate.

Solution:

(a) The equi-biaxial mismatch stress in the ¯lm upon cooling from the oxidation
temperature of 1200 ±C to 20 ±C is

¾m =
Ef

1¡ ºf
(®s ¡ ®f) ¢T = ¡3:776 GPa: (5.39)

For hf = 5 ¹m, the width of the smallest interface delamination at the
edge of the ¯lm which would buckle under the in°uence of the compressive
mismatch stress in the ¯lm is found from (5.8) to be am = 45.6 ¹m.

(b) Figure 5.7 shows the variation of G(a)=¡(Ã), the ratio of driving force for
delamination to the phase-angle-dependent separation energy, as a function
of a=am for D1 = D2 = 0 and ´c = 0.7, parameters which represent the
circumstances assumed here for the oxide{alloy system under consideration.
From (5.17), the plane strain energy release rate for the advance of a straight-
sided edge delamination front in the oxide is found to be

Gm =
¾2
mhf

¡
1¡ º2

f

¢
2Ef

= 83:5 J=m2; (5.40)

from which it is seen that Gm=¡Ic ¼ 3. Referring to the result plotted in
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Figure 5.7, it is seen that the Gm=¡Ic = 3 curve crosses the G(a)=¡(Ã) =
1 line at a=am ¼ 1.2 and again at a=am ¼ 2.37. Thus, if the debond zone
width a is greater than 1:2am ¼ 55 ¹m, then delamination of the ¯lm from
the substrate would continue to progress until a ¼ 2:37am = 108 ¹m.

(c) The critical radius of smallest imperfection which induces spontaneous buck-
ling of a circular debond is found from (5.35) to be am = 58.8 ¹m.

5.3 Secondary buckling

The elastic strain energy in a ¯lm is reduced from its value for an initially

°at ¯lm by the spontaneous formation of a buckle. This reduction results

from relaxation of some, but not necessarily all, stress components in the

¯lm stress components. For example, in the case of the straight-sided buckle

depicted in Figure 5.2, the compressive stress in the ¯lm acting in the di-

rection normal to the edge of the delamination zone, that is, the component

¾xx, can be reduced in magnitude substantially by buckle formation and

subsequent buckle growth. On the other hand, the stress component ¾yy
which acts in the direction parallel to the sides of the buckle is relaxed in

magnitude only indirectly through the Poisson e®ect; the strain component

²yy remains unchanged from its initial value of ²m as a result of primary

buckle formation and the stress component ¾yy remains relatively large.

Thus, it is plausible that the compressive stress acting along the length of

the straight-sided buckle following primary buckling can eventually induce

secondary buckling in this direction, thereby disrupting the translational in-

variance of the con¯guration in y¡direction.

The case of a circular buckle is similar, although it is somewhat more

complicated to analyze due to its axially symmetric con¯guration. Upon

formation of a circular buckle, the radial stress is certainly reduced in mag-

nitude from its initial value of j¾mj. Near the edge of the circular delami-

nation zone, the ¯lm is constrained against relaxation of strain in the cir-

cumferential direction by the portion of the ¯lm which is still bonded to the

substrate. Therefore, the circumferential compressive stress is still large in

magnitude near the edge of the delamination zone following formation of a

circular buckle. This large compressive stress has the potential for inducing

secondary buckling in the circumferential direction, thereby disrupting the

rotational invariance of the circular buckle con¯guration. Near the center

of a well-developed axially symmetric circular buckle, however, both the ra-

dial and circumferential stress components are substantially relaxed; indeed,

both these stress components may become positive as a result of the three-
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Fig. 5.16. Post buckling con¯gurations plotted for a stress level which is approxi-
mately nine times the primarily buckling stress, or 1.5 times the secondary buck-
ling stress. These ¯gures show contours of constant values of transverse de°ection
w(x; y) of the ¯lm, normalized by the ¯lm thickness hf , over a portion of the unde-
°ected ¯lm plane. Part (a) shows the mode which is symmetric in the x¡direction
for ¯xed y, whereas part (b) shows the most easily achieved mode in the y¡direction
for ¯xed x.

dimensional e®ects. Therefore, a secondary buckling con¯guration which

might be expected for a circular buckle is a con¯guration with wrinkling of

the ¯lm shape in the circumferential direction near the edge of the zone of

delamination, but with little or no wrinkling of the ¯lm surface near the

center of the zone of delamination. An example of this kind of secondary

buckling con¯guration for a circular delamination is illustrated in the next

section.

In either case, the process of primary buckle formation can be viewed

as a bifurcation of equilibrium states for a given delamination zone of size

a and increasing loading parameter j¾mj. The buckled con¯guration repre-

sents a stable branch of equilibrium states following bifurcation. In the same

way, the formation of a secondary buckle is a second generation bifurcation

of equilibrium states, with the more irregular ¯lm shape representing the

stable branch of equilibrium states and the symmetric primary buckling con-

¯guration representing the unstable branch following this bifurcation. Such

phenomena have not yet been studied systematically within the framework

of buckle driven delamination of compressed thin ¯lms but a framework for

doing so has been proposed by Jensen (1993) and Audoly (1999). Some

indication of secondary buckling behavior can be seen by examining cases

of secondary post-buckling con¯gurations for a straight-sided delamination

zone. Secondary buckling modes are illustrated in Figures 5.16 in the form
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of level curves of transverse ¯lm de°ection w(x; y) normalized by the ¯lm

thickness hf over a portion of the unde°ected ¯lm plane. The unde°ected

compressed ¯lm extends over the strip ¡a ∙ x ∙ a, ¡1 < y < 1, and the

primary buckling shape is a crest of uniform pro¯le in the y¡direction. Sec-

ondary buckling modes were sought which are periodic in the y¡direction.

Figure 5.16(a) shows what appears to be the most easily achieved mode

which is symmetric in the x¡direction for ¯xed y, which has a wavelength

in the y¡direction of approximately 1:6a. Similarly, Figure 5.16(b) shows

the most easily achieved mode which is asymmetric in x¡direction for ¯xed

y; this mode has a wavelength of approximately 1:9a in the y¡direction.

For a ¯xed value of a, both of these modes arise for a ¯lm stress magnitude

which is roughly six times the stress required to form the primary straight-

sided buckle, that is, about 6¼2 ¹Ef(hf=a)
2. Both Figures 5.16(a) and (b) are

post-buckling con¯gurations plotted for a stress level which is approximately

nine times the primary buckling stress, or 1.5 times the secondary buckling

stress. Alternatively, if ¾m is the stress level at which a straight-sided buckle

is formed for a strip width am, as given in (5.9), and if the delamination zone

subsequently broadens to a width of a with the stress level held ¯xed, then

these secondary buckling modes become possible once a has increased to

approximately 2:5am.

Perhaps the most noteworthy aspect of the secondary buckling phe-

nomenon illustrated here is that it is accompanied by an energy release

rate at the edge of the zone of delamination that varies with position in the

y¡direction. This provides a mechanism by which a straight-sided delamina-

tion zone may develop a wavy shape through buckle-driven delamination, or

a circular delamination zone may develop a lobed shape. The consequences

of secondary buckling in thin ¯lms have not been studied systematically.

5.4 Experimental observations

A rich variety of experimental observations has been reported in the lit-

erature on the buckling of compressively stressed thin ¯lms on substrates

and on the development of secondary buckling phenomena which lead to

con¯gurations with reproducible characteristic shapes. Examples of such

observations are presented in this section.

5.4.1 Edge delamination

A series of experiments was reported by Thouless et al. (1992) who com-

pared observations on buckle-driven delaminations of thin ¯lms under plane
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strain compression with the analysis of the phenomenon presented in Sec-

tion 5.1.2. The experiments were conducted with sheets of mica of thickness

in the range 30¹m ∙ hf ∙ 120¹m bonded to a steel substrate. For this ma-

terial system, the values of the Dundurs parameters are roughly D1 = 0:09

and D2 = 0:06. A debonded zone of predetermined width could be intro-

duced arti¯cially. The substrate thickness was about 6mm and the sample

width was 25mm, large enough to maintain the plane strain constraint.

The mismatch stress was generated by subjecting the composite system to

loading in the four-point bending arrangement, resulting in pure bending in

the region of the debonded zone. In the context of the present discussion,

this loading arrangement provided control over the level of the compressive

stress jtmj in the ¯lm. The width of the debonded zone increased as the load

was increased beyond the level required to initiate the process. Based on

the assumption of an interface delamination resistance of the form (5.20),

a value of the parameter ´c of about 0.7 was deduced for this system as

long as the delamination was actually open, that is, as long as Ã > ¡90◦.
In some cases, it was observed that the delamination continued to advance

with Ã = ¡90◦, implying that it did so exclusively in mode II deformation

and that there was contact between the ¯lm and substrate surfaces within

some portion of the delamination zone.

5.4.2 Initially circular delamination

In a series of experiments, Ogawa et al. (1986) demonstrated the con¯gura-

tional instabilities in focused ion beam sputtered and magnetron sputtered

molybdenum ¯lms on glass substrates where the nucleation and progression

of ¯lm delamination and buckling were documented using Nomarski inter-

ference contrast microscopy. The delamination and buckling of SiC coatings

on Si substrates were studied experimentally by Argon et al. (1989) in an

investigation of the intrinsic toughness of interfaces. They deposited amor-

phous hydrogenated thin ¯lms of SiC, 0.1{1.0 ¹m in thickness, on (100)

Si single crystal substrates, 250 ¹m in thickness and 25.4 mm in diameter,

using a plasma-assisted chemical vapor deposition (PACVD) process. The

as-deposited SiC ¯lms were in a state of residual compression, with the mag-

nitude of the ¯lm mismatch stress increasing from about 700 MPa for the

thinnest ¯lm to approximately 2 GPa for the thickest ¯lm. When the coating

thickness was in excess of a critical value, spontaneous circular delamination

was observed to initiate from interface °aws whose origin was linked to oc-

casional local contaminants along the interface. The circular delaminations

along the interface were essentially non-propagating defects when the SiC
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Fig. 5.17. An example of secondary buckling leading to a wrinkled shape in a
circular blister in a SiC thin ¯lm on a (100) Si substrate, as revealed by Nomarski
interference contrast microscopy. Reproduced with permission from Argon et al.
(1989).

¯lm thickness was much less than 1 ¹m. This is consistent with the ex-

pectations predicated upon the analyses presented in Section 5.2. However,

when the ¯lm thickness exceeded 1 ¹m, complex wrinkles developed along

the perimeter of the expanding circular delaminations, consistent with the

mechanisms discussed qualitatively in Section 5.3. Figure 5.17 shows an

image of such a blister taken in Nomarski interference contrast microscopy.

The dark outer ring that is about 5{7 ¹m beyond the outer edge of the

buckle was ascribed by Argon et al. (1989) to the relative radial slippage

between the ¯lm and the substrate.

Hutchinson et al. (1992) performed a systematic experimental study

of the growth and con¯gurational stability of initially circular delaminations

of ¯lms in equi-biaxial compression. Their material system comprised a thin

¯lm of mica which was bonded to a relatively thick aluminum substrate by

means of a thermoplastic resin. Mica sheets, with in-plane dimensions of

150 mm £ 150 mm and 14{130 ¹m in thickness, were chosen as the ¯lm

material because of their availability in large quantities and in a variety of

uniform thicknesses. The aluminum substrate o®ered a high coe±cient of

thermal expansion and good thermal conductivity. Thus, by varying the

temperature of the ¯lm{substrate system, the magnitude of the mismatch

stress in the ¯lm could be controlled by exploiting the di®erence in thermal

expansion coe±cients between mica and aluminum. Residual stress in the

¯lm was estimated by monitoring substrate curvature changes during ther-
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Fig. 5.18. Optical micrographs showing axisymmetric growth followed by telephone
cord instability in response to an increase in mismatch stress in a mica ¯lm bonded
to an aluminum substrate. Reproduced with permission from Hutchinson et al.
(1992).

mal excursion using optical interferometry, and the reference temperature

below which the mismatch stress developed was estimated to be 52 § 2 ◦C.
At room temperature, the equi-biaxial compressive stress in the mica ¯lm

was approximately 100 MPa. Values of the Dundurs parameters for the

mica{aluminum system are D1 = 0.4 and D2 = 0.1. For these values, the

corresponding value of the parameter ! de¯ned in (4.50) is essentially the

same as that shown in Figure 4.28 for D1 = 0 and D2 = 0. This pro-

vides a rationale for applying the results for a homogeneous system to the

mica{aluminum bilayer.

Controlled circular delaminations of di®erent diameters were intro-

duced at the interface between the mica and the resin by using a screw that

was threaded through the substrate, from the back face of the substrate to
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the interface. Experiments conducted with di®erent values of ¯lm stress ¾m
and di®erent thicknesses of mica ¯lm (which also gave rise to di®erent val-

ues of interface fracture energy ¡) revealed that the growth of delamination

occurred in a relatively narrow range of values of ¾2mhf= ¹Ef¡.

There exists no driving force for an initial interface delamination if the

¯lm does not undergo buckling. Once buckling occurs, the interface delami-

nation begins to advance when the energy release rate exceeds the interface

fracture energy which depends on the local stress state phase angle. The

shape of the buckle driven delamination is also a strong function of the en-

ergy release rate. Figure 5.18 comprises a sequence of optical micrographs

which reveal the growth of an initially circular interfacial debond under the

in°uence of an increasing ¯lm stress ¾m which was generated by lowering the

temperature of the mica{aluminum system. Note that the blister retains a

near-circular shape at lower values of ¾m; the circular symmetry is lost in the

left middle micrograph after which a so-called telephone cord buckle con¯gu-

ration develops. The term telephone cord buckle has been adopted generally

to describe ¯lm buckles which are essentially straight over distances many

times the width of the buckles, but which consist of curly segments with

dimensions on the scale of the width of the buckles which are periodically

arrayed along the length. It was suggested that a possible origin of nonax-

isymmetric shapes is the instability of the expanding circular delamination

front to non-circular perturbations. The fact that the mode-adjusted crack

driving force decreases with increasing radius of curvature of the circular

blister, as shown in Figure 5.15 for ´c in the range 0.7 to 1.0, beyond a

certain critical radius would indicate that a local radius of curvature which

is smaller than the average radius of curvature would lead to a higher local

driving force when the blister size far exceeds the critical radius. In addition,

note that the relative signi¯cance of mode II in in°uencing local stress state

phase angle increases less precipitously for the circular blister than for the

straight-sided blister, as seen in a comparison of Figure 5.14 with Figure 5.6.

Consequently, perturbations with a smaller local curvature or shapes that

lead to enhanced waviness are favored beyond a certain delamination ra-

dius because a curved crack front is subject to a higher driving force than

a straight-sided one. Such arguments provide a rationale for the observed

increase in the number of lobes in the shape of an initially circular delam-

ination with an increase in the equi-biaxial compressive stress in the ¯lm

(Hutchinson et al. 1992). The unstable delamination phenomena described

here for ¯lm{substrate systems have also been observed in connection with

interfacial debonding in laminated composite materials (Whitcomb 1986).

An example of the progressive growth, as a function of time, of wavy
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Fig. 5.19. A sequence of optical micrographs showing the advance of a telephone
cord instability in a magnetron sputtered molybdenum thin ¯lm on a relatively
thick glass substrate. The six images shown here reveal the progressive growth of
the wavy ridge pattern in the ¯lm at 0, 180, 512, 692, 872 and 1,052 s after the
¯lm{substrate system was removed from the sputtering chamber and placed in an
optical microscope. Reproduced with permission from Ogawa et al. (1986).

ridge patterns in a compressively stressed ¯lm is provided in Figure 5.19

from the work of Ogawa et al. (1986). This optical micrograph shows the

advance of a telephone cord instability in a magnetron sputtered, 900§90

nm thick molybdenum ¯lm on a relatively thick glass substrate. The images

shown in this ¯gure were photographed immediately after the ¯lm{substrate

system was removed from the sputtering chamber and placed in an optical

microscope for observation. The equi-biaxial compressive stress in the ¯lm

was estimated to be approximately 2.2 GPa. Note that the wavy ridge

pattern, approximately 100 ¹m wide, advances in a straight line, with the

length of the telephone cord pattern increasing by an amount equal to its

wavelength every 300 s or so.

5.4.3 Effects of imperfections on buckling delamination

Axisymmetric buckling of a thin ¯lm on a °at substrate surface becomes

possible when there exists an interface separation with minimum radius am
as given in (5.35). Analysis of this phenomenon is predicated on the tacit

assumption that the ¯lm is nominally uniform in thickness and that the

interface is nominally °at; in other words, it is assumed that no large scale



378 Film buckling, bulging and peeling

imperfections, inclusions or other defects exist along the interface between

the ¯lm and the substrate. For typical values of elastic moduli and ¯lm

mismatch stress that are representative of thermal barrier and wear resistant

coatings on metallic and brittle substrates, such homogeneous nucleation of

a buckle requires the existence of interface °aws whose minimum size is as

large as 20hf . In fact, experimental observations reveal that buckling can

occur for interface °aw sizes that are much smaller than 20hf (Christensen et

al. (1997); He et al. (1998)). Figure 5.20 shows an example of an interface

imperfection in the form of an undulation or wrinkle along the interface

between a Pt aluminized bondcoat and a thermally grown oxide (TGO)

layer of ®¡Al2O3. The bondcoat is processed by depositing a 3{10¹m

thick layer of Pt on a Ni-based superalloy substrate and then aluminizing it

by chemical vapor deposition. Aluminum from the bondcoat in conjunction

with the ingress of oxygen from the top layer of oxygenations thermal barrier

coating (TBC), which is typically a cubic/tetragonal phase zircon containing

yttrium in solid solution, leads to the formation of ®¡Al2O3. This in situ

buildup of the oxide results in a high compressive stress in the TGO layer,

typically on the order of 3{6 GPa.

Analysis of the possible role of imperfections in in°uencing buckling-

driven delamination indicate that the presence of imperfections along the

¯lm{substrate interface could markedly alter the conditions for the nucle-

ation and growth of the buckle. The nucleation of delamination at imper-

fections located along an interface is generally considered to be associated

with a peak value of the energy release rate Gmax (Evans et al. (1998); He

et al. (1998)). In the absence of buckling, small °aws are nucleated at sites

of imperfections along interfaces near regions of highest local tensile stress

with the result that the °aws so induced pop in along the interface and

then arrest. Concomitantly, the energy release rate, which attains a peak

value at the onset of delamination nucleation at imperfections, subsequently

declines and reaches the interface fracture energy ¡ when the delamination

arrests. If there exists an interface °aw whose radius is larger than am, as

given in (5.35), the ¯lm buckles. As a result, the energy release rate rises

again and approaches a value with magnitude comparable to Gm as the de-

lamination propagates; see Figure 5.13. These opposing trends during the

nucleation and growth of delamination suggest a minimum in the value of

the energy release rate, say Gmin. If this minimum value approaches the

work of separation ¡ of the interface, the buckle continues to advance.

Hutchinson et al. (2000) have performed ¯nite element simulations of

energy release rates for interface imperfections in the form of axisymmetric

undulations of di®erent wavelengths and amplitudes. Their results suggest
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Fig. 5.20. An example of an interface imperfection in the form of an undulation
in a thermal-barrier coating (TBC) system comprising a Pt aluminize bondcoat on
a Ni-based superalloy substrate. A thermally grown oxide (TGO) layer is formed
between the bond coat and the zirconia TBC. Thermal cycling leads to interfacial
fracture and cracking in the TBC in the region of high local tensile stress adjacent
to the TGO layer. Such cracking and interfacial delamination ultimately lead to
the onset of large scale buckling. Reproduced with permission from Evans et al.
(2001).

that the variation of Gmin=G with a0=am is independent of the residual strain

¾m= ¹Ef , where a0 is the radius of the interface wrinkle or imperfection. When

the size of the axisymmetric interface °aw is in the range 0:12am ∙ a0 ∙
0:6am, the minimum value of the energy release rate for buckle propagation

is of the form

Gmin ¼ 0:4

µ
a0
am

¶
Gm: (5.41)

When Gmin is equated with the interface fracture energy at the appropriate

local stress state phase angle Ã, a critical wavelength or radius for the inter-

face imperfection a0 = acr, can be extracted by combining (5.41) and (5.17)

to yield

acr0 ¼ 11

Ã
¹Ef¡

¾2m

! s
¹Ef
¾m

: (5.42)

This result implies that when the imperfection wavelength is smaller than

acr, the energy release rate is not su±ciently high to induce buckling. On the
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other hand, when the imperfection wavelength is larger than acr0 , a buckle

forms, provided that there is a su±ciently large interface separation, and it

evolves into a telephone cord-like shape.

It is noted that acr as given by (5.42) is independent of the ¯lm thick-

ness hf , which is counter to experimental evidence. Hutchinson et al. (2000)

circumvent this problem by postulating that Gmax » Gm = 2¡ gives the

critical ¯lm thickness hcrf at which the imperfections lead to the nucleation

of delamination as

hcrf ¼ 4 ¹Ef¡

¾2m
; (5.43)

which has a weak dependence on acr=hf . When this result is combined with

(5.42), it is seen that acr=h
cr
f ¼ 2:7

q
¹Ef=¾m. Therefore, it can be argued that

a delamination will not nucleate for circumstances in which both hf < hcrf
and a0 < acr0 prevail. Furthermore, any delamination comparable to the

undulation size a0 will arrest before instability sets in. On the other hand,

when hf < hcrf and a0 > acr0 are both satis¯ed, an interface delamination will

initiate and propagate in an unstable manner. In summary, the inception

and advance of buckle driven delaminations in the presence of interface

imperfections can be regarded as being governed by a nucleation process

which occurs at a critical ¯lm thickness and by unstable buckling which

occurs at a critical wavelength of the imperfection.

5.4.4 Example: Buckling instability of carbon films

The occurrence of buckling instability is a topic of particular interest in the case of
amorphous carbon ¯lms. These ¯lms, commonly referred to as diamond-like carbon
(DLC), exhibit many desirable properties similar to those of diamond: optical
transparency, wear resistance, high modulus to density ratio, low coe±cient of
friction during contact with most materials, high electrical resistivity, high thermal
conductivity, and chemical inertness. These attributes underlie the interest in their
use in a variety of engineering applications which include: tribological coatings for
transmission gears, overcoat layers for speaker diaphragms and surface acoustic
wave devices, and protective coatings for magnetic storage media such as hard
disks and tapes, for head drums in video-cassette recorders and for infrared optical
windows. A common method of depositing DLC ¯lms onto substrates entails ion
beam deposition or capacitively coupled RF glow discharge in a gas such as CH4 or
C6H6. These ¯lms can be formed with high residual compressive stresses, typically
1{6 GPa, depending on the processing methods employed. The range is due, in part,
to the large concentration of hydrogen incorporated into the ¯lm during deposition.

Figure 5.21, taken from the work of Gille and Rau (1984), shows an example
of the onset and progression of buckling of a 200-nm thick ion-beam-deposited
carbon layer on a relatively thick quartz glass substrate. The intrinsic compressive
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Fig. 5.21. Nucleation of buckles and wrinkles at the ¯lm edge followed by the
development of telephone cord instability in a 200-nm thick carbon ¯lm deposited
on a glass substrate. Reproduced with permission from Gille and Rau (1984).

stress in the ¯lm is estimated to be 3{6 GPa, and the energy of the interface between
the ¯lm and the substrate is 4{7 J/m2. Irregularly buckled regions, which are seen
in the lower half of Figure 5.21, initiate at the ¯lm edge. As the wrinkled region
advances away from the edge towards the center of the specimen, a remarkably
regular telephone cord buckle develops. These undulations exhibit clear periodicity
with the amplitude of the waviness typically in the range 1{2 ¹m and with the
mean spacing between the peaks in the range 10{20 ¹m. The moisture content of
the humid air environment is also known to have an in°uence on the propagation
of the buckle in carbon ¯lms.

Figure 5.22(a) shows an example of stress relief pattern in a compressively
stressed DLC ¯lm which was deposited in an RF glow discharge in a hydrocarbon-
containing gas onto a Si substrate. Buckling is initiated at the ¯lm edge or at an
interior defect, upon exposure to atmospheric air. Upon growth away from the
¯lm edge or the defect site, the buckle develops into the shape of a `telephone
cord'. Figure 5.22(a) shows a sinusoidal stress relief pattern which populates a
signi¯cant area of the ¯lm. The intersection of the buckle with a crack causes a
break in the telephone cord pattern. Figure 5.22(b) shows another example of a
telephone cord buckle in a DLC ¯lm whose origin can be traced to the presence of
an imperfection which was present on the surface of the soda lime glass substrate
prior to ¯lm deposition. The imperfections in this system were composed of silica
and Ti silicate phases. Experiments by Moon et al. (2002) reveal that when the
energy release rate for the initial separation of the ¯lm from the substrate at the
site of the imperfection exceeds the interface fracture energy, suitably representing
the appropriate local stress state phase angle, the buckle becomes unstable and
propagates in the shape of a telephone cord.



382 Film buckling, bulging and peeling

Fig. 5.22. Examples of telephone cord buckles in DLC ¯lms. (a) A telephone cord
buckle, initiated at ¯lm edge, intersected by a crack. Reproduced with permission
from Nir (1984). (b) A telephone cord buckle whose origin (indicated by the arrow)
is identi¯ed to be an imperfection on the surface of the glass substrate. Reproduced
with permission from Moon et al. (2002).

5.5 Film buckling without delamination

In the discussion of ¯lm buckling in Sections 5.1 and 5.2, it was tacitly

assumed that a portion of the ¯lm was able to buckle laterally because it

had become detached from the substrate over some portion of the interface.

However, there are situations in which ¯lm buckling can occur without de-

lamination. For example, this phenomenon can arise if the ¯lm stress is very

large and/or if the substrate sti®ness is small compared to the ¯lm sti®ness.

To investigate the range of parameters for which this can occur, consider

the possibility of plane strain buckling of a compressed ¯lm of thickness hf
and plane strain modulus ¹Ef which is bonded to a relatively thick substrate

with plane strain modulus ¹Es. Prior to buckling, the ¯lm is subjected to an

equi-biaxial stress of magnitude ¾m < 0.

For present purposes, it is assumed that, upon buckle formation, the

transverse de°ection of the ¯lm midplane is equal to the normal surface

displacement of the substrate, a reasonable approximation in light of the

thinness of the ¯lm. Furthermore, it is assumed that the in-plane displace-

ment component of the ¯lm midplane from its initial uniformly stressed

con¯guration is zero. This assumption is also reasonable for a thin ¯lm,

provided that the de°ections are not large. Buckling theories of this kind

have been considered in the context of geological folding by Biot (1965), lay-
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ered structural panels by Allen (1969), and material surfaces with negative

surface energy or surface stress by Andreussi and Gurtin (1977).

5.5.1 Soft elastic substrate

The di®erential equation that governs the transverse de°ection w(x) of the

¯lm midplane is again (5.5), modi¯ed to account for the resistance to trans-

verse de°ection exerted by the substrate. This resistance is represented by

a pressure p(x) over the midplane of the ¯lm, directed toward the substrate

after values of x for which w(x) is positive. The result is the ordinary dif-

ferential equation

wIIII(x)¡ 12tm
¹Efh

3
f

wII(x) = ¡ 12
¹Efh

3
f

p(x); (5.44)

where tm < 0 is the membrane stress resultant in the ¯lm. The dependence

of p(x) on w(x) is dictated by the response of the substrate. In general, if a

normal tensile traction p(x) is imposed on the surface of the substrate, then

the normal displacement w(x) of the substrate surface can be expressed in

terms of p(x) by

wI(x) =
2

¼ ¹Es

Z ∞
−∞

p(»)

» ¡ x
d» (5.45)

when the shear traction on the surface vanishes everywhere, analogous to

(4.6) (Johnson 1985). The stability of the unde°ected ¯lm con¯guration is

considered next on the basis of (5.44) and (5.45).

Only the question of initial bifurcation is considered here; post-buckling

behavior is not examined. The unde°ected con¯guration with w(x) = 0 and

p(x) = 0 is always a solution. The objective is to ¯nd a range of parameters

for which a nontrivial solution can be found. A spatially periodic de°ection

w(x) = Wm cos
2¼x

¸
(5.46)

with wavelength ¸ and amplitude Wm is sought. If a solution can be found

with Wm 6= 0 for some value of tm, then that stress resultant value de¯nes a

buckling stress level for the ¯lm. If w(x) varies with x according to (5.46),

then p(x) must also have the form

p(x) = Pm cos
2¼x

¸
: (5.47)

If (5.46) and (5.47) are substituted into (5.45) and if the integral is evaluated,

it is found that ¼Wm=¸ = Pm= ¹Es. Then, substitution of this result and
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Fig. 5.23. Optical micrographs showing ¯lm buckling patterns in 50 nm thick gold
¯lms on relatively thick PDMS (polydimethylsiloxane) substrates, and with an
intermediate layer of titanium or chromium a few nm thick to promote adhesion.
The wavelengths in the buckling patterns varied between 20 and 50¹m, with depths
of a few ¹m. For a uniform ¯lm, the disordered pattern shown on the left developed,
whereas the introduction of free edges to the ¯lm by substrate pattering prior to
deposition led to ordered buckling patterns as illustrated on the right. Reproduced
with permission from Bowden et al. (1998).

(5.46) into (5.44) yields a relationship between stress and wavelength in the

form of µ
2¼

¸

¶3
+

12tm
¹Efh

3
f

µ
2¼

¸

¶
+

6 ¹Es
¹Efh

3
f

= 0: (5.48)

It is readily established that the smallest magnitude of jtmj for which a

positive real solution of this cubic equation for wavelength can be found is

jtmj =
µ
3

8

¶2/3
hf ¹E

1/3
f

¹E2/3s : (5.49)

This value is therefore the critical stress for onset of plane strain wrinkling

of the ¯lm on the substrate surface. The corresponding wavelength is

¸

hf
= ¼

Ã
8 ¹Ef
3 ¹Es

!1/3
: (5.50)

If the substrate properties are such that ¹Es = 10−3 ¹Ef , for example, then

the critical stress magnitude is ¾m ¼ ¡0:0052 ¹Ef from (5.49), and the corre-

sponding wavelength is ¸ = 43:6hf .

Behavior of this type was studied experimentally by Bowden et al.

(1998) who found a wide range of buckling patterns in gold ¯lms deposited
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on elastomeric polymer substrates. In those cases in which the ¯lm was ap-

parently uniform over a large area of the substrate surface, it did not buckle

into a one-dimensional array of long ridges and valleys. Instead, the buck-

ling patterns consisted of a disordered array of small regions, each of which

was essentially a one-dimensional array of ridges and valleys. An example of

such a pattern is shown in part (a) of Figure 5.23. The reason for the disor-

der is unclear, and perhaps a detailed study of post-buckling behavior would

provide clues to its existence. Much more regular arrays of wrinkles were

found when the polymer substrates was patterned prior to deposition of the

metal ¯lm with bas-relief features in the form of elevated ridges or elevated

mesas of square or circular shape. These features interrupted the continuity

of the ¯lm, and essentially provided stress free boundaries in the interior

of the ¯lm. In these cases, the wrinkles were aligned normally to the ¯lm

boundary at the elevated features, presumably because stress su±ciently

large to induce buckling could be maintained only in directions parallel to

free edges. Characteristic patterns were formed as these families of wrinkles

merged with those emanating from adjacent surface features. An example

with circular gaps in the ¯lm is shown in part (b) of Figure 5.23.

The partial di®erential equation that generalizes (5.44) for the case a

general two-dimensional buckling patterns is

¹Efh
3
f

12
r4w ¡ txx

@2w

@x2
¡ tyy

@2w

@y2
¡ 2txy

@2w

@x@y
= ¡p; (5.51)

where all ¯elds are functions of both x and y, and the nonuniform membrane

stress resultants txx, tyy and txy appearing in (5.51) represent the equilibrium

plane stress ¯eld prior to buckling that satis¯es the appropriate boundary

conditions.

5.5.2 Viscous substrate

If the substrate material supporting the compressed ¯lm is a linear viscous

material, instead of an elastic material as in the preceding discussion, then

the ¯lm de°ection w(x; t) is time-dependent and the interfacial stress p(x)

appearing in (5.44) depends on the transverse velocity @w=@t of the ¯lm. If

the viscous substrate material is assumed to be incompressible, then (5.45)

is replaced by

@2w

@x@t
(x; t) =

4

9¼´s

Z ∞
−∞

p(»; t)

» ¡ x
d» ; (5.52)

where ´s is the viscosity of the substrate material.

Analysis of buckling behavior for spatially periodic ¯lm de°ections
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proceeds as in Section 5.5.1, except that the buckling amplitude Wm(t)

appearing in (5.46) is time-dependent. The resulting equation governing

Wm(t) implied by (5.44) in this case takes the form

_Wm(t) =

"
12jtmj
27´s

¡
¹Efh

3
f

27´s

µ
2¼

¸

¶2#µ
2¼

¸

¶
Wm(t) ; (5.53)

where the superposed dot represents di®erentiation with respect to time. It

is evident that the ¯lm can undergo lateral buckling for any value of the

initial compressive stress jtmj if the wavelength ¸ is large enough so that

the term in square brackets in (5.53) becomes negative. Of greater interest

is the wavelength, say ¸gr, for which the amplitude Wm(t) will grow most

rapidly for a given value of jtmj. This wavelength is readily found to be

¸gr = ¼hf

s
¹Efhf
jtmj =

¼hfp
(1 + ºf)j²mj

: (5.54)

For a linear viscous material, this fastest-growing wavelength is independent

of the viscosity of the substrate, as is evident from (5.53). The rate of growth

itself, which is determined by substituting (5.54) into (5.53), is inversely

proportional to the viscosity but is independent of the ¯lm thickness. The

corresponding results for the case of a viscous substrate of ¯nite thickness

were presented by Sridhar et al. (2001).

The con¯guration of an elastic ¯lm bonded to a viscous substrate is

of interest in semiconductor-on-insulator con¯gurations in microelectronics.

The interest stems from the prospect of relaxing undesirable stress in the

¯lm by activating viscous °ow in the amorphous substrate during a short du-

ration, high temperature annealing cycle. The viscous °ow in the substrate,

however, can also induce ¯lm buckling as was veri¯ed in the experiments re-

ported by Hobart et al. (2000). Compressively strained Si0.7Ge0.3 ¯lms were

bonded to substrates consisting of either SiO2 or silicate glass doped with

boron and phosphorus to reduce its viscosity. The ¯lms were deposited epi-

taxially on Si substrates and then transferred to the glass substrates without

a reduction in mismatch stress. For the relatively low viscosity borophos-

phorosilicate glass (BPSG), buckling was found to occur at a temperature

of about 800 ◦C. Representative images are shown in Figure 5.24. The plan

view image of a buckling pattern on the left was obtained by interference

contrast (Nomarski) microscopy; it shows the same type of behavior as was

illustrated in Figure 5.23, wherein the buckling pattern is regular near the

free ¯lm edge on the right but has a random patchiness far from the free

edge. The side view, obtained by scanning electron microscopy, clearly il-

lustrates the periodicity of the buckling pattern. Interestingly, Hobart et al.



5.5 Film buckling without delamination 387

Fig. 5.24. The interference contrast (Nomarski) microscopy image on the left shows
a plan view of the buckling pattern for a Si0:7Ge0:3 ¯lm, approximately 30 nm
in thickness, on a borophosphorosilicate glass (BPSG) substrate following high
temperature annealing. The scanning electron microscopy image on the right shows
a cross-section of the sample, revealing the fully formed buckling pattern on its
BPSG substrate. Reproduced with permission from Hobart et al. (2000).

(2000) were able to suppress buckling by patterning the stressed ¯lms into

smaller area patches. Through further development of the model (Liang et

al. 2002), it was established that buckling could be suppressed as a result of

stress relief associated with in-plane expansion, as outlined in Section 6.7.3,

for a ¯lm with lateral dimensions 10-15 times the critical wavelength (5.54).

5.5.3 Example: Buckling wavelength for a glass substrate

A Si0:7Ge0:3 ¯lm that is 35 nm in thickness is transferred from its Si substrate
onto the surface of a borophosphorosilicate glass without reduction in mismatch
strain. The structure is then heated to the temperature of 800 ±C. Determine the
wavelength of the buckling pattern that is expected to develop and the characteristic
time for its formation. Base the estimate on the assumed properties Ef = 124GPa,
ºf = 0:26 and ´s = 107 Pa¢ s.
Solution:

The mismatch strain between the SiGe ¯lm and its Si substrate is approxi-
mately ²m = ¡0:012. From (5.54), the ratio of the wavelength of the fastest growing
buckling mode to the ¯lm thickness is

¸gr

hf
=

¼p
1:26£ 0:012

= 25:6 : (5.55)

For hf = 35nm, this wavelength is roughly 1¹m. From the di®erential equation
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(5.53), the characteristic time for this wavelength to develop is

27´s

16Mf

p
1 + ºf j²mj3=2

¼ 0:1 s : (5.56)

5.6 Pressurized bulge of uniform width

In this section, the case of an initially °at ¯lm that is not attached to its

substrate over the strip ¡a ∙ x ∙ a, ¡1 < y < 1 is considered. The ¯lm

is de°ected away from its substrate over this region by applying a pressure p

to the face of the ¯lm toward the substrate. As a result of the invariance of

the con¯guration under translation in the y¡direction, this de°ection will

be independent of y. The straight-sided bulge con¯guration is perhaps of

less practical signi¯cance than the corresponding circular bulge con¯gura-

tion. However, the fact that the response of the ¯lm to the applied pressure

can be described in a fairly transparent way at various levels of approxima-

tion makes it a useful device for introducing ideas which are important in

the study of all pressurized bulge con¯gurations. The straight-sided con¯g-

uration is depicted in Figure 5.25, where it is intimated that the pressure

is applied hydrostatically by means of a °uid. The notation introduced in

the discussion of buckling delamination in Section 5.1 is followed to the ex-

tent possible. This discussion of a pressurized bulge con¯guration is similar

to that for a buckled con¯guration, the main di®erence being that the de-

°ection results from external loading in the latter case whereas it is occurs

spontaneously in the former case. An equi-biaxial residual stress ¾m, which

may be tensile or compressive but of magnitude below the buckling stress

in the latter case, may also be present. However, consideration of this pos-

sibility is postponed until the discussion of the circular pressurized blister is

taken up in Section 5.7.

5.6.1 Small deflection bending response

The simplest level of approximation for small de°ection of the ¯lm is geomet-

rically linear elastic plate theory. In e®ect, it is presumed that the pressure

is resisted exclusively by bending resistance of the ¯lm in this case, and the

bending stress is not coupled to any membrane stress which may be present.

In this case, the transverse de°ection w(x) is known from linear elastic plate
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Fig. 5.25. Schematic representation of a straight-sided debond where an externally
imposed hydrostatic pressure causes the ¯lm to bulge.

theory to be

w(x)

hf
=

1

2

pa4

¹Efh
4
f

Ã
1¡ x2

a2

!2
(5.57)

for any pressure p. In particular, the de°ection of the center of the bulge,

say w(0) = w0, is related to the pressure through the linear relationship

w0
hf

=
1

2

pa4

¹Efh
4
f

: (5.58)

The small de°ection approximation is usually thought to be accurate for a

center point de°ection up to roughly w0 ¼ hf . Therefore, the pressure at

which w0 = hf is identi¯ed as the reference pressure

pr = 2 ¹Ef
h4f
a4

) w0
hf

=
p

pr
(5.59)

for purposes of comparison among the various results obtained by adopting

di®erent levels of approximation.

The con¯gurational driving force for delamination at the edge of the

pressurized zone can be calculated directly from expressions for the total

potential energy of the bulge con¯guration or by using the general formula

(5.38). If the latter option is adopted, then ¢ta = 0 within this level of

approximation and ma =
1
12

¹Efh
3
fw
II(a) = 1

3pa
2, so that

G(a) = Gb(a) = 2

3

p2a4

¹Efh
3
f

: (5.60)
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The corresponding phase angle Ã for the stress state on the interface imme-

diately beyond the pressurized zone is given by (5.26) as Ã = ¡45◦. Even

if tm 6= 0, the energy release rate is given by Gb(a) because bending and

membrane stresses are not coupled at this level of approximation.

5.6.2 Large deflection response

If the magnitude of the center point de°ection of the ¯lm w0 increases to

values on the order of ¯lm thickness hf , then the potential arises for gener-

ation of signi¯cant membrane stress in the ¯lm due to transverse de°ection

(in addition to any residual membrane stress which may be present in the

¯lm prior to de°ection). As in the case of ¯lm buckling, the von K¶arm¶an

plate theory provides a useful and e®ective framework for describing re-

sponse with center point de°ection w0 of magnitude equal to several times

the ¯lm thickness. In the present case, the von K¶arm¶an equations reduce to

the pair of ordinary di®erential equations

wIIII(x)¡ 12t0
¹Efh

3
f

wII(x) =
12p
¹Efh

3
f

;

(5.61)

uI(x) +
1

2
wI(x)2 =

t0
¹Efhf

for the transverse and in-plane de°ection components of the ¯lm midplane

as de¯ned in Figure 5.25. The solutions of these equations are subject to

the boundary conditions

w(§a) = 0 ; wI(§a) = 0 ; u(§a) = §a(1¡ ºf)¾m=Ef : (5.62)

The parameter t0 is the spatially uniform membrane tension in the ¯lm; its

value prior to application of the pressure p is ¾mhf where ¾m is the uniform

residual stress. The six boundary conditions in (5.62) yield values for the ¯ve

integration constants which arise from solution of the di®erential equations

and for the membrane stress t0 following application of the pressure p.

For the time being, consider the case of no initial residual stress, that

is, ¾m = 0. For this case, the relationship between the membrane stress t0
in the ¯lm and the applied pressure p that is implied by (5.61) and (5.62)

is given by

p

pr
=

¿2 sinh
p
¿

12 [(24 + 4¿) cosh 2
p
¿ ¡ 18

p
¿ sinh 2

p
¿ ¡ 24¡ 16¿ ]

1/2
; (5.63)

where pr is the reference pressure de¯ned in (5.59) and ¿ = 24t0hf=pra
2 is
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Fig. 5.26. Normalized membrane tension as a function of normalized hydrostatic
pressure imposed on the debond region from the predictions of membrane theory
and large de°ection theory.

the normalized membrane tension in the ¯lm. The result (5.63) is illustrated

by the solid curve in Figure 5.26. The transverse de°ection of the pressurized

bulge implied by the solution of the de°ection di®erential equations (5.61)

and the boundary conditions (5.62) is

w0
hf

= 12
p

pr

"p
¿ ¡ 2 tanh 1

2

p
¿

¿3/2

#
: (5.64)

When (5.64) is considered together with (5.63), the two relationships provide

the dependence of w0 on pressure p parametrically in t0. This result, which is

based on bending theory with ¯nite rotations of material elements, is shown

graphically by the solid line in Figure 5.27. The corresponding result from

small de°ection bending theory given in (5.58) is also shown in Figure 5.27

by the dashed line. In the limit as ¿ ! 0, the result in (5.64) reduces to

the small de°ection result given in (5.59). Note that nonlinear deformation

e®ects have a strong in°uence all in response for w0=hf ¸ 0:5.

The energy release rate G(a) for spread of the zone of application of

the pressure is again given by (5.38). In the present instance, the membrane
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Fig. 5.27. A comparison of di®erent approaches to estimate the normalized de°ec-
tion of the pressurized bulge as a function of the normalized pressure.

stress at the edge x = a of the pressurized region is ¢ta = ta ¡ tm = t0
and the bending moment at the edge is determined from the solution of the

de°ection equation (5.61) to be

ma =
1

12
¹Efh

3
fw
II(a) = pa2

"p
¿ coth

p
¿ ¡ 1

¿

#
: (5.65)

The normalized energy release rate is then

G(a)
Gb(a) =

¿

8

2 pr
12p

+ 9

"p
¿ coth

p
¿ ¡ 1

¿

#2
; (5.66)

where Gb(a) is the energy release rate for small de°ection bending theory

given in (5.60). With p=pr given in terms of ¿ in (5.63), the expression

(5.66) can be viewed as providing G=Gb versus p=pr parametrically in ¿ .

This relationship is shown graphically by the solid line in Figure 5.28 for

pressure in the range 0 ∙ p=pr ∙ 30. It is evident from the graph that

G(a)=Gb(a) ! 1 as p=pr ! 0, so the result (5.66) based on the von K¶arm¶an

¯nite deformation theory is consistent with the elementary bending result
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Fig. 5.28. The energy release rate G(a) for the spread of the debond zone over
which hydrostatic pressure is applied, normalized by the energy release rate for
small de°ection Gb(a), as a function of the normalized pressure p=pr.

when the pressure is very small. However, for any particular value of the

half width a, the dependence of G=Gb on p=pr for small values of the pressure

is found by noting that G=Gb » 1 ¡ 13¿=105 for small values of ¿ and by

recalling that (p=pr)
2 » 35¿2=256 for small values of ¿ . Together, these

two asymptotic expressions imply that G=Gb » 1¡ 0:91(p=pr)
2. This result

reveals the signi¯cant fact that the energy release rate falls o® dramatically

from its value based on linear plate theory alone as the pressure increases

within the range where small de°ection bending theory is generally regarded

as being valid.

5.6.3 Membrane response

From the foregoing examination of de°ection of a pressurized strip of a thin

¯lm, it is evident that the pressure is resisted less by bending stress and

more by membrane stress as the pressure p increases beyond the reference

pressure pr de¯ned in (5.59). In terms of midpoint de°ection w0, membrane

e®ects come into play when w0 ¼ 1
2hf and they tend to dominate response

for w0 > hf . Within this range, the full span of the ¯lm within the bulge may

be viewed as being divided into two regimes of behavior, as illustrated in
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Fig. 5.29. Schematic diagram of a section of a straight-sided pressurized bulge for
large de°ections, with the main part of the ¯lm exhibiting membrane behavior as
illustrated on the left. The diagram on the right represents a boundary layer region
near the edge of the bulge in which bending e®ects must be taken into account to
enforce the boundary conditions.

Figure 5.29. Over most of the span, the response to the pressure is assumed

to be exclusively due to membrane stress in the ¯lm, and bending e®ects are

ignored. In terms of the di®erential equations which govern the de°ection

response given in (5.61), behavior is determined by

¡t0w
II(x) = p; uI(x) +

1

2
wI(x)2 = 2t0h

3
f =pra

4 (5.67)

over ¡a < x < a. The ¯rst of these equations is recognized as a version of

the Laplace{Thompson equation involving curvature, membrane tension and

pressure. The solution of (5.67) must satisfy boundary conditions w(§a) = 0

and u(§a) = 0. The additional condition wI(§a) = 0 which was considered

in (5.62) cannot be enforced here because of the restriction to membrane

e®ects. The matching of the solution of (5.67) to the constraint of the ¯lm

supports at x = §a must rely on a boundary layer treatment.

Within the range of behavior described by (5.67), the center point

de°ection of the bulge w0 is found to depend on pressure according to

w0
hf

=
1

2

µ
12p

pr

¶1/3
: (5.68)

This behavior is also shown in Figure 5.27 by means of the long-dash curve,

along with the corresponding results for small de°ection bending theory and

for large de°ection theory. The increasing sti®ness dp=dw0 with increasing

pressure exhibited by the large de°ection response is due to the more sig-

ni¯cant role of membrane stress at larger pressures. As expected, this trend

is also shown by the membrane response being considered in this section.

For very small de°ection, the behavior (5.68) based on membrane e®ects

alone has unrealistically small sti®ness, corresponding to the large slope in

the graph of w0 versus p shown in Figure 5.27 for this case. The membrane
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stress t0 is related to the pressure according to

t0
prhf

=
1

12

a2

h2f

µ
12p

pr

¶2/3
; (5.69)

and this behavior is compared to the corresponding result for large de°ection

theory in Figure 5.26, where it is seen that the distribution for membrane

behavior implies a membrane stress approximately 15{20% larger than for

large de°ection theory.

The de°ection calculated on the basis of membrane theory is slightly

greater than that for large de°ection theory, at least up to the largest pres-

sure level included an Figure 5.27. This di®erence is most likely due to the

fact that the ¯lm is more constrained kinematically in plate theory due to

the additional condition wI(§a) = 0 than it is when only membrane resis-

tance is taken into account. To pursue the issue of the in°uence of edge

conditions on response in the large pressure range, the ¯lm response near

x = a is examined as a boundary layer phenomenon. This approach makes it

possible to understand the transition from local bending behavior satisfying

the edge condition wI(§a) = 0 to membrane behavior, and to proceed to a

calculation of energy release rate for advance of the delamination zone on

the same basis as for the other models of response of the pressurized bulge.

Within a region of extent small compared to a near the edges of the

bulge at x = §a, it is expected that gradients in deformation ¯elds are rela-

tively large. On this basis, only the gradient terms in (5.61) are maintained,

that is, transverse de°ection near x = a is assumed to be governed by

wIIII(x)¡ 2

a2

µ
12p

pr

¶2/3
wII(x) = 0 (5.70)

for x < a, where the coe±cient of the second term has been expressed in

terms of the uniform membrane tension (5.69) deduced from the foregoing

membrane analysis. A solution of (5.70) is sought subject to the edge con-

ditions w(a) = 0, wI(a) = 0. At points of the ¯lm far from x = a, the

solution is required to match the limiting behavior of the membrane solu-

tion as x ! a−. Thus, the additional conditions imposed on the solution of

(5.70) are

wI(x) ! ¡hf
a

µ
12p

pr

¶1/3
; wII(x) ! 0 as x ! ¡1: (5.71)

The resulting unique solution exhibits two features of particular interest,

namely, the curvature wII(a) =
p
2 (hf=a

2)(12p=pr)
2/3 at the edge of the

bulge, from which the edge bending moment can be calculated according
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to ma = ¹Efh
3
fw
II(a)=12, and the curvature at adjacent points within the

boundary layer region relative to the value wII(a). This latter result is

wII(x)
wII(a)

= e−
√
2 (12p/pr)1/3(1−x/a) (5.72)

for x < a. This expression provides a basis for estimating the thickness

or extent of the boundary layer region. Suppose that the boundary layer

thickness is estimated to be the distance from x = a at which the ratio

(5.72) has decayed to e−1 times its boundary value. This criterion leads

to the conclusion that the boundary layer thickness is a=10 when p=pr is

approximately equal to 30, and the size of the boundary layer diminishes

gradually as p=pr increases to larger values. Thus, the boundary layer thick-

ness is a signi¯cant fraction of a for smaller values of pressure which may

account for the di®erences in response between membrane theory and large

de°ection theory seen in Figure 5.27. Aspects of boundary layer behavior in

this context have been considered by Gioia and Ortiz (1997) and by Jensen

(1998).

A main objective in developing the boundary layer solution is to de-

termine the bending moment at the edge of the bulge, which is needed to

determine the driving force for further delamination of the ¯lm. The bending

moment is determined from the solution to be

ma

prh2f
=

1

12
p
2

a2

h2f

µ
12p

pr

¶2/3
: (5.73)

With this result, and the membrane stress ¢ta = ta = t0 given in (5.69), the

energy release rate can be calculated according to (5.38) for the membrane

deformation model. The result, normalized by the corresponding energy

release rate Gb(a) for small de°ection bending theory given in (5.60), is

G(a)
Gb(a) =

21

4

µ
pr
12p

¶2/3
. (5.74)

This result is also shown in Figure 5.28 along with results obtained on the

basis of other models of deformation of the same pressurized bulge con¯gu-

ration.

5.6.4 Mechanics of delamination

In the foregoing sections, the energy release rate G(a) for symmetric increase

in width a of the strip bulge was determined for ¯lm response described
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Fig. 5.30. Predicted variation of the normalized driving force G=(hfp), using (5.76)
based on small de°ection bending theory, (5.66) and (5.63) based on large de°ection
theory, and (5.74) and (5.63) based on membrane theory, as a function of the nor-
malized bulge width (a=hf) ¢ (p=2 ¹Ef)

1=4. The dotted line represents the normalized
midpoint de°ection w0=hf which is plotted as a function of the normalized bulge
width using the results from (5.64) and (5.63).

by elementary bending theory in (5.60), for large de°ection theory with

coupling between bending and membrane stress in (5.66), and for membrane

theory with edge boundary layers in (5.74). The focus in each case was on

a comparison of the dependence of G(a) on pressure ratio p=pr among the

various levels of description. In order to consider ¯lm delamination due to

the application of the pressure, it is necessary to know the driving force as

a function of bulge width a, under conditions in which either the pressure p

acting on the ¯lm or the volume V of the pressurizing medium is controlled.

This volume (per unit length along the strip) is de¯ned as the volume swept

out by the ¯lm in undergoing transverse displacement, that is,

V ¼
Z a

−a
w(x) dx (5.75)

for small displacement u(x). Volume can be controlled if the compressibility

of the pressurizing medium is negligible over the pressure range of interest.

For the case of ¯xed applied pressure p forming the bulge, the driving
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force given in (5.60) for small de°ection bending theory can be written as a

function of a in the nondimensional form

G(a)
hfp

=
4

3

pa4

2 ¹Efh
4
f

: (5.76)

This result is shown graphically by the dot-dash curve in Figure 5.30. The

corresponding expression for large de°ection theory is given parametrically

in (5.66) and (5.63), with parameter ¿ ; likewise, the equivalent boundary

layer result based on membrane theory is given parametrically in (5.74) and

(5.63). Both of these cases can be expressed in terms of the same normalized

variables as were used in (5.76), and the results are shown graphically an

Figure 5.30. As was already noted above, the midpoint de°ection w0=hf
versus (a=hf)(p=2 ¹Ef)

1/4, which is given parametrically by (5.64) and (5.63),

is included as the dotted curve in the ¯gure for reference. As long as the

midpoint de°ection is less than about hf=2, the descriptions based on the two

bending theories are indistinguishable; membrane theory is not expected to

be valid within this region. For larger de°ections, the trends of descriptions

based on membrane theory and large de°ection theory agree very well but

the actual values of energy release rate show a systematic di®erence. If the

two descriptions are compared at a given level of driving force in the large

de°ection range, then the two values of a di®er by a distance that is roughly

equal to the width of the boundary layer introduced with the membrane

theory to match the constraints at the bulge edges. This boundary layer

width is not negligibly small compared to a until (a=hf)(p=2 ¹Ef)
1/4 becomes

very large, well beyond the range of parameters represented an Figure 5.30.

This provides a limitation on the use of membrane theory within a range

of behavior of practical interest. To some extent, this limitation is o®set by

the simplicity of the approach based on membrane theory.

If delamination at the edges of the bulging strip is driven by con-

trolling the volume V of the pressurizing °uid between the ¯lm and its

substrate, the dependence of driving force G(a) on width a is quite di®erent

from that shown in Figure 5.30. For the case of small de°ections, w(x) is

given explicitly in (5.57) in terms of pressure p and various system parame-

ters. Therefore, the relationship between volume V as de¯ned in (5.75) and

pressure can be established as

V

ahf
=

16

15

p

pr
(5.77)

in a convenient normalized form. In terms of the same variables, the driving

force for edge delamination can be expressed as a function of width a at
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Fig. 5.31. The variation of membrane tension in the ¯lm versus pressure applied
within the bulge region. The solid curve represents the result of large de°ection
analysis given in (5.79), and the discrete points follow from a ¯nite element sim-
ulation of the bulge. Both of these results approach the high-pressure asymptote
represented by membrane theory, shown as the dashed line, but only very gradually.

¯xed volume V from (5.60) as

Gb(a)
prhf

=
4

3

µ
p

pr

¶2
=

75

64

µ
V

ahf

¶2
: (5.78)

Derivation of the corresponding result for large de°ection response is left is

an exercise.

It was noted above that the phase angle of the interface stress at the

edge of the delamination zone is always ¡45◦ when it is calculated according

to small de°ection bending theory with tm = 0. The incorporation of e®ects

of ¯nite de°ection through (5.61) leads to a nonzero membrane stress t0 even

when tm = 0. The nondimensional ratio of membrane stress ta to bending

moment ma at the edge of the delamination zone is found from the solution

of these equations to be

tahf
ma

=
1

24

pr
p

"
¿2p

¿ coth
p
¿ ¡ 1

#
: (5.79)
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This result is shown in Figure 5.31. It is evident from the ¯gure that the

membrane stress ta takes on relatively large values for moderate levels of

applied pressure. In contrast, this stress component is identically zero ac-

cording to small de°ection bending theory. The dependence of membrane

stress on pressure implies a corresponding dependence of phase angle Ã of

the local stress ¯eld at the edge of the delamination zone at x = a on pres-

sure, as implied by (5.26). The crack edge phase angle Ã is sensitive to the

level of pressure at ¯xed bulge size a or, equivalently, the phase angle is

sensitive to the size a of the bulge at a ¯xed level of pressure p. The stress

resultant ratio based on membrane theory with a boundary layer transition

zone is also shown in Figure 5.31 as the horizontal dashed line. The results

based on both large de°ection analysis and on the large de°ection ¯nite el-

ement simulation approach the membrane behavior as p=pr becomes very

large, but the approach is gradual.

5.7 Circular pressurized bulge

The case of a circular pressurized bulge in a thin ¯lm is considered in this

section. The ¯lm is bonded to its substrate everywhere except over a circular

portion of the interface of radius a, and the ¯lm is de°ected away from the

substrate by means of a pressure p applied to the face of the ¯lm adjacent

to the substrate. The deformation in the ¯lm resulting from application of

the pressure is assumed to be axially symmetric. The radial and transverse

components of displacement of a point on the ¯lm midplane at distance

r from the axis of symmetry are denoted by u(r) and w(r), respectively.

The periphery of the ¯lm is assumed to be constrained from translation

or rotation due to the relative rigidity of the substrate, so that u(a) = 0,

w(a) = 0 and wI(a) = 0. The deformation may also be subject to symmetry

conditions as r ! 0+. The con¯guration is similar to that depicted in

Figure 5.25, with only minor modi¯cations to that ¯gure being necessary to

account for axial symmetry.

In the sections that follow, the pressurized ¯lm is described succes-

sively in the frameworks of small de°ection bending response, elementary

membrane response, and large de°ection response with coupled bending

and tension. The development takes advantage of experience gained with

the straight-sided pressurized strip wherever possible. One obvious di®er-

ence is that the ¯nite de°ection response for a circular bulge cannot be

determined analytically, unlike the case of a strip bulge, so numerical meth-

ods are invoked at the outset. A second di®erence is that the in°uence of

an equi-biaxial residual stress ¾m in the ¯lm prior to pressurization is con-
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sidered here. It is assumed from the outset that, if this residual stress is

compressive, its magnitude is not large enough to induce ¯lm buckling.

5.7.1 Small deflection bending response

Historically, the pressurized bulge con¯guration was analyzed on the basis

of the assumption that the applied pressure is resisted entirely by bending

sti®ness of the ¯lm. If any membrane stress is present, it is not coupled to

the bending stress within the range of small de°ection behavior. On this

basis, elementary elastic plate theory leads to the expression

w(r)

hf
=

3pa4

16 ¹Efh
4
f

Ã
1¡ r2

a2

!2
(5.80)

for axially symmetric de°ection. As in the case of a plane strain strip bulge,

the value of pressure at which w(0) = hf is identi¯ed as a reference pressure

for purposes of comparison of the results obtained by di®erent approaches.

This pressure and the corresponding relationship between the center point

de°ection w0 and the applied pressure p are then

pr =
16

3
¹Ef
h4f
a4

) w0
hf

=
p

pr
: (5.81)

Although the same notation that was used in the case of the strip bulge

is adopted here for a circular bulge, it should be evident from the context

which expressions are applicable in any particular case.

The driving force for expanding the size of the circular bulge through

interface delamination can be deduced from the general expression in (5.38).

The magnitude of the bending moment at the periphery of the circular bulge

is ma =
1
12

¹E3f w
II(a) = 1

8pa
2 in the present case, so that

G(a) = Gb(a) = 3

32

p2a4

¹Efh
3
f

: (5.82)

Again, the phase angle of the delamination edge stress ¯eld is Ã = ¡45◦, no
matter whether membrane stress is present or not.

5.7.2 Membrane response

One conclusion to be drawn from the foregoing analysis of bulge formation

under plane strain conditions in Section 5.6 is that membrane e®ects become
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Fig. 5.32. Cross sectional diagram of a circular patch of ¯lm of initial radius a
deforming into a spherical cap of radius R under the action of an applied pressure
p.

relatively more signi¯cant as the ¯lm de°ection increases beyond hf in mag-

nitude. On this basis, it is reasonable to expect that the asymptotic behavior

of w0=hf for pressures which are large compared to the reference pressure

can be deduced on the assumption of membrane behavior alone, which is the

line of reasoning pursued in this section. This is achieved ¯rst on the basis

of a fairly crude description of ¯lm deformation and and the implications of

more realistic assumptions on deformation are discussed subsequently.

Suppose that the circular ¯lm patch to be pressurized extends over

0 < r ∙ a. It is assumed from the outset that the state of stress in the

¯lm is an equi-biaxial membrane tension with isotropic force-per-unit-length

stress resultant tr = tθ = t. For linear elastic material response, the stress

resultant t is related to the equi-biaxial strain of magnitude ²r = ²θ = ²

according to

t =
Efhf
1¡ ºf

²: (5.83)

It is immediately clear that the assumption of a uniform biaxial extensional

strain in the ¯lm, which implies that the ¯lm deforms into a spherical cap,

violates a condition of constraint at r = a whereby the circumferential ex-

tensional strain due to de°ection should be exactly zero. Nonetheless, the

simplicity of the relationship between w0 and p obtained on the basis of this

model justi¯es its examination. The edge condition wI(a) = 0 does not play

a role in any membrane model because the bending moment necessary to

enforce this condition cannot be supported by a membrane.
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With reference to the cross-sectional diagram in Figure 5.32, overall

equilibrium of the ¯lm requires that the axial resultant force due to mem-

brane tension t acting along the circumference of length 2¼a is balanced by

the resultant force of the pressure p acting on the area ¼a2 to yield

p = 2t=R; (5.84)

where R is the radius of the spherical cap. This radius is related to the

biaxial extensional strain ² in the ¯lm by the geometrical compatibility con-

dition

² =
1

a

∙
R sin−1

µ
a

R

¶
¡ a

¸
¼ a2

6R2
(5.85)

to lowest order in powers of a=R ¿ 1. Likewise, it is evident from the

diagram that the center point de°ection w0 is related to R, and thus to

strain ², according to

w0 = R¡
p
R2 ¡ a2 ¼ a2

2R
(5.86)

to lowest order in powers of a=R.

The four relationships (5.83) through (5.86) involve the ¯ve parame-

ters t, ², R, p and w0. Elimination of t, ² and R leaves the single relationship

w0
hf

=

∙
2

1 + ºf

p

pr

¸1/3
(5.87)

between center point de°ection w0 and applied pressure p, where pr is the

reference pressure de¯ned in (5.81). It is immediately apparent that the

response of the ¯lm represented by (5.87) is much sti®er than the small

de°ection response of (5.81).

As noted above, the assumed deformation on which (5.87) is based

is not kinematically admissible. An estimate of membrane response of the

circular pressurized bulge which is, in fact, kinematically admissible can be

obtained with only slightly more e®ort by appeal to energy arguments. To

illustrate the approach, assume a two-parameter, axially symmetric defor-

mation ¯eld for the bulge of the form

u(r) = u1
r

a

µ
1¡ r

a

¶
; w(r) = w0

Ã
1¡ r2

a2

!
; (5.88)

where the two parameters u1 and w0 are to be determined by the require-

ment that the total potential energy functional must be stationary under

variations of these parameters, in the sense of variational calculus. Note

that the radial curvature wII(r) and the circumferential curvature wI(r)=r
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implied by (5.88) are still uniform, so the deformed shape is still spherical

as long as the center point de°ection is small compared to a. The radial and

circumferential membrane strain ¯elds implied by (5.88) are

²r(r) =
u1
a

µ
1¡ 2

r

a

¶
+ 2

w20r
2

a4
; ²θ(r) =

u1
a

µ
1¡ r

a

¶
(5.89)

to a level of approximation consistent with the von K¶arm¶an theory on the de-

formation of the ¯lm midplane. This assumed deformation satis¯es the kine-

matic boundary conditions w(a) = 0 and u(a) = 0, the symmetry conditions

u(0+) = 0 and wI(0+) = 0, and the compatibility condition ²r(0) = ²θ(0).

The elastic strain energy per unit area of the ¯lm midplane is

U(r) =
1

2
¹Efhf

h
²r(r)

2 + 2ºf²r(r)²θ(r) + ²θ(r)
2
i
: (5.90)

The total potential energy for de°ection of moderate amplitude which

incorporates e®ects of membrane stress is then

V (u1; w0) = ¼ ¹Efhf

Z a

0
U(r) r dr ¡ 2¼p

Z a

0
w(r) dr: (5.91)

The equilibrium condition of stationary potential energy requires that values

of the parameters u1 and w0 must be chosen as those which satisfy the

equations @V=@u1 = 0 and @V=@w0 = 0. The resulting expression for w0 in

terms of pressure and system parameters is

w0
hf

=

"
50

23 + 18ºf ¡ 3º2f

p

pr

#1/3
; (5.92)

where the reference pressure pr is de¯ned in (5.81). The expression has

the same form as does the cruder result in (5.87), but the dimensionless

coe±cient depending only on the Poisson ratio ºf is slightly larger here than

in the former result. The relationship (5.92) is plotted in Figure 5.33, along

with the corresponding result (5.81) based on linear bending theory.

5.7.3 Large deflection response

The small de°ection bending analysis and the membrane deformation analy-

sis provide limiting behaviors for small and large values of pressure ratio

p=pr. To describe the transition in behavior between these limiting behav-

iors, a coupled bending-membrane analysis is required. However, even for

a con¯guration as simple as the axially symmetric circular bulge, the von

K¶arm¶an equations representing the coupling between bending e®ects and
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Fig. 5.33. Center point de°ection of a thin ¯lm due to action of a uniform pressure
p. The de°ection is normalized by ¯lm thickness and the pressure is normalized by
the reference pressure de¯ned in (5.81).

membrane e®ects for moderately large rotations of the ¯lm midplane can-

not be solved analytically. The situation was analyzed by Jensen (1991)

through numerical solution of the von K¶arm¶an equations. Here, with the

bene¯t of a complete analysis of the plane strain pressurized bulge in Sec-

tion 5.6, the ¯lm de°ection for the circular bulge is estimated directly by

means of the numerical ¯nite element method. The formulation adopted pre-

sumes small elastic strain with strain components varying linearly through

the ¯lm thickness. The possibility of shear deformation, which is excluded

in the von K¶arm¶an thin plate theory, is admitted but it is not a signi¯cant

e®ect for thin ¯lms, say for hf=a ∙ 1=20 for a bulge of radius a. The formu-

lation is valid for arbitrary midplane de°ections, and the pressure loading is

imposed on the ¯lm surface in the deformed con¯guration. The transverse

de°ection of the midplane is again denoted by w(r), and this de°ection is

subject to the symmetry condition wI(0+) = 0 and the boundary conditions

w(a) = 0, wI(a) = 0. Calculations have been carried out for ºf = 1=4. Be-

cause the deformation is less constrained for this computational model than

it is for either the small de°ection bending theory or the von K¶arm¶an theory
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Fig. 5.34. The elastic energy release rate for axially symmetric expansion of the cir-
cular pressurized bulge. The energy release rate is normalized by the corresponding
result for bending deformation only de¯ned in (5.82) and pressure is normalized by
the reference pressure de¯ned in (5.81).

for moderately large de°ections, it is expected that the computed response

will be more compliant than either of the plate theories within those ranges

of behavior where the respective theories are valid, but only slightly so.

The computed result for transverse de°ection w0 = w(0) of the cen-

ter point of the ¯lm versus applied pressure p is shown in Figure 5.33 for

two values of aspect ratio, a=hf = 20 and 100; however, the graphs are

virtually indistinguishable. It is evident from the ¯gure that the response

deviates signi¯cantly from linearity for center point de°ection greater than

about w0 = 0:5hf . The main reason for this deviation is that membrane

stresses, which are uncoupled from the applied pressure in the range of lin-

ear response, come into play beyond w0 = 0:5hf to signi¯cantly sti®en the

response. For an applied pressure of 10pr, for example, the center point

de°ection is approximately 2:3hf when membrane stresses are taken into

account but is 10hf when they are ignored. The coupled response shows

very little sensitivity to variations in ¯lm aspect ratio for values larger than

about a=hf = 20.

To consider delamination of the interface between the ¯lm and the
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Fig. 5.35. The ratio of membrane stress resultant to bending stress resultant at
r = a versus normalized applied pressure.

substrate due to application of the pressure, it is useful to know the de-

pendence of the elastic energy release rate G(a) per unit length along the

periphery of the bulge on system parameters, particularly a and p. The

ratio G(a)=Gb(a), where Gb(a) is de¯ned in (5.82) along the basis of small

de°ection bending response, can be determined from the radial stress resul-

tant tr(a) = ta and the bending stress resultant mr(a) = ma along r = a.

The expression for G(a) is given in (5.38). The result of evaluating the ratio

G=Gb as a function of normalized pressure p=pr is shown in Figure 5.34. The

result is similar to the corresponding result for the plane strain bulge shown

in Figure 5.28. The corresponding stress resultant ratio tahf=ma is shown

in Figure 5.35. The increasing ratio of tensile stress resultant to bending

stress resultant as the pressure increases re°ects the increasing role of mem-

brane stresses compared to bending stresses in resisting the applied pressure

as the pressure increases. A description of ¯lm response based entirely on

generation of membrane stresses will be considered subsequently.
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5.7.4 The influence of residual stress

Suppose that a residual equi-biaxial membrane stress ¾m is present in the

¯lm prior to application of the pressure p. The buckling stress for this

con¯guration is ¾b = ¡1:2235 ¹Efh
2
f =a

2, and it is assumed from the outset

that ¾m > ¾b so that the unde°ected con¯guration of the ¯lm is stable

against buckling deformation. The purpose of this section is to examine the

in°uence of ¾m on the transverse de°ection of the ¯lm once the pressure p

is applied.

For p=pr ¿ 1, the linear relationship (5.81) between w0 and p is un-

changed because, in this regime of behavior, membrane and bending e®ects

are not coupled to each other. For p=pr À 1, the membrane analysis leading

to (5.87) is unchanged by the presence of the residual stress except that the

compatibility equation (5.85) must be replaced by

² =
a2

6R2
+

1¡ ºf
Ef

¾m (5.93)

in order to properly account for the elastic strain associated with the initial

stress ¾m prior to transverse de°ection. The modi¯ed relationship between

w0 and p which follows from incorporation of this additional feature is

1 + ºf
2

µ
w0
hf

¶3
+

3a2¾m
4h2f

¹Ef

w0
hf

=
p

pr
: (5.94)

Thus, it appears that the role of the residual stress ¾m for large p=pr is to

sti®en or soften the response of the bulging ¯lm to applied pressure compared

to its behavior in the absence of residual stress, depending on whether ¾m >

0 or ¾m < 0, respectively.

For the residual stress ¾m to have a signi¯cant in°uence on the re-

sponse, the second term on the left side of (5.94) must be at least of mag-

nitude unity when w0 ¼ hf . In other words, the magnitude of ¾m should be

roughly ¹Efh
2
f =a

2 or greater if the residual stress is to in°uence the ¯lm re-

sponse. It is noted that, when ¾m is compressive, this magnitude is roughly

equal to the buckling stress for the circular patch of ¯lm.

With the foregoing qualitative estimate as guidance, the relationship

between w0 and p has been computed numerically by means of the ¯nite

element method for geometrically nonlinear response. The results for several

values of nondimensional parameter ¾ma
2= ¹Efh

2
f are shown in Figure 5.36.

The results are insensitive to the aspect ratio a=hf as long as a=hf > 20. A

study of the sensitivity of the response of a pressurized bulge to initial stress

and other system parameters was reported by Small and Nix (1992).
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Fig. 5.36. The center point de°ection of a ¯lm bulge due to applied pressure for
several values of normalized initial residual membrane stress in the ¯lm.

5.7.5 Delamination mechanics

Suppose that the size a of the bulge can increase by interface delamination

once the pressure has been increased to a value large enough so that the

condition (5.19) is satis¯ed, where the dependence of delamination energy

¡ on local stress phase angle Ã is again assumed to be as given in (5.20).

Thus,

G(a) = ¡Ic
h
1 + tan2(´cÃ)

i
(5.95)

where ¡Ic is the fracture resistance when Ã = 0 and ´c is a second failure

parameter which re°ects the in°uence of phase angle on resistance, as dis-

cussed following (5.20). The dependence of G on p=pr is given in Figure 5.34

and the dependence of Ã on p=pr is given in Figure 5.35 for D2 = 0 and

several values of sti®ness ratio D1, re°ecting the in°uence of the substrate

modulus. The variation of Ã is quite small over the considered range of p=pr,

so the in°uence of phase angle in enforcing (5.95) is expected to be weak.

The pressurized bulge is unstable for the delamination condition (5.95)

under circumstances of ¯xed pressure p. In other words, if (5.95) is to be

satis¯ed continuously for increasing a then the value of p must decrease in

a prescribed way. This implies that, for an ideal system satisfying (5.95)

with initial bulge radius a, the bulge size remains ¯xed at its initial value as
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Fig. 5.37. Normalized delamination energy versus normalized pressure at which the
edge of the bulge becomes unstable against further increase in pressure.

the pressure is increased to the level at which (5.95) is ¯rst satis¯ed. The

slightest increase in pressure beyond that level causes the bulge to expand

unstably, provided that the pressure is sustained. Thus, for a given set of

system parameters ¹Ef , hf and ºf , the level of pressure at instability is related

to ¡Ic, the interface toughness parameter. This pressure has been termed

the blow-off pressure by Gent and Lewandowski (1987). The dependence of

the normalized toughness ¡Ica
4= ¹Efh

5
f on normalized pressure p=pr at insta-

bility for any given a can be deduced directly from the data of Figure 5.34

and Figure 5.35, both of which presume ºf = 1=4. The result is shown in

Figure 5.37. The particular result shown is for ´c = 0:7 but the sensitivity

of the result to variations in the value of this parameter is very low due

to the small range of Ã involved. The experiments reported by Gent and

Lewandowski (1987) showed a slight super-linear dependence of toughness

on critical pressure, consistent with the result shown in Figure 5.37.

The qualitative aspects of behavior of a pressurized bulge in a ¯lm are

rendered most transparent when considered at the level of the membrane

idealization. For example, for the most rudimentary membrane model de-

picted in Figure 5.32, it follows that the elastic strain energy for any given
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level of applied pressure is approximately

Vel =
¼

12

"
3p4a10

Mfhf

#1/3
; (5.96)

where Mf = Ef=(1¡ ºf) is the biaxial elastic modulus of the ¯lm. The dis-

placed volume v of the ¯lm due to de°ection is approximately v = ¼w0a
2=2

in terms of center point de°ection, so the external potential energy at ¯xed

applied pressure is

Vext = ¡pv = ¡¼

4

"
3p4a10

Mfhf

#1/3
: (5.97)

The energy released per unit area of interface during axially symmetric ex-

pansion of the bulge at ¯xed applied pressure is

G = ¡ 1

2¼a

@V

@a

¯̄̄̄
p
=

5

18

"
vp4a4

Mfhf

#1/3
; (5.98)

where V is the sum of the elastic strain energy and external potential energy.

If the energy release rate G is then assumed to be equal to a speci¯c

fracture energy ¡ at the point of instability of the con¯guration under vari-

ations in the position of the delamination front, say when p = pcr, it follows

that ¡ is proportional to p
4/3
cr . This kind of behavior was demonstrated

by Gent and Lewandowski (1987). This behavior is consistent with that

illustrated in Figure 5.37, at least for some ¯xed value of the product ´cÃ.

In adopting any membrane model of the delamination process, the possi-

ble dependence of delamination behavior on the phase angle of the stress

state at the edge of the bulge cannot be addressed directly. A boundary

layer approach whereby a transition in behavior of the ¯lm from membrane

response to coupled membrane-bending response in a narrow zone around

the periphery of the ¯lm has been considered by Jensen (1998). A similar

boundary layer approach has been considered in connection with buckling

in Section 5.1 above.

Control of the displaced volume v of the bulging ¯lm, rather than of

the pressure itself, o®ers the possibility of observing stable advance of the

delamination front. In this case, the rate of potential energy release per unit

area of interface during axially symmetric advance of the delamination front

is de¯ned as

G = ¡ 1

2¼a

@Vel
@a

¯̄̄̄
v
=

20¼6

9

Mfhfw
4
0

a4
: (5.99)

The rightmost term in the continued equality (5.99) is based on the same
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membrane idealization that was used to get the result in (5.98). The ¯nal re-

sult in (5.99) is expressed in terms of w0 rather than v because the de°ection

is perhaps the most readily measured kinematic variable in observing the

process. In any case, (5.99) shows that G decreases rapidly with increasing

a at ¯xed volume v, implying a stably advancing delamination front.

5.7.6 Bulge test configurations

The bulge test commonly refers to the con¯guration in which a free-standing

window of a thin ¯lm is pressurized from one side so as to de°ect it. In such

an experiment, similar to that schematically shown in Figure 5.25, the value

of the out-of-plane de°ection of the ¯lm is monitored as a function of the

applied pressure p. From the analysis presented in Sections 5.6 and 5.7, it is

evident that the de°ection of the ¯lm at a given pressure is in°uenced by the

size and shape of interface delamination, the thickness and material proper-

ties of the ¯lm, the ¯lm mismatch stress and the fracture energy of the in-

terface between the ¯lm and the substrate. Consequently, di®erent test con-

¯gurations involving the pressurized bulge geometry have been employed to

determine experimentally the elastic modulus of the ¯lm, the ¯lm mismatch

stress or the interface fracture energy (Hinkley (1983), Mehregany et al.

(1987), Storºakers (1988), Jensen (1991), Vlassak and Nix (1992), Hutchin-

son and Suo (1992), Osterberg and Senturia (1997) and Jensen (1998)). The

con¯guration is alternately known as the blister test, but no distinction is

made between these descriptors here.

For a pressurized bulge of uniform width, the dependence of ¯lm de-

°ection w0 as a function of the applied pressure p is shown in Figure 5.27

based on small de°ection bending theory (5.59), large de°ection bending

theory (5.64), membrane theory (5.68), and ¯nite element simulations which

account for large de°ection. Similar results are presented in Figure 5.33 for

the circular bulge on the basis of small de°ection theory (5.81), large de°ec-

tion membrane response (5.92), and ¯nite element simulations incorporating

large de°ection. These results can be used in conjunction with the exper-

imental results of w0 versus p from the bulge test to determine the elastic

modulus of the ¯lm if the ¯lm thickness hf , ¯lm Poisson ratio ºf and the

initial debond size a are known.

If a mismatch stress ¾m acts in the ¯lm in the unde°ected con¯gu-

ration, presumably engendered either during ¯lm deposition or as a conse-

quence of thermal excursions, it is evident from (5.94) and Figure 5.36 that

the ¯lm bulging response will be altered by this stress provided that it is

comparable to or greater than the quantity Efh
2
f =a

2. If the elastic properties
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Fig. 5.38. Schematic diagram showing the geometry of the bulge and blister con-
¯gurations created using anisotropic etching of silicon employing standard MEMS
processing methods.

of the ¯lm and the initial debond size are known, the ¯lm mismatch stress

can be assessed by matching the experimentally determined variation of w0
with p from the bulge test with the result given by (5.94).

In addition to providing a means of measuring material properties or

the initial stress, the bulge test con¯guration o®ers a common experimental

technique for probing the fracture energy of the interface between a ¯lm

and a substrate. As noted earlier, if the pressure applied along an exposed

region of a thin ¯lm reaches a value at which the energy release rate attains

the critical magnitude given by (5.95), the debond edge begins to propagate

in an unstable manner. Experimental observations of this critical condition

for debond growth and instability can be combined with the results for the

delamination energy plotted in Figure 5.37 as a function of the pressure at

instability for a pressurized circular blister to infer the interface fracture

energy ¡Ic.

Figure 5.38 shows an example of the use of the bulge test for the

determination of the ¯lm elastic modulus, mismatch stress or adhesion en-

ergy using silicon micromachining processes that are commonly employed

in the fabrication of MEMS structures (Peterson (1982); Mehregany et al.

(1997)). This con¯guration, formed by recourse to conventional anisotropic

etching of a silicon substrate, is achieved through several steps: (a) an etch

stop layer is ¯rst formed by depositing boron from a high temperature solid

source, (b) a thermal oxide is grown on the Si single crystal substrate at

high temperature, (c) a test site pattern is de¯ned by opening a window on

the back side of the oxide using standard photolithography techniques (see

Section 1.5.1) while the front side of the oxide is covered with a photoresist,

and a silicon diaphragm is formed, (d) a polyimide thin ¯lm is spin cast on

to the oxide layer, and (e) the diaphragm holding the ¯lm is etched away

in an SF6 plasma to obtain a free-standing polyimide membrane, as shown

in Figure 5.38. An example of the use of bulge experiments involving such
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Fig. 5.39. Schematic diagram of a parallel-plate capacitor in which one plate is
essentially rigid whereas the other plate is a deformable ¯lm. The con¯guration
has potential for function as an acoustic microphone. A characteristic feature of
the con¯guration is that, For any voltage greater than a particular critical voltage,
the system has no stable equilibrium con¯gurations.

suspended polyimide membranes of square shape to determine the elastic

properties of the ¯lm, the residual stress in the ¯lm and energy of adhesion

of the ¯lm with the substrate can be found in Mehregany et al. (1987).

5.8 Example: MEMS capacitive transducer

An e®ective con¯guration for a MEMS transducer intended to convert acoustic sig-
nals into electric signals is a parallel plate capacitor (Scheeper et al. 1994). One
plate of the capacitor is rigid, or nearly so, and the other plate is su±ciently °ex-
ible to respond to acoustic pressures in the audible range. The two plates are
closely spaced with an air gap g between them, and the rigid plate is typically
perforated with many holes to avoid pressure buildup in the gap. A ¯xed bias
voltage Vb is maintained between the plates; the physical dimensions of voltage
are (force£length/charge). As the pressure is applied to the °exible ¯lm, the gap
changes size and a current is induced in order to maintain a ¯xed bias voltage.
Most fabrication processing methods for capacitive elements for applications in
acoustics are based on planar silicon technologies developed for microelectronic
applications (Tien 1998).

The plates of a capacitor are oppositely charged, so they exert an attractive
electrostatic force on each other. The force per unit area of parallel capacitor plates
separated by vacuum at bias voltage Vb is

pc =
e0V

2
b

2g2
; (5.100)

where e0 is the electric permittivity of free space and edge e®ects have been ne-
glected. The physical dimensions of permittivity are charge2/(force£length2). This
pressure acts to reduce the gap dimension from its initial value g. Upon imposition
of a bias voltage Vb between the plates of the capacitor which are not constrained
against de°ection by a dielectric material in the gap, the compliant plate de°ects
toward the rigid plate due to electrostatic attraction. This is a strongly nonlinear
attractive force with the potential for inducing an instability at su±ciently large
Vb. Nonlinearity in the elastic response of the solid can be a signi¯cant stabilizing
in°uence.

Consider a con¯guration with the essential characteristics described, as de-
picted in Figure 5.39. Suppose that the deformable ¯lm is square with in-plane
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dimensions of 2a£ 2a and thickness hf . If the ¯lm deforms with local displacement
w(x; y) in the z¡direction, the gap is locally reduced to g¡w(x; y), and the upward
pressure pc is increased accordingly. The ¯lm is assumed to support an initial or
residual stress ¾m = ¹Ef(1 + ºf)²m when w(x; y) ´ 0, and the plane strain modulus
of the ¯lm material is ¹Ef . Finally, the edges of the ¯lm at x = §a and y = §a are
constrained against displacement and rotation. The thickness of the deformable
plate is very small, with the ratio hf=a being less than 0.01 and possibly as small as
0.001. In such a case, resistance to deformation can arise from both membrane ef-
fects and bending e®ects. Thus, the general framework for modeling this capacitor
con¯guration has already been established previously in Section 5.6. However, this
is a ¯lm bulge con¯guration that is more complex in its behavior than were those
considered in Sections 5.6 and 5.7 due to the way in which the loading \pressure"
depends on the deformation.

Before pursuing a detailed calculation on the basis of the model, consider the
system qualitatively. If the ¯lm is de°ected by application of a uniform pressure p
so that its midpoint displacement w0 is larger than the thickness hf , the relationship
between it and p has the form shown schematically in Figure 5.40. This response
curve can be expanded or contracted in the w0 direction by decreasing or increasing,
respectively, the residual tension. To obtain a second input curve for comparison,
consider the pressure pc in (5.100) with g replaced by g ¡ w0, which implies that

w0 » g ¡ Vb

r
e0
pc

: (5.101)

Graphs of this dependence of w0 on pressure pc are also shown schematically in
Figure 5.40 as dashed curves, one for a \small" value of Vb and another for a
\large" value of Vb. The interpretation of small and large will have to await a
quantitative analysis of the con¯guration.

The two intersection points of the response curve of the ¯lm represented by
the solid line and the input curve for small Vb represent equilibrium con¯gurations.
Furthermore, it is evident that the equilibrium con¯guration for the lower value of
w0 is stable. To see this, imagine the system is at this state. Then, an external
stimulus increases w0 slightly from its equilibrium value. The response curve shows
that the pressure needed to maintain the new position has also increased, whereas
the input curve shows that the available pressure cannot be increased enough to
provide what is needed for continued equilibrium. Consequently, when the external
stimulus is removed, the system returns to its equilibrium position. By probing
both equilibrium positions in both possible directions of departure, it is concluded
that the equilibrium position for the smaller w0 is stable and that for larger w0 is
unstable. For the case of large Vb, there are no intersection points of the response
curve with the input curve, implying that the gap has been closed catastrophically
as the voltage is increased, without arriving at an equilibrium position. The dis-
criminating value of Vb between the two types of behavior, corresponding to an
input curve that is tangent to the response curve at a single point, de¯nes the crit-
ical voltage or pull-in voltage for instability. Knowledge of the instability voltage is
an important design consideration for such devices (Osterberg and Senturia 1997).
The goal here is to estimate this pull-in voltage for representative values of system
parameters direct appeal to the numerical ¯nite element method.

Results of a calculation for a device characterized by ²m = 0:001, a=hf =
250 and g=hf = 3 are shown in Figure 5.41. The data are shown in the form

of normalized bias voltage V̂b versus normalized midpoint de°ection ®=g of the
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Fig. 5.40. Schematic diagram showing the nature of the behavior of a °exible thin
¯lm capacitor. The ¯lm response represents midpoint de°ection due to uniform
pressure in a case for which membrane e®ects are signi¯cant. The dashed curves
represent a pressure on the ¯lm due to electrostatic attraction of the capacitor
plates, in one case due to a small bias voltage and in another case due to a large
bias voltage. Bias voltage is small or large according to whether or not there are
equilibrium con¯gurations represented by intersection between the input pressure
curves and the response curve. A critical voltage, called the pull-in voltage, exists
which is the value that de¯nes the transition from one kind of behavior to the other.

square ¯lm, where the normalized bias voltage is de¯ned in terms of the applied
bias voltage and other system parameters by V 2

b a
2e0=h

4
f
¹Ef = V̂ 2

b . No equilibrium
con¯gurations could be found for values of normalized bias voltage greater than
0.283, so this value de¯nes the pull-in voltage. It is noted that the variation of V̂b

with midpoint de°ection appears to have a slightly rising slope at the highest value
of V̂b for which an equilibrium con¯guration could be found. The dependence of
bias voltage on volume under the de°ected ¯lm or on device capacitance, either of
which would seem to be a more reliable variable due to its global nature, showed
the same general behavior. In any case, the slope is slight and the absence of an
equilibrium con¯guration is perhaps a stronger indicator of the pull-in phenomenon
than is the vanishing of the slope of this response curve.

The pull-in voltage is usually measured by applying a bias voltage across the
plates of the device and measuring the device capacitance as a function of voltage.
The pull-in voltage is identi¯ed by an abrupt change in capacitance for a slight
change in voltage as shown. The response is nearly symmetric under change in sign
of the bias voltage, as it should be. Measured values of pull-in voltage are often
smaller than values predicted on the basis of models of this type. The reasons cited
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Fig. 5.41. Dependence of normalized bias voltage on normalized midpoint de°ec-
tion for a square capacitor ¯lm obtains by means of a ¯nite element simulation.
The calculation was based on the following values of the system characterizing pa-
rameters: ²m = 0:001, a=hf = 250 and g=hf = 3. The pull-in voltage is de¯ned by
the largest value of bias voltage for which an equilibrium equation could be estab-
lished. Note that the bias voltage is somewhat higher than for the corresponding
one-dimensional case discussed in the preceding section, as expected.

include oversimpli¯cation of the model on which the estimate is based, compliance
of the support structure, and stress relief in the membrane as a result of processing
cycles.

To provide a measure of residual stress ¾m, which is necessary to estimate

pull-in voltage, the fabrication process usually involves deposition of a ¯lm of the

device plate material, commonly polysilicon, onto a solid Si substrate. This struc-

ture can then be observed by means of wafer curvature techniques, for example, to

infer a value of residual stress in the ¯lm layer. Among the system parameters that

in°uence functional characteristics, the residual stress is the most di±cult to assess

properly. On the other hand, control of its value provides an additional means for

controlling device characteristics.
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�

Fig. 5.42. Steady state peeling of a ¯lm from a substrate to which is has been
bonded by the action of peel force q in the direction µ.

5.9 Film peeling

Steady ¯lm peeling in the peel test con¯guration has been adopted as a

method to measure the strength of a bonded interface between a ¯lm and

its substrate or to measure the strength of an adhesive layer between a ¯lm

and a substrate. The con¯guration, which is essentially two-dimensional, is

depicted in Figure 5.42 for the situation in which the point of separation

advances steadily in the x¡direction. Far ahead of the line of separation,

the ¯lm is bonded to the substrate, and it may support a stress due to elastic

mismatch. The delamination process is driven by a peel force q measured

per unit length along the line of separation, acting on the detached portion

of the ¯lm far behind the line of separation. The peel force acts in a direction

inclined to the substrate surface by an angle µ as shown. If the substrate

sti®ness ¹Es is similar to or greater than the ¯lm sti®ness, then the substrate

compliance does not signi¯cantly in°uence the peeling process. In this case,

the substrate can be assumed to be rigid for any practical purpose. The

discussion of the process will proceed on this basis, but substrate compliance

e®ects will be considered subsequently.

5.9.1 The driving force for delamination

Consider steady advance in the x¡direction of the two-dimensional pro¯le

shown schematically in Figure 5.42. If the line of separation advances a unit

distance, then the point of application of the peel force also moves a unit

distance in the x¡direction plus a unit distance in the direction de¯ned by

the angle µ. The inner product of the force with this displacement implies
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that the work done by the force per unit advance of the separation line is

Wq = q(1¡ cos µ) (5.102)

per unit length of separation line. This result is based on the tacit assump-

tion of an inextensible ¯lm.

Suppose next that extensibility of the ¯lm is taken into account. If

the bonded ¯lm supports a uniform equi-biaxial mismatch stress ¾m then

the elastic energy density per unit area of interface far ahead of the line of

separation compared to hf is W+ = ¾2mhf=Mf = t2m=hfMf . For points far

behind the separation point, the nonzero stress components are ¾xx = q=hf
and ¾yy = ºfq=hf +(1¡ºf)¾m; these values are based on the constraint that

the out-of-plane extension ²yy is maintained at the value ²m = ¾m=Mf . The

elastic energy per unit area of ¯lm midplane far behind the separation point

is then

W− =
h
(1¡ º2f )q

2 + (1¡ ºf)
2t2m

i
=2Efhf : (5.103)

If the ¯lm midplane is extensible, there is an additional contribution to

Wq that is subtle in nature but of the same order as W+ and W−. If the

separation line moves a unit distance with respect to the substrate in the

x¡direction then the point of application of q also moves a unit distance in

the x¡direction plus some distance in the direction speci¯ed by µ. Because

of the change in strain in the ¯lm from ²+xx = ²m to ²−xx = q= ¹Efhf ¡ ºf(1 ¡
ºf)¾m=Ef , the point of application of q displaces in the µ direction a distance

1 ¡ ²+xx + ²−xx. With this e®ect taken into account, the driving force G for

peeling can be extracted. This quantity is de¯ned as the excess of the work

done by q plus the elastic energy density before peeling over the elastic

energy density remaining in the ¯lm after peeling, and it is given by the

expression

G = Wq +W+ ¡W− = q(1¡ cos µ) +
1

2 ¹Efhf
(tm ¡ q)2: (5.104)

Note that this result reduces to (4.34) when µ ! 0, as it should.

5.9.2 Mechanics of delamination

The driving force per unit length of separation line for peeling is given in

(5.104). If the interface resistance to peeling can be characterized by a work

of fracture ¡ then

G = ¡; (5.105)
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and the value of ¡ can be inferred from measurements of G for a given

material system. In view of the possible sensitivity of interface fracture

resistance to the phase angle Ã of the local stress state acting on the interface

adjacent to the zone of delamination, it is important to know the phase angle

that arises in peeling. This issue was addressed by Thouless and Jensen

(1992), who demonstrated that the phase angle can be determined in the

following way.

The local conditions at the edge of the line of separation can again

be represented by the situation depicted in Figure 5.2 where ta and ma

are the stress resultants at the edge of the detached region. At this level

of observation, the driving force for delamination has been given by (5.21)

where ¢ta = ta¡tm. Equilibrium of the detached portion of the ¯lm implies

that ta = q cos µ so that

¢ta = q cos µ ¡ tm: (5.106)

The edge bending moment ma can then be found in terms of q, µ and system

parameters by noting that the local form of energy release rate in (5.21) must

be identical to the form (5.104). This identi¯cation leads to the result that

ma =
hfp
12

h
2q

¡
¹Efhf ¡ tm

¢
(1¡ cos µ) + q2 sin2 µ

i
: (5.107)

An expression for phase angle in terms of ¢ta andma is given in (5.26) where

the parameter ! depends on the relative sti®nesses of the substrate and the

¯lm according to the numerical results plotted in Figure 4.28. When the

¯lm and substrate have identical elastic properties, D1 = D2 = 0 and the

parameter ! has the value 52:1◦. To illustrate the sensitivity of Ã to changes

in angle µ for a speci¯ed level of peel force q, consider the case of identical

elastic properties for the ¯lm and substrate and no initial mismatch stress,

that is, ¾m = 0. The results of evaluating Ã versus µ for several values of

q= ¹Efhf are shown in Figure 5.43. The most noteworthy feature of the result

is that Ã is relatively insensitive to angle µ when the ¯lm and substrate

properties are similar. For values of tensile peeling stress q=hf less than

about 0:001 ¹Ef , the phase angle is approximately ¡38◦ for angles µ.

5.10 Exercises

1. Suppose that a straight sided ¯lm bulge is deformed under conditions for
which the volume V between the bulged ¯lm and its substrate is being con-
trolled. For a ¯lm with ¯xed bulge width a in the geometrically nonlinear
deformation range, the pressure producing the bulge is related to the normal-
ized membrane tension ¿ in the ¯lm by (5.63) according to the von Karman
equations (5.61).
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Fig. 5.43. Phase angle Ã of interface traction ahead of an advancing separation line
versus direction µ of application of the peel force q for several values of q= ¹Efhf .

(a) By integrating (5.61)1 and using the de¯nition of bulge volume V
given in (5.75), determine the normalized volume V=ahf in terms of
normalized ¯lm tension ¿ .

(b) An expression for the delamination driving force G is given in (5.66).
Express G(a)=prhf in terms of ¯lm tension ¿ , and combine the result
with the result of part (a) to plot G(a)=prhf versus V=ahf parametri-
cally in ¿ .

(c) Expand the expressions for both normalized driving force and bulge
volume to lowest order in ¿ , and verify that the results are consistent
with the expression in (5.78) which was based on small de°ection
theory.

2. In deriving a relationship between midpoint de°ection of a pressurized mem-
brane bulge and the applied pressure given in (5.92), the in°uence of initial
stress was neglected. Determine how the relationship with the modi¯ed to
account for an initial equi-biaxial tensile stress in the ¯lm.
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Dislocation formation in epitaxial systems

The generation of ¯lm stress as a natural consequence of epitaxial constraint

arising from mismatch between the lattice parameters of a thin ¯lm and its

substrate was discussed in Section 3.4, and elastic strain induced in layered

epitaxial materials was analyzed in Section 3.5. The stress associated with

the elastic strain acts as a driving force for formation and growth of struc-

tural defects. An image of dislocations that have formed at the interface

between SiGe and Si in this way appears as Figure 1.16 and and the sec-

ond damage of dislocations that have been formed at the interface between

CdTe and GaAs appears as Figure 1.18. The presence of such mis¯t disloca-

tions, in turn, can have a detrimental e®ect on the performance of strained

layer material systems. Lattice strain in SiGe materials alters the electronic

bandgap, a behavior which can be exploited to good advantage in some cir-

cumstances. Strain can also alter band edge alignment, thereby converting

an indirect bandgap material into a direct bandgap material and rendering

it a candidate material for optoelectronic applications. In cases in which

lattice strain is induced to achieve some functional objectives, the forma-

tion of strain-relieving dislocations can be particularly deleterious as noted

in Section 7.3.2. Even for cases in which it is not essential that the strain

be maintained, the presence of dislocations can have an adverse e®ect on

electronic performance of semiconductor materials, serving as easy di®usion

paths for dopants or as recombination centers to diminish carrier density

in devices (Mahajan 2000). The means of controlling structural defects in-

duced by mis¯t strain and of interpreting their consequences is, therefore,

a central concern in the fabrication and characterization of strained layer

materials.

This chapter is devoted to a discussion of situations in which the defect

of concern is a crystal dislocation. Particular attention is focused on the

conditions necessary for formation of interface dislocations which partially

422
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relieve the elastic strain in the ¯lm, and on cases for which the strained layer

is a single crystal or a polycrystal with grain size in the plane of the ¯lm{

substrate interface that is large compared to ¯lm thickness. More general

questions of dislocation interaction and strain relaxation are addressed in

Chapter 7.

6.1 Dislocation mechanics concepts

The discussion is based on the continuum theory of elastic dislocations and

it proceeds in the following manner. First, the work that must be expended

to form an elastic dislocation with a particular con¯guration is examined in

a general setting, and the variation of this work with change in the position

of the dislocation is interpreted as a con¯gurational force acting on the dis-

location. This notion of force leads naturally to the question of equilibrium

of dislocation con¯gurations and the stability of those con¯gurations. The

ideas are then applied to determine the smallest thickness of a uniformly

strained layer on a substrate, termed the critical thickness, at which it ¯rst

becomes energetically possible for a dislocation to form spontaneously in the

layer. Attention is then shifted to determining the conditions for the advance

of the threading segment of the strain-relieving glide dislocation through the

strained ¯lm. Experimental observations of threading dislocation motion in

constrained thin ¯lms are then presented to substantiate the mechanistic

basis for the theoretical results. The in°uence on critical thickness of mul-

tiple layering, grading of mismatch strain, nonplanarity and other factors

is also examined. Some applications of these concepts are then described

with particular reference to the strategies for mismatch strain control in the

heteroepitaxial structures used in optoelectronic devices. Conditions for the

formation of strain-relieving dislocations in quantum wires are also exam-

ined as functions of wire geometry and constraint of the surrounding matrix

material.

6.1.1 Dislocation equilibrium and stability

The main competing e®ects in the formation of a dislocation in a thin

strained layer are illustrated schematically in Figure 6.1. For purposes of

this discussion, a block of elastic material is strained by means of a very

sti® loading apparatus, and the loaded boundary is subsequently held ¯xed

to preclude the possibility of energy exchange between the solid and its sur-

roundings. The elastic energy stored in the crystal due to this loading can

be reduced by the advance of a glide dislocation through the crystal. It
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Fig. 6.1. A schematic diagram of a glide dislocation in a strained elastic solid, show-
ing the con¯gurational forces acting on the dislocation, Fappl due to the background
elastic ¯eld and Fself due to the proximity to the free surface.

is presumed that there is indeed a traction on the glide plane due to the

loading. This e®ect leads to the concept of an applied configurational force

on the dislocation due to the elastic ¯eld, de¯ned as the reduction in me-

chanical energy of the solid per unit distance advance of the dislocation and

denoted by Fappl in the ¯gure (Eshelby 1951).

On the other hand, the fact that this dislocation motion occurs in

the proximity of a free surface implies the presence of an opposing e®ect. In

forming a dislocation, an elastic material appears to be more compliant near

a free surface than far from it. In other words, less work is required to form a

dislocation of given characteristics near a free surface than far from it. The

implication that the energy of a dislocation can be reduced by moving it

closer to a free surface, that is, by reducing its distance ´ to the free surface

along the glide direction, suggests the presence of a con¯gurational force

tending to pull the dislocation out of the crystal through the free surface.

This force, which is denoted by Fself in the ¯gure, is commonly called the

image force; the name derives from superposition of the ¯eld of a dislocation

with a mirror image ¯eld with respect to the free surface in order to satisfy

boundary conditions, a strategy that is useful in the analysis of some very

simple con¯gurations. Because this force arises solely from the equilibrium

¯eld of the dislocation itself, in the absence of any other loading on the body,

it is called the self-force acting on the dislocation.

The dislocation is in equilibrium when the sum of all forces acting on

it vanishes, as suggested on the right side of Figure 6.1 where two equilib-

rium positions are identi¯ed. These equilibrium positions, however, di®er in

a fundamental aspect. When the dislocation is displaced a small distance
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along the glide plane in either direction along its glide plane from its equi-

librium position ´ = ´se, it comes under the action of a force that tends to

restore it to this equilibrium position. Consequently, this constitutes a stable

equilibrium position. For the case ´ = ´ue, however, a small change in loca-

tion of the dislocation from the equilibrium position induces a force which

tends to push the dislocation further from that position. Consequently, the

latter is an unstable equilibrium position.

Two conditions must be satis¯ed before a strain-relieving dislocation

is formed in a closed mechanical system which cannot exchange energy with

its surroundings. First, a stable equilibrium con¯guration must be accessi-

ble, but this feature alone is not a su±cient condition. In addition to an

accessible equilibrium con¯guration, it is necessary that the work done in

forming the dislocation must be provided by the background elastic ¯eld as

the strain is relaxed in the material. This latter requirement, in the context

of the schematic diagram of the con¯gurational force in Figure 6.1, implies

that in order for a dislocation to form at ´ = ´se, the area under the plot of

Fappl versus ´ over the interval 0 ∙ ´ ∙ ´se must be equal to the area under

the plot of Fself versus ´ over the same interval. For a proper quantitative

analysis of this problem, a sign convention for force should be adopted so

that all forces are positive in the direction of increasing ´, and this is done

in the sections that follow.

A signi¯cant portion of this chapter is devoted to obtaining estimates

of the applied and self forces acting on dislocations, along with the associ-

ated energy changes, in layered systems of general practical interest. The

discussion is based almost entirely on the elastic theory of dislocations. It is

perhaps ironic that a phenomenon which derives solely from the discreteness

of the crystal lattice is described by a continuum theory. However, what is

known about the behavior of dislocations in systems of interest here stems

almost exclusively from elastic analysis. For one thing, dislocations interact

with boundaries and with each other through long range e®ects which can

be described adequately by means of elasticity theory. For this to be a valid

approach, it is necessary to assume that the dislocation core structure in

the crystal is autonomous, in the sense that it is una®ected by changes in

the mechanical environment of the dislocation. If this is so, the fact that it

does not in°uence changes in the mechanical state renders it of secondary

importance even though the actual core structure is unknown. Even with an

autonomous core structure, the dislocation core energy can come into play

in situations in which the dislocation line length changes. This e®ect is not

taken into account here, but the modi¯cations needed to do so are relatively

minor and self-evident.
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Finally, the elastic theory of dislocations is encumbered with the no-

tion of a core cut-o® radius, a strategem made necessary by the existence

of a singular stress ¯eld at the core of the dislocation line. This singularity

renders the elastic strain energy density non-integrable in the usual sense of

continuum mechanics. To circumvent this di±culty, material within some

radial distance, say ro, of the dislocation line is presumed to be removed and

the surface of the tunnel of circular cross section created by material removal

is subjected to traction such that no relaxation occurs in the remaining ma-

terial. By the argument of autonomy, this traction at each section of the

tunnel is given by the stress ¯eld of a straight dislocation in an unbound

solid with its line orientation and Burgers vector coinciding with the local

line orientation and Burgers vector of the dislocation under consideration.

The selection of a particular value for ro is arbitrary, although sev-

eral criteria for it have been proposed. Among these are: the radius at

which an elastic strain component ¯rst becomes large in magnitude upon

approach to the dislocation line; a radius equal to some ¯xed multiple of the

lattice parameter or Burgers vector length; or a radius chosen so that the

elastic energy of the material remaining outside the cuto® radius equals the

energy computed for the complete dislocation by some more fundamental

approach (Beltz and Freund 1994). The last criterion, which often leads to

the smallest estimate for ro, is preferred if a choice is necessary. It also has

the feature that core energy, which is presumably included in any funda-

mental approach, would then be incorporated indirectly through the choice

of cuto® radius. In any case, if the description of any phenomenon hinges

on a particular choice of ro for the existence of that phenomenon, then any

conclusions drawn should be viewed with caution.

6.1.2 Elastic field of a dislocation near a free surface

Consider an isotropic elastic material with a traction-free planar boundary.

Other boundaries of the solid are su±ciently remote so that they are in-

consequential for present purposes. Points in the material are located by

means of an xyz rectangular coordinate system, oriented so that y = ´ is

the plane boundary in the reference con¯guration, and the material occupies

the region y ∙ ´, as shown in the diagram in Figure 6.2. The condition that

the surface is free of traction is enforced by requiring the stress components

¾xy, ¾yy, and ¾yz to vanish at all points on the surface.y
† Note that the orientation of the xyz−coordinate axes with respect to the free surface is not the
same here as it was in preceding chapters. Conventions have been adopted largely for historical
reasons, and quantities that appear in the course of this discussion that have counterparts in
preceding chapters are entirely consistent.
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Fig. 6.2. A long straight dislocation in an elastic solid is parallel to a traction-free
surface and at a distance ´ from it. The dislocation is formed by an o®set of one
side of the shaded plane with respect to the other side de¯ned by the Burgers vector
bi.

Suppose that the material is distorted by a long, straight dislocation

line lying within the solid parallel to the plane surface. For de¯niteness,

suppose that the dislocation line coincides with the z¡axis; the plane of

displacement discontinuity is a plane containing this line. The sense of the

Burgers vector is determined with respect to a choice of positive direction of

traversal along the dislocation line, here chosen to be the z¡direction. For

any given plane of displacement discontinuity (shown shaded in the ¯gure),

a material loop is imagined to exist in the solid. This loop is closed prior to

formation of the dislocation, and it surrounds the eventual dislocation line.

The loop is formed by moving in the positive sense around the line according

to a right-hand rule, beginning on the (¡) side of the plane and ending on

the (+) side. The formation of the dislocation introduces a discontinuity in

this material loop so that it is no longer closed. If the elastic displacement

¯eld resulting from the formation of the dislocation is represented by ui,

then the Burgers vector bi is de¯ned by the di®erence in values of ui for

adjacent points on the loop on opposite sides of the plane of discontinuity

as

bi = u
(+)
i ¡ u

(−)
i : (6.1)

The Burgers vector of the dislocation has components bx, by and bz in the

coordinate directions. As components of a vector, these parameters may take

on either positive or negative values. The edge component of the Burgers

vector has length
q
b2x + b2y and the screw component has length jbzj.
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The material plane on which the o®set characterized by the Burgers

vector is imposed to form the dislocation is unspeci¯ed for the time being.

The elastic stress ¯eld of the dislocation is independent of the orientation

of this plane but, in a sense to be discussed subsequently, the energy of

the dislocation does have a weak dependence on the choice of this plane.

The equilibrium stress ¯eld of the dislocation is independent of z due to the

invariance of the system under translation in the z¡direction.

The six independent components of the symmetric stress matrix are

recorded here for later reference. The stress ¯eld arising from the edge

component of the Burgers vector is conveniently represented in terms of the

Airy stress function

A(x; y) =
¹

2¼(1¡ º)

"
1
2 (xby ¡ ybx) ln

Ã
x2 + y2

x2 + (2´ ¡ y)2

!

+
2byhx(´ ¡ y) + bx´[x

2 + 2y´ ¡ y2]

x2 + (2´ ¡ y)2

#
; (6.2)

where ¹ is the elastic shear modulus and º is the Poisson ratio of the isotropic

elastic material. The stress components themselves are then derived from

the Airy function according to

¾xx(x; y) =
@2A

@y2
(x; y) ; ¾xy(x; y) = ¡ @2A

@x@y
(x; y);

¾yy(x; y) =
@2A

@x2
(x; y) ; ¾zz(x; y) = º [¾xx(x; y) + ¾yy(x; y)] : (6.3)

The explicit expressions for these stress components are readily obtained

for purposes of calculation, but they are too complicated to be of intrinsic

interest for the present discussion.

The remaining stress components are associated with the screw com-

ponent of the Burgers vector, and the ¯elds are

¾xz(x; y) = ¡¹bz
2¼

∙
y

x2 + y2
+

2´ ¡ y

x2 + (2´ ¡ y)2

¸
;

¾yz(x; y) =
¹bz
2¼

∙
x

x2 + y2
¡ x

x2 + (2´ ¡ y)2

¸
: (6.4)

It can be con¯rmed by direct calculation that (6.3) and (6.4) together

represent an equilibrium stress ¯eld, and that the boundary conditions

¾xy(x; ´) = 0, ¾yy(x; ´) = 0 and ¾yz(x; ´) = 0 are satis¯ed by this stress

¯eld.

Next, the energy of the dislocation near a free surface is considered.

This energy is normally understood to be equal to the work that must be
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done to form the dislocation in the absence of any other stresses in the

material. Equivalently, it can also be envisioned as the elastic energy stored

in the solid as a consequence of the formation of the dislocation. Because

all ¯elds are uniform in the z¡direction in the present case, the energy per

unit length in the z¡direction is considered. For purposes of discussion, it is

assumed that the dislocation is formed by glide on a speci¯c crystallographic

plane. For any glide dislocation, the inner product of the Burgers vector with

the glide plane normal is zero. For example, the solid might be a cubic crystal

with the free surface being the (010) plane and the glide plane being the (111)

plane. For this plane in a face-centered cubic or diamond cubic material in

the orientation identi¯ed, the most likely directions for the Burgers vector

are the crystallographic directions [101], [110] and [011]. Clearly, each of

the these directions lies in the glide plane and each is orthogonal to the

glide plane normal direction. All members of the f111g family of planes are

expected to respond in the same way under the same local resolved shear

stress.

�

Fig. 6.3. To form the dislocation, the material is cut along the dotted line consisting
of the parts ¡+, ¡¡ and ¡c and appropriate displacements are imposed on the
surfaces created. The energy of the dislocation equals the work required to form it.

To calculate the energy, consider the situation depicted in Figure 6.3.

The material is initially stress-free. Then, the material is imagined to be cut

along the glide plane from the surface to the dislocation line. In addition, a

core of material of radius ro ¿ ´ and centered on the eventual position of

the dislocation is removed. Then, displacements are imposed on the surfaces

created by these cuts to produce a relative o®set bi of the (+) side of the

glide plane cut with respect to the (¡) side and in a displacement on r = ro
which is that of a dislocation with the same Burgers vector in an unbounded

solid.

According to the theory of elasticity, the energy stored in the material
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as a result of these operations, per unit length in the z¡direction, is

Wd(´) =

Z
Γ

1
2Tiui dl; (6.5)

where ¡+, ¡− and ¡o together comprise the boundary ¡ of the region created

by the cuts in the material as shown in Figure 6.3, l is the arc length along

this boundary, ui is the displacement imposed on that boundary, and Ti is

the traction required to maintain the imposed displacement. Traction on a

surface with outward normal ni is related to the limiting value of stress ¾ij
on the boundary through the relationship Ti = ¾ijnj, known commonly as

the Cauchy stress principle. The tractions acting on ¡+ and ¡− are equal

in magnitude but opposite in direction, and the displacements satisfy (6.1),

so these contributions can be combined to yield

Wd(´) =

Z η cscα

ro

1
2bi¾ijn

(+)
j dl +

Z 2π

0

1
2

h
¾
(∞)
ij ncju

(∞)
i

i
r=ro

ro dµ; (6.6)

where ® = arctan(by=bx), n
(+)
i is the outward unit normal on ¡+, n

c
i is the

outward unit normal on ¡o and the superscript (1) identi¯es ¯elds of the

dislocation in an unbounded solid. Evaluation of the integrals in (6.6), in

light of (6.3) and (6.4), yields

Wd(´) =
¹[b2x + b2y + (1¡ º)b2z]

4¼(1¡ º)
ln

2´

ro
+

¹[b2x + b2y]

8¼(1¡ º)

∙
cos 2®¡ (1¡ 2º)

2(1¡ º)

¸
:

(6.7)

For most purposes, the logarithmic term in (6.7) is the dominant contribu-

tion so that

Wd(´) ¼
¹[b2x + b2y + (1¡ º)b2z]

4¼(1¡ º)
ln

2´

ro
; (6.8)

which provides a very good approximation to Wd for ´ À ro. However, the

remaining terms which arise naturally in the derivation are included in (6.7)

for completeness.

Note that the work that must be done to form the long, straight

dislocation depends on the orientation of the plane on which the o®set bi
is enforced, provided that there is an edge component to bi. The second

integral in (6.6) is obviously independent of ®, and hence the dependence of

Wd(´) on ® stems from the ¯rst integral. Because the Burgers vector bi can

be taken outside the integral sign, this integral has the simple interpretation

of an inner product of 1
2bi with the total force acting on ¡+. Thus, the
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dependence of Wd(´) on ® that is re°ected in (6.7) must arise through this

force (Freund 1994).

�

�

Fig. 6.4. A planar region of material (shaded area) adjacent to the dislocation core
which is bounded by the free surface, by two choices of ¡+ that are labelled ¡0

+ and
¡00
+, and by a segment of ¡o.

Figure 6.4 shows a region of the plane bounded by two choices of ¡+,

say ¡I+ and ¡II+, by a segment of ¡o, and by a segment of the free surface.

The total force acting on this region must vanish since the material in this

region is in equilibrium. There is no force contribution from the free surface

segment. However, the segment of ¡o carries a ¯nite and nonzero force, no

matter how small ro becomes, due to the strength of the stress singularity

in the elastic ¯eld of the dislocation. It is then evident that the force acting

on each of ¡I+ and ¡II+ must be di®erent from the force on the other, and

this di®erence accounts for the ® dependence which emerged in (6.7).

The con¯gurational force acting on a dislocation due to its proximity

to a free surface was introduced in Section 6.1.1 on the basis of a qualitative

argument. In light of the expression in (6.7) for the work required to form

a dislocation Wd as a function of distance ´ from the free surface, a math-

ematical expression for the self-force Fd(´) is readily obtained in terms of

system parameters. The work that must be added to the system to move

the dislocation from distance ´ to the in¯nitesimally greater distance ´+ d´

is Wd(´ + d´) ¡ Wd(´) ¼ W Id(´) d´. This work must be done to overcome

the e®ect of the con¯gurational force, or self-force, acting on the dislocation

due to its own elastic ¯eld. Thus,

Fd(´) = ¡W Id(´) = ¡¹[b2x + b2y + (1¡ º)b2z]

4¼(1¡ º)´
(6.9)

is the self-force tending to move the dislocation away from the free surface.

The minus sign in (6.9) indicates that the force actually tends to pull the



432 Dislocation formation in epitaxial systems

dislocation toward the free surface. This force is represented schematically

in Figure 6.1. For a material for which ¹ = 50 £ 109N/m2, º = 0:25,

Burgers vector length b =
p
bibi = 0:5 nm, and ro = 1

2b, the energy per

unit length of a dislocation at a distance ´ = 100 b from the free surface is

roughly Wd ¼ 8 £ 10−9 J/m. The magnitude of the force tending to draw

the dislocation toward the free surface is roughly jFdj ¼ 0:03N/m.

Finally, it is evident from the de¯nition of the force in (6.9) that it

acts on the dislocation in the direction of the free surface normal vector.

The force acting in a direction parallel to the free surface is zero due to

the invariance of the con¯guration under translation of the dislocation in

any direction parallel to the surface. The component of the con¯gurational

force acting along the glide plane normal to the dislocation line is Fd sin®.

If the motion of the dislocation is restricted to its glide plane, then the

component of the force normal to the glide plane is workless and, therefore,

inconsequential

6.2 Critical thickness of a strained epitaxial film

Consider a single crystal ¯lm of thickness hf grown epitaxially on a substrate

of thickness hs À hf . For this case, the evolution of substrate curvature for

arbitrary combinations of substrate and ¯lm moduli Ms and Mf , respec-

tively, was analyzed in Section 2.2.1. If the modulus ratio Mf=Ms is of order

unity then, to lowest order in the thickness ratio hf=hs, the curvature of

the substrate as given in (2.19) is zero, the elastic strain in the substrate is

zero, and the mismatch ²m between the two materials is completely accom-

modated by elastic strain in the ¯lm. It follows that the uniform state of

strain in the ¯lm is

²xx = ²zz = ²m ; ²yy = ¡ 2ºf
1¡ ºf

²m; (6.10)

where ºf is the Poisson ratio of the ¯lm material. These strain components

are referred to an xyz rectangular coordinate system oriented so that the

y¡direction is the outward normal direction to the free surface of the ¯lm,

and the origin of coordinates is in the ¯lm-substrate interface. For the

case of a relatively thick substrate, the parameter hs does not enter the

calculation. The ¯lm thickness hf is then the only characteristic dimension

in the calculation, other than the length of the Burgers vector.

For many ¯lm{substrate systems, the elastic properties of the two

materials are similar and it is assumed for the present that Ms ¼ Mf =

2¹f(1 + ºf)=(1 ¡ ºf). If the di®erence in elastic constants is taken into
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account in the critical thickness calculation, only minor additional insights

are gained at the expense of substantially greater complexity. Once the

critical thickness condition for like properties is in hand, the in°uence of

modulus di®erence will be examined more closely within the framework of

a model problem.

The spatially uniform state of stress in the perfectly coherent ¯lm is

¾xx = ¾zz = ¾m = Mf²m ; ¾yy = 0: (6.11)

This is the stress ¯eld that is available to do work as a dislocation is formed

in the ¯lm. The corresponding elastic energy in the ¯lm per unit area of the

interface is ¾m²mhf = Mf²
2
mh. For a ¯lm of thickness hf = 50 nm, a biaxial

modulus of Mf = 1011 N/m2 and a mismatch strain of ²m = 0:01, the elastic

energy in the ¯lm per unit area of interface is 0.5 J/m2. For comparison to

the work required to form a dislocation, consider the energy per unit length

in a strip of ¯lm of width hf which, in this case, is 2:5 £ 10−8 J/m2. This

energy per unit length is of the same order of magnitude as the estimate of

the energy per unit length of a dislocation in the same ¯lm. While such a

comparison is informative, it is not fully appropriate for purposes of estab-

lishing the necessary condition for formation of a dislocation. The proper

statement of this condition is developed next.

6.2.1 The critical thickness criterion

Suppose that a long, straight dislocation is introduced into the material. The

dislocation line is parallel to the free surface of the ¯lm and at a distance ´

from it. The coordinate system is oriented so that the z¡axis is parallel to

the dislocation line, as shown in Figure 6.2. The dislocation is assumed to

have the same properties as were adopted for the analysis in Section 6.1.2.

To calculate the work done by the background stress ¯eld (6.11) in forming

the dislocation, the material is imagined to be cut along the glide plane from

the free surface to the dislocation line. Then, displacements are imposed on

the surfaces created by this cut to produce a relative o®set bi of the (+) side

of the glide plane cut with respect to the (¡) side. For a glide dislocation,

the inner product bin
(+)
i vanishes. The stress ¯eld due to the mismatch

strain is, by itself, an equilibrium ¯eld and it is una®ected by the formation

of the dislocation. Thus, with reference to Figure 6.3, the work done by this
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¯eld in forming the dislocation is

Wm(´) =

Z hf cscα

(hf−η) cscα
bi¾ijn

(+)
j dl: (6.12)

If the inner products implied by the integrand are formed, and if the fact that

the mismatch stress is zero throughout the substrate is taken into account,

then

Wm(´) =

8<: ¡bx¾m´ for 0 < ´ ∙ hf ;

¡bx¾mhf for hf < ´ < 1:
(6.13)

The identity n
(+)
x csc® = ¡1 for 0 < ® < ¼ has been used in obtaining

the result. Note that Wm(0) = 0, that Wm(´) varies linearly with ´ if

the dislocation is formed in the ¯lm, and that it is independent of ´ if the

dislocation is formed in the substrate. The corresponding con¯gurational

force acting on the dislocation in the direction of increasing ´ is then

Fm(´) =

8<: bx¾m for 0 < ´ < hf ;

0 for hf < ´ < 1:
(6.14)

This force tends to move a strain-relieving dislocation in the ¯lm away from

the free surface and toward the ¯lm-substrate interface. The force is discon-

tinuous at ´ = hf and is everywhere zero in the substrate.

With estimates of both the work Wd required to form a dislocation in

this system and the work Wm which can be recovered from the background

mismatch ¯eld in forming the dislocation, the condition for the formation of

the dislocation spontaneously in the system can be determined. Evidently,

if hf is small enough then the elastic energy extracted from the material

in forming a dislocation is inadequate to compensate for the energy of for-

mation of the dislocation, then dislocation formation is precluded. On the

other hand, if hf is large enough then any amount of elastic energy can be

released in forming a dislocation. The thickness that distinguishes one type

of behavior from the other is called the critical thickness for the system. It

is de¯ned as the smallest value of hf , say hcr, for which Wd(´) +Wm(´) = 0

for any possible value of ´ > 0.

Representative graphs of the normalized work measures Wd(´)=¹fb
2,

Wm(´)=¹fb
2 and [Wd(´) +Wm(´)]=¹fb

2 versus ´=b are shown in Figure 6.5

for the particular case when hf = hcr. From this illustration, it is clear

that the optimum choice of ´ is ´ = hf , so the critical thickness condition
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Fig. 6.5. Representative graphs of Wd(´)=¹fb
2 from (6.8) and Wm(´)=¹fb

2 from
(6.13) versus ´=b for a case where the strained ¯lm thickness hf is exactly the
critical thickness hcr. The dashed curve represents the sum of these two energies,
and the dislocation position ´ = hcr is evidently the only possible equilibrium
position in the closed system. For purposes of illustration, the plot is drawn for
ºf = 1=4, ro = b=2, bz = 0, bx = by and ²m = 0:005.

becomes

Wd(hcr) +Wm(hcr) = 0: (6.15)

From (6.7) and (6.13), this condition is

[b2x + b2y + (1¡ ºf)b
2
z]

8¼(1 + ºf)bxhcr
ln

2hcr
ro

+
[b2x + b2y]

16¼(1 + ºf)bxhcr

∙
cos 2®¡ (1¡ 2ºf)

2(1¡ ºf)

¸
= ²m :

(6.16)

On physical grounds, only strain relieving dislocations are possible. This

notion is re°ected in (6.16) by the requirement that ²m and bx must have

the same algebraic sign for positive roots of hcr to exist.

In cases for which hcr À b, which is the situation for many ¯lm{

substrate systems of practical interest, the left side of (6.16) is dominated

by the logarithmic term. As a consequence, the critical thickness condition
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is often written in the simpler form

[b2x + b2y + (1¡ ºf)b
2
z]

8¼(1 + ºf)bxhcr
ln

2hcr
ro

¼ ²m; hcr À b: (6.17)

Broad implications of this relationship were discussed by Matthews and

Blakeslee (1974) and it has become known commonly as the Matthews-

Blakesley condition.

6.2.2 Dependence of critical thickness on mismatch strain

To examine the relationship between mismatch strain and critical thickness

implied by the condition (6.16), consider a thin ¯lm of a cubic material

for which the free surface is the (001) plane and for which the slip plane

is the (111) plane illustrated in Figure 6.6. If a dislocation were to form

spontaneously on the slip plane in this strained epitaxial ¯lm, its line would

be oriented along the [110] direction, and the slip direction would be parallel

to either the [101] direction or the [011] direction; see Figure 6.6. The x, y

and z coordinate directions are then [110], [001] and [110], respectively, in

crystallographic directions.
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.

.

� & & & �

Fig. 6.6. Orientation of crystallographic axes for a cubic crystal relative to the
underlying xyz coordinate axes for dislocation formation by slip on the (111) plane.
The interface between the ¯lm and the substrate is the (001) plane.

The Burgers vector in either of the two slip directions depends on the

sign of ²m. If ²m > 0, the Burgers vector of length b is

bi = b
n
1
2 ;¡ 1√

2
;§1

2

o
; (6.18)

results for bz > 0 and bz < 0 are identical. The angle between the dislocation

line and the x¡axis, as de¯ned in Figure 6.3, is ® = arccos(¡1=
p
3) ¼
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125:3◦. If ²m < 0, the direction of the Burgers vector must be reversed, but

the calculation is otherwise identical.
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Fig. 6.7. Normalized critical thickness ln(hcr=b) versus mismatch strain magnitude
j²mj for three values of core cuto® radius ro = 1

2
b; b; 2b according to (6.16).

For this case, evaluation of the critical thickness condition (6.16) yields

the results shown in Figure 6.7 in the form of plots of ln(hcr=b) versus j²mj for
ro =

1
2b, b and 2b. The choice of cuto® radius has a systematic in°uence on

the predicted values of critical thickness, although the existence of a critical

thickness and the qualitative aspects of the prediction do not depend on any

particular value of ro. The basis for choosing a value of ro must be provided

from another source, either more fundamental calculations in which this

arbitrariness is precluded or experimental data. The limited input from

either source generally supports a choice from among the smaller values of

ro, say
1
2b.

The discussion here is restricted, for the most part, to cases of isotropic

elastic response of both the ¯lm and substrate materials. However, the in°u-

ences of two of the most important consequences of anisotropy can be taken

into account in a relatively straightforward way. One principal in°uence of

anisotropy concerns the level of resolved shear stress due to the mismatch

stress on the potential glide planes for dislocation motion. This in°uence
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enters geometrically through the relative components of the Burgers vector,

and it is illustrated in Section 6.2.5 for the case of cubic materials. The sec-

ond principal in°uence concerns the relative magnitudes of elastic moduli.

The mismatch strain is ¯xed by lattice dimensions and it does not depend

on elastic constants. The mismatch stress, on the other hand, does depend

on elastic constants as indicated in (6.11) for isotropic materials. For some

anisotropic ¯lm orientations, it is possible to estimate the mismatch stress

for equi-biaxial mismatch strain by adopting an e®ective biaxial modulus,

such as the value M(001) given in (3.45) for a cubic material system with a

f001g interface or the value M(111) given in (3.45) for a cubic material sys-

tem with a f111g interface. The elastic constants also enter the expression

for the energy of the self-stress ¯eld of the dislocation, which is given in (6.8)

for isotropic material response. An approach to energy of the self-stress ¯eld

for anisotropic materials introduced by Hirth and Lothe (1982) leads to an

expression of the form

Wd(´) ¼
Kf [b

2
x + b2y + b2z]

4¼
ln

2´

ro
; (6.19)

in place of (6.8) , where Kf is a scalar factor which has physical dimensions

of elastic modulus and which is determined completely by the components

of the sti®ness matrix cij of the ¯lm as introduced in Section3.1. The critical

thickness condition then takes the form (6.17) with the factor 1=2(1 + ºf)

replaced by Kf=Mf . The in°uence of elastic anisotropy is discussed for the

case of cubic materials by Shintani and Fujita (1994) who make use of the

image force theorem of Barnett and Lothe (1974) for anisotropic materials.

6.2.3 Example: Critical thickness of a SiGe film on Si(001)

A single crystal alloy thin ¯lm with composition Si0:85Ge0:15 is grown on an ini-
tially °at Si(001) substrate which is 0.5 mm thick. The lattice parameter of Si at
room temperature is aSi = 0.5431 nm, while that of Ge is aGe = 0.5656 nm. Any
dislocations formed as a consequence of epitaxial mismatch between the ¯lm and
the substrate are known to be 60± dislocations with Burgers vectors in the fam-
ily represented by (6.18). Assume that the biaxial moduli of Si(001) and Ge(001)
crystals are MSi(001) = 180.5 GPa and MGe(001) = 142 GPa, respectively, that the
Poisson ratio of the ¯lm is ºf ¼ 0.25, that ro = b=2, and that b ¼ 0.4 nm. Curva-
ture measurements are made continuously using the multibeam optical stress sensor
method (see Section 2.3.2) so as to monitor the evolution of internal stress during
¯lm deposition. Estimate the substrate curvature at which mis¯t dislocations are
¯rst able to form at the interface between the ¯lm and the substrate.

Solution:
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Using (1.14), the mean lattice parameter of the Si0:85Ge0:15 alloy at room
temperature is approximated as

aSiGe ¼ 0:85aSi + 0:15aGe = 0:5465 nm: (6.20)

The equi-biaxial mismatch strain in the ¯lm at room temperature is calculated
using (1.15) to be

²m =
aSi ¡ aSiGe

aSiGe
= ¡0:0062: (6.21)

The normalized critical thickness hcr=b can be computed from the condition (6.16)
assuming ro = b=2 for the given conditions and for the dislocation Burgers vec-
tor whose components are listed in (6.18). Alternatively, it is readily noted from
Figure 6.8 that ln(hcr=b) ¼ 3:9 for j²mj = 0.0062. With b ¼ 0.4 nm, the critical
thickness is estimated to be hcr ¼ 19.8 nm.

Using (2.12) and (2.13) with MSiGe ¼ 0:85MSi + 0:15MGe = 174.7 GPa, the
curvature at which mis¯t dislocations are ¯rst able to form at the interface is found
to be

∙ =
6²mMSiGehcr

MSih2
Si

= ¡2:85£ 10¡3 m¡1: (6.22)

The negative curvature signi¯es that the substrate °exes with a convex shape on

the ¯lm side, consistent with the existence of a compressive mismatch strain in

the ¯lm. The formation of the ¯rst few mis¯t dislocations is not detectable by

curvature measurements, as noted in Section 6.2.4.

6.2.4 Experimental results for critical thickness

Critical thickness experiments are very challenging because, ideally, it is

necessary to detect the firstmis¯t dislocation that appears within a relatively

large area of interface. Observations based on strain measurement, either

monitoring substrate curvature by optical methods or direct measurement

of lattice strain by x-ray di®raction, are not able to detect the onset of strain

relaxation, mainly because these techniques lack the necessary resolution.

In early studies of strained layer epitaxy, this inability to detect the earliest

stages of strained relaxation led to a distinction between the `theoretical

critical thickness', as de¯ned in Section 6.2.1, and an `experimental critical

thickness' representing the extent of relaxation detectable by a particular

technique for measuring average strain change in a sample.

An e®ective technique for examining the critical thickness concept was

developed by Tuppen and Gibbings (1989). The technique was based on de-

tecting the threading segment at the end of an interface mis¯t dislocation,

where the dislocation line turns from the interface toward the free surface of
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Fig. 6.8. Experimentally observed critical thickness versus mismatch strain for the
SiGe/Si(100) system is shown as discrete points. The solid curve represents the
predicted critical thickness condition (6.16) for this material system and the dashed
curve is the predicted condition simpli¯ed by retaining only the logarithmic term
as in (6.17), both for ºf = 0.25 and ro = 1

2
b. Adapted from Houghton (1991).

the ¯lm and threads through the ¯lm thickness to the surface; threading dis-

locations will be considered in the context of critical thickness in Section 6.3.

The technique, which involves chemical etching, made it possible to detect

threading dislocations at a density as low as one per square centimeter of

interface. This technique was applied by Houghton (1991) to determine the

thickness of a SixGe1−x ¯lm on a Si(100) substrate for 0 < x < 0:15. The

normalized data are presented in Figure 6.8. The solid curve included in the

¯gure is the graph of the critical thickness condition for this material system

as given in (6.16), and the dashed curve represents the condition modi¯ed

by retaining only the logarithmic term on the left side of (6.16), as in (6.17).

In both cases, the cuto® radius was chosen to be ro = 1
2b. It was veri¯ed

in the experiments that the dislocations that were observed were virtually

all 60◦ dislocations with Burgers vector in the family represented by (6.18).

The data provide strong support for the validity of the critical thickness

condition.
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Fig. 6.9. Relative orientation of crystallographic axes for a cubic crystal and the
underlying xyz coordinate axes for dislocation formation by slip on a f111g plane.
The interface between the ¯lm and the substrate is (a) the (¹1¹10) plane and (b) the
(¹1¹11) plane.

6.2.5 Example: Influence of crystallographic orientation on hcr
The nature of the critical thickness condition (6.16) was illustrated in Figure 6.7
for the particular case in which the ¯lm-substrate interface was the (001) crystallo-
graphic surface of the epitaxial cubic ¯lm. Other orientations of the material lead
to di®erent predictions for critical thickness versus mismatch strain. Two alternate
orientations for slip on a f111g plane of the cubic crystal are identi¯ed in Figure 6.9.
In (a), the interface is the (¹1¹10) plane in crystallographic coordinates, whereas in
(b) the interface is the (¹1¹11) plane. Show how the variation of the normalized
critical thickness hcr=b as a function of the ¯lm mismatch strain is a®ected as the
orientation of the ¯lm is changed from that given in Figure 6.6 to that indicated in
either Figure 6.9(a) or (b).

Solution:

For the (¹1¹10) oriented ¯lm shown in Figure 6.9(a), the Burgers vector is

bi = bf 1p
2
; 1

2
; §1

2
g (6.23)

and ® = arccos(
q

2
3 ) ¼ 35:3±. For the (¹1¹11) interface in Figure 6.9(b), on the other

hand, the Burgers vector is

bi = bf 1p
6
; 1p

6
; 2p

6
g (6.24)

and ® = arccos( 1
3
) ¼ 70:5±. The corresponding critical thickness values, computed

from (6.17), are shown in Figure 6.10 along with the result for the f100g interface,
all for ro = 1

2b. The crystallographic orientation has a strong in°uence on critical
thickness, s seen in Figure 6.10. This geometrical e®ect is a consequence of varia-
tions in the shear traction, due to the mismatch stress ¯eld (6.11), acting on the
glide plane in the direction of the Burgers vector.

It has been observed experimentally that the formation of Shockley partial

dislocations separated by stacking faults is much more common in diamond cubic

epitaxial ¯lms in some crystallographic orientations than it is in other orientations
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(Kvam and Hull 1993). The discriminating aspect between the two types of be-

havior seems to be related to the fact that dislocation glide in a h110i direction

on a f111g plane in such a material actually occurs as an ordered sequence of

two glide increments which together sum to a complete Burgers vector (Hirth and

Lothe 1982). For example, the Burgers displacement 1
2 [
¹101] would be executed as

an increment1
6
[¹211] followed by an increment 1

6
[¹1¹11] ; the order of the increments

cannot be reversed. In some crystallographic orientations, the resolved shear stress

due to the background mismatch elastic ¯eld will be larger in the direction of the

¯rst increment whereas, in other cases, it will be larger in the direction of the sec-

ond increment. If this resolved shear stress is larger in the direction of the ¯rst

increment, then formation of a pair of partial dislocations is favored; the energy of

the stacking fault between the partial dislocations contributes to the driving force

on both the leading and trailing partial dislocations. On the other hand, if the

resolved shear stress in the direction of the second increment is larger, then there

is a natural tendency for the two partial dislocations to move together as a single

or complete dislocation.
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Fig. 6.10. A comparison of the critical thickness (6.17) for three di®erent crys-
tallographic orientations of the epitaxial interface, with ºf = 0:25 and ro = b=2.
Although the diagrams in Figure 6.9 identify particular crystallographic glide planes
for dislocation formation, the results obtained apply for families of glide planes and,
therefore, for the families of interface orientations indicated.
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6.3 The isolated threading dislocation

In Section 6.2, a critical thickness condition was established for a uniformly

strained single crystal ¯lm on a substrate. This condition discriminates be-

tween circumstances under which a system is susceptible to elastic strain

relaxation by formation of interface mis¯t dislocations and those circum-

stances under which such relaxation is precluded on energetic grounds. The

condition is obtained by comparing two states of the system, one with a

uniformly strained and fully coherent ¯lm, and the other with a partially

relaxed ¯lm and a completely formed interface mis¯t dislocation. More pre-

cisely, the condition is obtained by calculating the work which must be done

on the system to convert it from the ¯rst state to the second. If the result

is that positive work must be done then the dislocation cannot form spon-

taneously whereas, if the work required is negative, there is an energetic

driving force for the spontaneous formation of a dislocation.

When considered in this framework, the resulting critical thickness

condition is independent of any physical mechanism by which the interface

mis¯t dislocation is actually formed in the system. This approach to critical

thickness is an outgrowth of the pioneering work of Frank and Van der

Merwe (1949) and the criterion was formulated in the way described here

by Van der Merwe and van der Berg (1972). The most commonly observed

mechanism for formation of mis¯t dislocations is through glide of a threading

dislocation. In this section, the notion of critical thickness is re-examined

on the basis of this mechanism.

Fig. 6.11. Threading dislocation on a glide plane in a ¯lm subject to a uniform
mismatch stress ¾m. As the threading dislocation glides in the z¡direction, it
leaves behind an increasing length of interface mis¯t dislocation.
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6.3.1 Condition for advance of a threading dislocation

The physical system to be considered is depicted in Figure 6.11. A uniformly

strained layer of thickness hf is epitaxially bonded to a commensurate sub-

strate of relatively large thickness. The equi-biaxial mismatch strain is ²m.

A representative glide plane, which is shared by the ¯lm and the substrate,

is shown shaded in the ¯gure. A dislocation is assumed to exist on this

glide plane in the presence of the background mismatch strain ¯eld. The

dislocation line extends from the free surface of the ¯lm to the interface; this

portion spans the ¯lm thickness and it is called the threading segment. The

dislocation line then continues along the interface for a distance large com-

pared to hf ; this is the interface misfit segment. As the threading segment

of the dislocation, or simply the threading dislocation, advances or recedes

along the glide plane, it leaves behind an ever longer or shorter length, re-

spectively, of mis¯t dislocation. Thus, the critical thickness condition for

formation of strain-relieving mis¯t dislocations can also be phrased in terms

of the tendency for the threading dislocation to advance or recede for given

mismatch strain ²m, Burgers vector bi, ¯lm thickness hf and elastic prop-

erties ¹f and ºf . The basic idea behind this approach was introduced by

Matthews et al. (1970) and it was exploited more fully by Matthews and

Blakeslee (1974).

It is worthwhile to consider brie°y the implication of the invariance

of the system, in the absence of the dislocation, under translation in the

z¡direction. This invariance immediately implies that the environment for

the threading segment at some location in the z¡direction along the glide

plane is identical to the environment at any other location. In light of this

observation, it is reasonable to assume that the threading dislocation glides

in a self-similar way, or with ¯xed shape, as it moves along the glide plane.

If this is so, then there are no energy changes associated with the shape of

the threading dislocation during its advance or retreat. This is an important

observation because this shape is di±cult to specify with any certainty, and

it is generally unknown at the level of modeling developed here.

For the arrangement shown in Figure 6.11, there is a con¯gurational

force acting on the threading dislocation, in general, and the main contribu-

tions to this driving force have already been identi¯ed in the discussion of

Section 6.2. These contributions are readily identi¯ed in the present context.

There is an equilibrium stress ¯eld in the body due to the presence of the

dislocation, aside from the mismatch stress ¯eld; this is the self-stress ¯eld.

There is always a tendency for the threading segment to retreat under the

action of this stress ¯eld, thereby reducing the energy of the system. Like-
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wise, there is an equilibrium stress ¯eld in the body due to the mismatch

strain, aside from the dislocation stress ¯eld. If the Burgers vector orienta-

tion is such that this is a strain-relieving dislocation, then there is always a

tendency for the threading segment to advance along its glide plane under

the action of this stress ¯eld, thereby reducing the elastic energy associated

with the mismatch strain.

These two tendencies compete with each other. When the ¯lm is very

thin, there is a strong con¯gurational force pulling the dislocation toward

the free surface while the force available to advance the threading dislocation

is relatively small. As a consequence, the net tendency is for retreat of the

threading segment. On the other hand, when the ¯lm thickness is relatively

large, the free surface force is diminished but the force due to the mismatch

stress ¯eld in the ¯lm is increased. Consequently, if the ¯lm thickness is

su±ciently large, the net tendency is for advance of the threading disloca-

tion. The discriminating ¯lm thickness again identi¯es a critical thickness,

but this time on the basis of a mechanism for formation of a strain-relieving

mis¯t dislocation. What is the relationship of this critical thickness to that

identi¯ed through (6.16) in Section 6.2? On the basis of a relatively straight-

forward argument that invokes the cutting and pasting of material to alter

the length of the mis¯t dislocation, it can be established that the two ap-

proaches to determining the critical thickness lead to identical results.

Suppose that the threading dislocation in Figure 6.11 advances a unit

distance in the z¡direction without a change in shape. This results in

a change in the total energy of the system, in general. Let this energy

change be denoted by ¡G(hf) at ¯lm thickness hf . De¯ned in this way,

G(hf) is the configurational force on the threading dislocation acting in the

z¡direction. If G(hf) is positive (negative), then the energy of the system

decreases (increases) as the threading dislocation advances. In either case, it

leaves behind an additional length of mis¯t dislocation. As noted above, the

critical thickness condition expressed in terms of the behavior of a threading

dislocation is

G(hcr) = 0: (6.25)

Next, suppose that the same advance of the threading dislocation is

accomplished in a di®erent way. At some distance ahead of the threading

dislocation that is very large compared to hf , a slab of material of unit

thickness is imagined to the removed from the system by making cuts on

two parallel planes which are perpendicular to the z¡axis and which are

separated by a unit distance. Tractions are maintained on the cut surfaces

so that the two-dimensional state of deformation is maintained. The gap
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created by removal of the slab is then closed and the faces are rejoined

without a®ecting the elastic ¯elds. A dislocation is introduced into the

slab under two-dimensional conditions; this dislocation has precisely the

properties of the interface mis¯t dislocation. A cut is then made in the

body along a plane perpendicular to the z¡axis at some distance behind

the threading dislocation that is very large compared to hf . The cut is

opened a unit distance, the dislocated slab is inserted, and the joined faces

are imagined to be rebonded.

The result of this imaginary procedure is indistinguishable from the

result of simply advancing the dislocation a unit distance in the z¡direction.

The change in energy in the latter case has already been denoted by ¡G(hf).

But the change in energy in the former case is already known. It is precisely

the sum of the work terms established in Section 6.2 representing the work

per unit length Wd(hf) required to form a dislocation under two-dimensional

conditions and the work per unit lengthWm(hf) done by the mismatch stress

¯eld in forming the dislocation. The expressions for these two contributions

appear in (6.7) and (6.13), respectively, and it follows that

¡G(hf) = Wd(hf) +Wm(hf): (6.26)

An immediate consequence of this important result is that the critical thick-

ness condition based on an energy comparison obtained in Section 6.2 is

identical to that based on consideration of con¯gurational forces acting on

the threading dislocation, so that (6.16) results in either case (Freund 1987).

A second consequence of (6.26) is that it provides an unambiguous

expression for the force acting on a threading dislocation at any thickness

hf at or beyond the critical thickness hcr (Freund and Hull 1992). This is

the element needed in a speci¯cation of the non-equilibrium behavior of the

threading dislocation in the form of a kinetic relation between the rate of

advance of the threading dislocation along its glide plane and this driving

force, a relationship considered in Section 6.3.3. The expression is

G(hf) = bhfMf

"
²m

bx
b
¡ [b2x + b2y + (1¡ ºf)b

2
z]

8¼(1 + ºf)bhf
ln

4hf
b

#
(6.27)

where Mf is the biaxial elastic modulus of the material; only the logarith-

mic term in (6.7) has been retained and ro =
1
2b. The ratio G(h)n

(+)
x =bhf is

sometimes called the excess stress acting on the threading dislocation (Dod-

son and Tsao (1987), Tsao (1993)). The excess stress de¯ned in this way is

representative of the resolved shear stress due to the mismatch stress ¯eld for
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Fig. 6.12. Normalized driving force on threading dislocation versus mismatch strain
²m and normalized ¯lm thickness hf=b for the cubic material system represented
in Figure 6.6. The surface has been truncated at G = 0 so that negative values
are not shown. The kink in the surface, at the boundary between the °at and
rising portions, is identical to the critical thickness condition shown in Figure 6.7
for ro = 1

2
b. Adapted from Freund (1990).

the slip system of the dislocation, but it is not actually a measure of stress

on any surface. A surface plot of the normalized quantity G(hf)=bhfMf over

the plane of ²m and hf=b is shown in Figure 6.14 for the material system

depicted in Figure 6.6. The height of the surface above the plane G = 0

represents the driving force acting on a threading dislocation at the corre-

sponding coordinates (²m, hf=b) in that plane. Negative driving forces G < 0

are not relevant to the consideration of critical thickness and consequently

the surface is not extended to negative values of G in the ¯gure.

Figure 6.13 is a cross-sectional TEM micrograph which provides an

example of a threading dislocation in an epitaxial aluminum ¯lm on a rel-

atively thick Al2O3 substrate. In this case, a 350 nm thick epitaxial Al

¯lm was magnetron sputtered on a clean (0001) surface of ®-Al2O3. Dis-

location nucleation at the ¯lm{substrate interface and motion through the
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Fig. 6.13. Cross-sectional TEM image of a thin Al ¯lm epitaxially deposited on a
single crystal ®-Al2O3 substrate. A threading dislocation, indicated by the hori-
zontal arrow, leaves behind a mis¯t dislocation segment at some distance from the
interface. This mis¯t dislocation segment was found to interact with dislocations
formed previously at the ¯lm{substrate interface. Reproduced with permission
from Dehm et al. (2002).

¯lm were observed by cross-sectional TEM specimens (Dehm et al. 2002a).

Two beam di®raction conditions were used with the g111 di®raction vector

oriented normally to the ¯lm{substrate interface and close to the < 11¹2 >

or < 01¹1 > Al zone axes. The micrograph shows a threading dislocation,

indicated by the horizontal arrow, which deposited a 60 degree dislocation

segment nearly parallel to the interface. In situ TEM observations revealed

that localized heating of the specimen with a focused electron beam resulted

in the motion of the dislocation through the Al ¯lm on the (¹111) Al plane.

The in situ TEM experiments also indicated that the threading dislocation

advancing through the ¯lm left behind a dislocation segment parallel to the

Al{Al2O3 interface, as indicated in Figure 6.11. The stando® of the mis¯t

dislocation from the interface is likely to, in part, to the fact that the elastic

modulus of the substrate material is approximately ¯ve times that of the

¯lm material: see Table 2.3. The issue of modulus di®erence is addressed in

Section 6.5.2. Details of similar observations are discussed in the context of

¯lm plasticity in Chapter 7.

6.3.2 Limitations of the critical thickness condition

The critical thickness theory is a fundamentally sound, self consistent mech-

anistic theory that has played a central role in understanding strain relax-

ation in heterostructures (Matthews and Blakeslee (1974), Matthews and

Blakeslee (1975)). The situation in which the critical thickness approach

is most directly applicable is when dislocations, which already exist in the

substrate and which terminate at the substrate surface, are simply contin-

ued into the epitaxial ¯lm during growth. Such a situation is illustrated

by the TEM image in Figure 6.14. A pre-existing dislocations in a Si sub-
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Fig. 6.14. TEM image showing a dislocation in the SiGe/Si(100) ¯lm-substrate
material system under circumstances in which the dislocation in the ¯lm is a con-
tinuation of a pre-existing dislocations in the substrate. The ¯lm has been grown to
thickness beyond the critical thickness. Consequently, the segment of the disloca-
tion in the ¯lm began to propagates in the direction corresponding to strain relief,
leaving behind the interface mis¯t dislocation segment and the continuation of the
dislocation into the substrate. Image provided by Eric Stach, Lawrence Berkeley
National Laboratory.

strate was continued into a SiGe ¯lm as it was epitaxial deposited onto the

substrate surface. Once the ¯lm thickness reached the level of the critical

thickness, the portion of the dislocation in the ¯lm began to glide in the

direction corresponding to strain relief according to its Burgers vector. The

interface mis¯t dislocation segment left behind by the propagating threading

segment as it propagates is evident in the ¯gure. However, there are certain

assumptions that underlie the theory that must be recognized in applying

the criterion to assess observations. Several of these are brie°y noted here.

The criterion refers to the conditions which prevail when it ¯rst be-

comes possible for any threading dislocation to advance. The ability to

detect the onset of relaxation depends on the resolution of the technique

used to observe dislocation motion (Fritz (1987), Gourley et al. (1988)). X-

ray di®raction methods detect average strain over an area on the order of

a square millimeter, and a detectable change in average strain occurs only

after extensive dislocation activity at thicknesses well in excess of the true

critical thickness. Consequently, such methods are ine®ective in e®orts to

actually observe the onset of dislocation glide in strained layers.

The statement of the criterion is based on the a priori assumption
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that a threading dislocation exists, and it addresses only the tendency for

that threading segment to advance or recede. It has nothing to say about

the source of such threading segments. From time to time, it has been

observed that ¯lms can be grown to thicknesses in excess of the critical

thickness under certain circumstances, and it has been argued that such

observations imply that the critical thickness theory is incorrect. This is

not the case, however, because the premises of the critical thickness theory

are not met in such cases. In particular, if no threading dislocation is present

then the question of whether or not such a dislocation will glide cannot be

considered. The important question of dislocation nucleation is discussed

brie°y in Section 6.8.

The tendency for an existing threading segment to advance or recede

does not imply that it will actually do so in any particular way. A kinetic

model of the glide process is required to consider this aspect, including e®ects

which cannot be taken into account in a continuum model. Con¯gurations

for which there is a tendency for strain relaxation to occur, but for which

kinetic barriers prevent it from occurring, usually due to low temperature,

are often called metastable con¯gurations. Commonly, the term metastable

as applied to a material structure describes a state of equilibrium that is sta-

ble under `small' amplitude °uctuations in its con¯guration but not stable

under `large' amplitude °uctuations. The kinetic barriers associated with a

metastable state are activation energies characterizing the °uctuation am-

plitudes needed for a system to depart from a metastable equilibrium state

into the realm of nonequilibrium con¯gurations, through which it searches

out another equilibrium state at lower energy, assuming that the transition

proceeds spontaneously.

The model also presumes that the threading dislocation exists in a

layer that is otherwise spatially uniform. However, the behavior of a dis-

location can be strongly in°uenced by other dislocations present, either on

parallel or intersecting glide planes. Dislocation interactions will be consid-

ered in Chapter 7. Behavior can also be in°uenced by geometrical features

in the ¯lm. For example, patterning can result in an array of trenches with

free surfaces within the ¯lm or small mesas on which the ¯lm material is de-

posited. The motion of a dislocation can also be in°uenced by °uctuations

in surface topography of the ¯lm.

At the level of the above discussion, the critical thickness condition

G = 0 is based on elastic continuum concepts only. This overlooks a va-

riety of e®ects that may bear on the process in some cases. Among these

are the glide resistance due to the Peierls{Nabarro stress of the material

(Matthews 1975), the role of surface or interface energy (Cammarata and
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Sieradzki 1989), the resistance due to creation or annihilation of a surface

ledge in the wake of the threading dislocation (Matthews 1975), the presence

of a deposition °ux during dislocation motion, and the possibility of dissoci-

ation of the dislocations into Shockley partial dislocations (Alexander 1986).

Thus, the critical thickness condition could be restated as G = R where R
is a resisting force representing any or all of these additional e®ects.

6.3.3 Threading dislocation under nonequilibrium conditions

Early observations of elastic strain relaxation during growth of epitaxial

layers led to paradoxical results. An attempt to interpret the observations

on the basis of the critical thickness theory in its most elementary form

suggested that, once the thickness of a ¯lm exceeded the critical thickness,

the ¯nal elastic strain of the ¯lm should be determined by the thickness

of the ¯lm alone, independent of the original, or fully coherent, mismatch

strain. This is implied by the result in (6.27), which states that that the

mean elastic strain predicted by the equilibrium condition G(hf) = 0 is

completely determined by hf beyond critical thickness, no matter what the

value of ²m. However, it was found that the post-growth elastic strain as

measured by x-ray di®raction methods did indeed vary with the initial elastic

mismatch strain, and it did so in di®erent ways for di®erent ¯lm thicknesses

(Bean et al. 1984). As a consequence, the critical thickness theory came

under question, and various alternate models were proposed to replace it.

However, further study of the problem has revealed the relaxation process

to be much richer in physical phenomena than anticipated, with the critical

thickness theory revealing only part of the story.

In the interpretation of the observations, it had been tacitly assumed

that dislocations would appear fully formed whenever it was energetically

possible for them to exist, but this is not the case. Instead, the rate of dislo-

cation nucleation in materials with low initial dislocation densities and the

rate of dislocation motion in semiconductor materials emerged as important

features. Roughly, the time for a threading dislocation to glide a distance

equal to the lateral extent of a ¯lm at a typical growth temperature under

the action of the mismatch strain is often of the same order of magnitude as

the growth time itself. Consequently, the variability observed in the relax-

ation data could be associated with the kinetics of nucleation and glide of

dislocations. This realization led to the use of post-growth annealing exper-

iments to study relaxation (Fiory et al. 1984). In this approach, a strained

layer material is grown beyond critical thickness with minimal relaxation,

due to low growth temperatures or other controls, and then cooled. In the
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resulting structures, any threading dislocation which exists is still subjected

to a positive driving force but it is kinetically restrained from relaxing the

elastic strain in the ¯lm. The resulting structures have been labeled as

metastable, as noted above, an appropriate term if thermal °uctuation is

understood to be the external stimulus by which stability is probed. In

any case, under well controlled conditions, the previously deposited ¯lm is

heated and observed, sometimes simultaneously and sometimes alternately,

to study the mechanisms of strain relaxation (Hull and Bean (1989); Noble

et al. (1989); Houghton (1991)). The results of these experiments have been

of central importance in resolving some of the paradoxes. The annealing or

temperature cycling experiments are also relevant to industrial fabrication

technology where a device incorporating a strained layer heterostructure

may be subjected to several temperature excursions in a manufacturing se-

quence.
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Fig. 6.15. Schematic representation of the dependence of ¯nal residual elastic strain,
or unrelaxed elastic strain, on ¯nal ¯lm thickness at some ¯xed level of mismatch
(left) and on initial mismatch strain at some ¯xed level of ¯nal ¯lm thickness (right)
according to equilibrium theory. The shaded regions suggest where observations
would fall if kinetic constraints on relaxation were not taken into account.

Virtually all observations of dislocation glide in bulk covalent crystals

at stress levels above some modest threshold level on the order of 103 N/m2

reveal that the normal glide velocity on a particular slip system of a given

material varies with resolved shear stress on the glide plane ¿res = ¾ijn
(+)
j bi=b

and absolute temperature T according to an Arrhenius relationship of the

form

v = v0

µ
¿res
¹

¶m
e−Q0/kT (6.28)

where v0 is a material constant with dimensions of speed, Q0 is the activation

energy, and k is the Boltzmann constant (Alexander 1986). The activation

energy is most commonly assumed to be constant but, in some cases, its
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potential dependence on stress level is taken into account explicitly. For Si

and Ge, the exponent m appears to be slightly temperature dependent, but

it is usually assumed to be a constant in the range 1 ∙ m ∙ 2. The velocity

factor v0 is roughly 105 m/s for undoped Si and 106 m/s for undoped Ge.

It follows immediately that the speed of self-similar advance of an isolated

threading dislocation is (Tsao and Dodson (1988); Tsao et al. (1987); Freund

and Hull (1992))

vtd = v0

Ã
G(hf)n

(+)
x

bhfMf

!m
e−Q0/kT : (6.29)

The stress measure and closed within parentheses is de¯ned so that (6.29)

reduces to (6.28) in the limit as the ¯lm becomes very thick. It is likely that

glide is accomplished by the thermally activated motion of kinks along the

threading segment (Tuppen and Gibbings (1990); Hull et al. (1991)). A free

surface or bimaterial interface may o®er a better site for kink formation than

interior points along the dislocation line, and this is an in°uence on relax-

ation that cannot be addressed directly by approaches based on continuum

mechanics.

The values of activation energy Q0 appearing in (6.29) have been de-

termined experimentally. Tuppen and Gibbings (1990) examined disloca-

tions originating from roughness at the ¯lm edges or from scratches arti¯-

cially introduced on the surfaces of the ¯lms. This was done by annealing

MBE grown ¯lms with very low dislocation densities, and then measuring

dislocation propagation distances from their sources, that is, the distances

that were traversed during the annealing step, by means of a defect selec-

tive chemical etching (Tuppen and Gibbings 1989). Relaxation in buried

strained ¯lms was also examined. The same material system was subse-

quently studied by Nix et al. (1990). The results of in situ high voltage

transmission electron microscopy measurements of threading dislocation ve-

locities in Si1−xGex/Si(100) ¯lms as reported by Nix et al. (1990) are shown

in Figure 6.16, interpreted according to the relationship (6.29). To obtain

these data, an isolated threading dislocation was found in the ¯lm at low

temperature, and the motion of this dislocation was then monitored as the

sample was slowly heated to successively higher temperatures, up to a max-

imum of 675 ◦C. The prospect of following this approach for still higher

temperatures was precluded by the fact that dislocations moved too rapidly

to be tracked, so the data in this range were obtained by chance observations

over a ¯xed area. When plotted in the form of ln vtd versus 1=kT , the slope

of the best-¯t line provides a direct estimate of the activation energy Q0.
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Fig. 6.16. Glide speed of an isolated threading dislocation in a SiGe/Si(100) ¯lm
versus inverse temperature from in situ transmission electron microscope observa-
tions. The slope of the line ¯tted to the data provides an estimate of the activation
energy according to (6.29). Adapted from Nix et al. (1990).

The inferred value of Q0 is about 2:2 eV. Similar values have been obtained

by other means. The data in Figure 6.16 covers a speed range from about

5 nm/s to 150¹m/s.

The issue of glide of the threading dislocation segment according to

(6.29) was pursued further in experiments reported by Stach et al. (1998).

For ¯lms with atomically cleaned surfaces, they reported an activation en-

ergy depending on the Ge atomic fraction x in the Si1−xGex/Si(001) alloy

¯lms as Q0 = (2:2 ¡ 0:6x) eV. They also found that dislocation velocities

were signi¯cantly larger during annealing of samples that had native oxide

present on the ¯lm surfaces. This e®ect was attributed to stress-assisted dis-

location kink nucleation at the interface between the oxide and the strained

layer, with interface roughness resulting in local stress concentrations (Stach

and Hull 2001).
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6.4 Layered and graded films

The necessary condition established in Sections 6.2 and 6.3 for dislocation

formation in a uniformly strained ¯lm can readily be extended to cases where

the mismatch strain varies in an arbitrary way through the thickness of the

¯lm, provided that the material is still elastically homogeneous. With refer-

ence to Figure 6.11, the mismatch strain is a function of the y¡coordinate

and, in this case, it is written as ²m(y). The mismatch is independent of the

x and z coordinates, thus preserving the important property of invariance

under translation in the xz¡plane. The fact that the stress components

¾xx and ¾zz in the background mismatch ¯eld vary with y does not dis-

turb the equilibrium state of the background ¯eld, even if that variation is

discontinuous in the y¡direction.

Examples of material systems within this category include a uniformly

strained layer covered or capped with an unstrained layer of uniform thick-

ness, a ¯lm in which the mismatch with respect to the substrate varies con-

tinuously across the thickness due to compositional gradation, and a ¯lm

which comprises a periodic arrangement of many thin layers of alternating

mismatch strain, a so-called strained superlattice structure. Conditions for

dislocation formation in such structures are examined in this section.

The restriction to cases of elastic homogeneity implies that the work

of forming a mis¯t dislocation parallel to the free surface and at a distance

´ from it is given by (6.2) in all cases. This result is independent of the

mismatch strain distribution. The work of the background mismatch stress

¯eld as the dislocation is formed is still de¯ned by (6.12). Because the

stress components now vary with position along the glide plane, however,

the expression for Wm(´) given in (6.13) must be replaced by

Wm(´) =

Z hf cscα

(hf−η) cscα
bi¾ijn

(+)
j dl = ¡2bx¹f

1 + ºf
1¡ ºf

Z hf

hf−η
²m(y) dy (6.30)

for isotropic material response.

As before, the critical thickness hcr is de¯ned as the smallest value of

hf for which any position ´ exists such that

Wd(´) +Wm(´) = 0: (6.31)

To be of physical signi¯cance, the position ´ must also be a stable equilib-

rium position. In the present context, this is understood to mean that any

perturbation ¢´ in position ´ from the value satisfying (6.31) must result

in an increase in energy of the system, that is,

Wd(´ +¢´) +Wm(´ +¢´) > 0 (6.32)
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for any small ¢´ 6= 0. Elastic ¯elds do not vary continuously across inter-

faces in all cases and, consequently, the stability condition cannot always

be stated in the more familiar but weaker form involving the derivatives of

these work functions evaluated at ´, that is, as W IId (´) +W IIm(´) > 0.

6.4.1 Uniform strained layer capped by an unstrained layer

Suppose that a strained layer with uniform mismatch strained ²m is de-

posited on a substrate to a thickness hsl that exceeds the critical thickness

hcr for the layer itself. Then, an unstrained layer of uniform thickness hul is

deposited on the surface of the strained layer. For example, suppose a SiGe

alloy ¯lm is deposited epitaxially on a Si substrate to a thickness beyond its

critical thickness, and then a Si capping layer is deposited on the surface of

the alloy layer. The total thickness of the composite ¯lm is hf = hsl + hul.

The case of a Si capping layer is the simplest case that can be considered

because, in the absence of a dislocation within a strained layer, the epitaxial

capping layer is free of mismatch stress; this particular system was studied

experimentally by Nix et al. (1990). The case of a capping layer that is not

matched to the substrate can be handled in essentially the same way, but

with slightly greater complexity in the details; an example is included as an

exercise.

The capping layer tends to stabilize the con¯guration against disloca-

tion formation. The basis for this expectation is that the formation of the

dislocation at the ¯lm{substrate interface requires distortion of the mate-

rial over the full depth hf . On the other hand, the background mismatch

stress ¯eld does work as the dislocation is formed only over a fraction of the

total thickness hsl < hf . To what extent can the capping layer stabilize the

structure against dislocation formation?

The most advantageous position for formation of a dislocation in this

structure is at the ¯lm{substrate interface, that is, for ´ = hf . The critical

condition Wd(hf) +Wm(hf) = 0 then takes the form

[b2x + b2y + (1¡ ºf)b
2
z]

8¼(1 + ºf)bx
ln

4(hsl + hul)

b
= hsl²m; (6.33)

where the value of cut o® radius ro = 1
2b has been incorporated and only

the logarithmic term in Wd is retained as in (6.17). If the thickness of the

strained layer and the capping layer are normalized by the critical thickness

hcr of the strained layer alone according to

p = hsl=hcr ; q = hul=hcr; (6.34)
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Fig. 6.17. A plot of normalized capping layer thickness q versus normalized strained
layer thickness p needed to stabilize the composite ¯lm against interface mis¯t
dislocation formation according to (6.35).

then (6.33) reduces to

q =

µ
4hcr
b

¶p−1
¡ p: (6.35)

This result de¯nes the value of q, representing the thickness of the capping

layer, which is required to stabilize the composite ¯lm against formation of

a mis¯t dislocation. This value is a function of hcr=b and p, the parame-

ters which completely characterize the strained layer. The quantity q given

by (6.35) is plotted versus p for several values of hcr=b in Figure 6.17. For

example, suppose that the critical thickness of the strained layer for a par-

ticular material system is 100 b. If a ¯lm is grown to a thickness of 120 b,

then deposition of an unstrained capping layer of thickness 200 b will stabi-

lize the system against formation of mis¯t dislocations at the ¯lm{substrate

interface.

The idea of stabilization of an epitaxial structure by subsequent over-

growth has signi¯cant practical implications. The prospect of inserting ma-

terial structures which are unstable or only weakly metastable into appli-

cations for which long life is required is undesirable. However, if material

structures that are unstable as fabricated can be stabilized by overgrowth

then the risk of material failure is diminished signi¯cantly. This issue plays a

role in several quantum wire con¯gurations, as discussed in Section 6.6, and
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it focuses additional emphasis on the processing of small epitaxial material

structures.

While the expression in (6.35) represents the answer to the question

posed, it is an incomplete answer in the following sense. Formation of a

mis¯t dislocation at the ¯lm{substrate interface is indeed a possible strain

relief mechanism for the case of a composite ¯lm consisting of a strained

layer and an unstrained capping layer. However, it may not be the preferred

mechanism in all cases. Because the con¯guration involves two interfaces,

there is a possibility that strain relief can occur by means of a pair of mis¯t

dislocations, one at the ¯lm{substrate interface and one at the interface

between the strained layer and the capping layer. Con¯gurations giving

rise to pairs of dislocations in this way have been studied experimentally by

Tuppen and Gibbings (1990) and Nix et al. (1990). Such a mechanism has

the advantage that it does not require glide through the unstrained capping

layer in order to relax elastic strain. On the other hand, the dislocation pair

will tend to annihilate each other, a tendency which must be overcome by

the in°uence of the background mismatch ¯eld in keeping them separated.

The circumstances that lead to formation of a double mis¯t dislocation

con¯guration are examined next.

It is helpful to consider the two-mis¯t-dislocation mechanism in the

framework of glide of a threading dislocation. If the capping layer is very

thin, then the con¯guration is similar to that depicted in Figure 6.11. In

particular, the con¯guration of the dislocation line on the projection of the

glide plane onto the plane x = 0 has the features illustrated in the upper

left side of Figure 6.18. The glide of the threading segment within the

strained layer, driven by the mismatch stress ¯eld there, drags along the

short segment in the capping layer. As the unstrained capping layer becomes

thicker, the burden of deforming the capping layer material without recovery

of any stored elastic energy becomes greater. Eventually, due to this burden,

the threading segment in the capping layer falls behind the segment in the

strained layer, as illustrated in the upper right side of Figure 6.18. Intrinsic

lattice resistance to glide facilitates this separation. A material section of

the con¯guration on the upper right side of Figure 6.18 is shown in the

lower right portion of Figure 6.18. This section plane is perpendicular to

the z¡axis at some point behind the threading segment in the strained layer

but ahead of the threading segment in the capping layer. This is precisely

the two-dislocation mechanism introduced above, with one mis¯t dislocation

at each of the two interfaces involved.

For the case of the strain relaxation by formation of a dislocation

dipole, the energy of formation of the dislocations must be modi¯ed to ac-
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Fig. 6.18. Schematic diagram illustrating strain relaxation mechanisms by which
the glide of a threading dislocation leads to a single mis¯t dislocation (left) and
a mis¯t dislocation dipole (right), depending on the relative thicknesses of the
unshaded strained layer and the unstrained capping layer.

count for the fact that they are formed together. There are several equivalent

ways in which this calculation can be carried out. Perhaps the most direct

approach is to proceed as in (6.6) with the stress ¯eld representing the su-

perposition of the equilibrium ¯elds of the two dislocations with equal but

opposite Burgers vectors separately, and the range of integration being the

slipped portion of the glide plane between them. An approach that is less

direct but which takes advantage of results already obtained is to recognize

that the total energy of the dislocation pair is the sum of the energies of the

two dislocations, each computed in the absence of the other as was done in

(6.8), plus the energy of interaction between the two dislocations. Following

the latter option and using the form of self energy in (6.8), the net energy

of the dislocations is

Wd =
¹f [b

2
x + b2y + (1¡ ºf)]

4¼(1¡ ºf)
ln

4hfhul
r2o

¡
Z hsl cscα

ro
bi¾ijn

(+)
j dl

=
¹f [b

2
x + b2y + (1¡ ºf)b

2
z]

2¼(1¡ ºf)
ln

2hsl(hfhul)
1/2

ro[h2sl + 4hfhul sin
2 ®]1/2

; (6.36)

where ¾ij(x; y) is the stress ¯eld given in Section 6.1.2.
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If the critical thickness of the strained layer is again denoted by hcr,

and if the normalized thicknesses of the strained layer and the unstrained

capping layer are represented by p and q as de¯ned in (6.34), then the

condition Wd +Wm = 0 takes the form

p2q(p+ q)

p2 + 4q(p+ q) sin2 ®
=

µ
4hcr
b

¶p−2
: (6.37)

For given values of hcr=b and p, the solutions q of this equation de¯ne the

critical state. For values of q smaller than the admissible roots of (6.37), the

two-dislocation mechanism can operate whereas, for larger values of q, it is

energetically prohibited from operating. Values of q that satisfy (6.37) for

several choices of hcr=b are given in Figure 6.19 for a range of values of p. It is

evident from (6.37) that all curves intersect at p = 2, and that each curve has

a vertical asymptote at a value of p which satis¯es p2 = 4(4hcr=b)
p−2 sin2 ®.

This implies values of p only slightly larger than 2 for cases of practical

interest. Each vertical asymptote de¯nes the critical thickness of a buried

strained layer at a given level of mismatch as a multiple of the critical

thickness of a strained surface layer of the same material at the same level

of mismatch. Usually, the term buried layer applies to a strained layer of

thickness hf that is positioned between substrates, both of which are much

greater in thickness than hf . In this case, hf is the only length parameter

of signi¯cance in examining the stability of strained epitaxial layer against

dislocation formation.

6.4.2 Strained layer superlattice

In this case, the ¯lm consists of a periodic arrangement of many layers,

as described in Section 2.4. Suppose that the superlattice is composed of

alternating homogeneous layers of materials a and b of thicknesses ¢ha and

¢hb, respectively. The materials in the ¯lm each have a mismatch with

respect to the substrate; these are denoted by ²ma and ²mb, respectively.

The period of the structure is ¸ and the total number of periods in the

¯lm is Nλ; the total thickness is then hf = ¸Nλ. Di®erences in the elastic

properties of the two materials with respect to each other and with respect

to the substrate are neglected.

The energy of formation of a mis¯t dislocation at distance ´ from the

free surface is again given by (6.7) or (6.8). The elastic energy extracted from

the system as the dislocation is formed or, equivalently, the work done by the

background mismatch stress ¯eld as the dislocation is formed, is obtained by

means of a straightforward generalization of (6.13). If the mis¯t dislocation
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Fig. 6.19. Normalized capping layer thickness q versus the normalized strained
layer thickness p for which the composite ¯lm is stable against formation of a mis¯t
dislocation dipole according to (6.37). Stable values are those above each curve for
given values of p and hcr=b. Each curve has a vertical asymptote representing a
strained layer thickness beyond which a capping cannot stabilize the con¯guration
under any circumstances.

is formed at the interface between the superlattice ¯lm and the substrate,

then the result is

Wm(hf) = ¡2bx¹f
1 + ºf
1¡ ºf

Nλ (²ma¢ha + ²mb¢hb) : (6.38)

If an e®ective mismatch is de¯ned by the linear weighting rule as

²m;eff = Nλ

µ
²ma

¢ha
hf

+ ²mb
¢hb
hf

¶
; (6.39)

then the critical thickness condition Wd(hf) + Wm(hf) = 0 for the total

thickness hf of the superlattice at which mis¯t dislocation formation at the

¯lm{substrate interface becomes possible reduces to (6.17) with the quantity

²m;eff taking the place of mismatch strain ²m. Thus, the results of Section 6.2

and Section 6.3 apply for the case of a superlattice ¯lm without modi¯ca-
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tion. It is readily con¯rmed that ´ = hf is the most favorable location for

formation of a mis¯t dislocation in this con¯guration under the assumed

constraints on material properties.

6.4.3 Compositionally graded film

In this section, a ¯lm with a linear variation in mismatch strain, from ²m = 0

at the interface y = 0 to ²m = ²top at the free surface y = hf , is considered.

In this case,

²m(y) = ²top
y

hf
: (6.40)

Any variation of the elastic properties of the system in the y¡direction is

neglected in this development.

The energy of formation of the dislocation, which is independent of

the distribution of mismatch, is given by (6.8). On the other hand, the work

done by the background mismatch stress ¯eld is completely determined by

the mismatch strain distribution according to (6.30). With the distribution

of mismatch as speci¯ed in (6.40), this work is

Wm(´) =

8>>>><>>>>:
¡¹fbx

1 + ºf
1¡ ºf

²top´

µ
2¡ ´

hf

¶
; 0 < ´ ∙ hf ;

¡¹fbx
1 + ºf
1¡ ºf

²tophf ; hf < ´ < 1:

(6.41)

As before, the critical thickness hcr of the ¯lm is de¯ned as the smallest

value of hf for which a stable equilibrium position ´ for the dislocation can

be found such that Wd(´) +Wm(´) = 0.

As an illustration, consider the case of a cubic material, oriented so

that the interface is a f001g plane, with dislocation glide on a f111g plane.

The Burgers vector is given in (6.18). Graphs of Wd(´)=¹fb
2, Wm(´)=¹fb

2

and [Wd(´)+Wm(´)]=¹fb
2 are shown in Figure 6.20 for ²top = 0:015, hf=b =

40 and ºf = 0:25. . From the graphs, it is evident that this thickness is ap-

proximately equal to the critical thickness for the speci¯ed mismatch strain,

that is, hcr ¼ 40b. It ¯rst becomes energetically possible for a dislocation to

form when the local minimum in Wd(´) + Wm(´) just touches the ´¡axis

from the positive side, which ¯rst occurs at ´eq ¼ 35b. From the fact that

W Id(´eq) + W Im(´eq) = 0, this is an equilibrium position. Furthermore, the

property that W IId (´eq) +W IIm(´eq) > 0 implies that the equilibrium position

is stable.
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Fig. 6.20. Normalized energy of formation Wd=¹fb
2 of a dislocation and normalized

work recovered from mismatch ¯eld Wm=¹fb
2 versus normalized depth of formation

of the dislocation ´=b for the case of a linear gradation of mismatch with surface
mismatch ²top = 0:015, ¯lm thickness hf = 40b and Poisson ratio ºf = 0:251. For
this case, the critical thickness is approximately hcr ¼ 40b.

6.5 Model system based on the screw dislocation

The analysis in Sections 6.2 and 6.3 provides a complete continuum elastic

description of relaxation of an equi-biaxial mismatch strain by formation

of a dislocation of arbitrary Burgers vector on a glide plane of arbitrary

orientation. In considering extensions of this analysis to include the e®ects

of elastic modulus di®erence between the ¯lm and the substrate or of dis-

location interactions, the analysis becomes complicated and unwieldy. For

purposes of illustrating important ideas in strain relaxation without this en-

cumbrance, it is both convenient and instructive to consider the simpler case

of strain relaxation by screw dislocations (Head (1953), Nix (1998)). The

purpose of the present section is to reproduce the critical thickness argument

in the context of strain relaxation by a screw dislocation in order to illus-

trate that the results are qualitatively identical and quantitatively similar to

the corresponding results for the case of general Burgers vector. The screw

dislocation model is then extended to explore additional features of strain
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relaxation phenomena in Sections 6.5.2, 7.1 and 7.2. Sources providing the

details for more realistic con¯gurations are cited in those instances for which

they are available.

Fig. 6.21. Schematic illustration of a model system where a screw dislocation with
a Burgers vector along the z¡axis constitutes the interface mis¯t segment and the
glide plane, along which the threading dislocation with mixed edge{screw character
moves, is oriented perpendicularly to the ¯lm{substrate interface.

6.5.1 Critical thickness condition for the model system

Upon introduction of a screw dislocation at the interface between a strained

layer and its substrate, it becomes apparent that this dislocation will not

relax any background elastic mismatch strain if the material is isotropic and

if this strain is equi-biaxial extension or compression. Therefore, to develop

a model which parallels that given in Section 6.2, the mismatch of the ¯lm

of thickness hf with respect to the relatively thick substrate is necessarily a

shear strain. The model is represented schematically in Figure 6.21, where

notation from Section 6.2 is retained to the extent possible. The elastic

strain in the ¯lm due to mismatch is

²xz =
1
2°m; (6.42)

where °m is the spatially uniform shear strain required to render the ¯lm

compatible with the substrate. The corresponding stress due to mismatch

is

¾xz = ¿m = ¹f°m; (6.43)

which is indicated by the surface tractions in Figure 6.21. All other stress

components are zero in the background mismatch ¯eld. The interface mis¯t
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segment of the strain-relieving dislocation, which is a screw dislocation, lies

in the interface y = 0 along the negative z¡axis; its Burgers vector is in

the z¡direction and is denoted by b = bz. The threading segment of the

dislocation has mixed screw{edge character. Since the orientation of the

glide plane is immaterial in this case, it is chosen to be perpendicular to the

interface for convenience, that is, ® = 90◦.
If the energy comparison of Section 6.2 is repeated for this con¯gura-

tion, it is found that the work per unit length required to create the interface

mis¯t screw dislocation (far behind the threading segment) is

Wd(h) =
¹fb

2

4¼
ln

2hf
ro

; (6.44)

and the work per unit length done by of the background mismatch elastic

stress ¯eld (far behind the threading segment) in creating this dislocation is

Wm(h) = ¡¿mbhf : (6.45)

It follows immediately that the critical thickness condition implied by these

results is
b

4¼hcr
ln

2hcr
ro

= °m; (6.46)

where ro is again the core cuto® radius. Note that (6.46) is identical in form

to the general result (6.16) but it is much simpler in detail. The driving force

on the threading segment of the dislocation for any value of hf , analogous

to (6.27), is

G(hf) = bh¹f

∙
°m ¡ b

4¼hf
ln

4hf
b

¸
; (6.47)

where the value ro =
1
2b of the core cuto® radius has been incorporated.

6.5.2 The influence of film—substrate modulus difference

The general behavior of a long straight dislocation parallel to an interface

between two isotropic elastic materials is well established. A con¯gurational

force acts on the dislocation due to its proximity to the interface. The

direction of the force is normal to the interface, a direct consequence of

the invariance of the con¯guration under translation in any direction within

the interface. The magnitude of the force varies with the inverse of the

distance from the interface and, ¯nally, whether the force is attractive or

repulsive depends on the relative magnitudes of the elastic constants of the

two materials. For a screw dislocation, the force exerted by the interface
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on the dislocation is attractive if the dislocation is in the material with the

larger shear modulus, and it is repulsive otherwise. For an edge dislocation,

the dependence of the sign of the force on elastic properties is more intricate

but commonly the force tends to act in the direction from the more sti® to

the less sti® material.

In the discussion of critical thickness of a strained layer on a substrate

in Sections 6.2 and 6.5, the elastic properties of the ¯lm and substrate were

assumed to be identical. Thus, the interface between the ¯lm and substrate

played no role in the analysis other than de¯ning the range over which the

background mismatch stress was operative and, as a consequence of energy

considerations, the mis¯t dislocations which were formed at or beyond crit-

ical thickness were positioned on the interface. It is no longer possible for

the mis¯t dislocations to reside precisely on the interface if the ¯lm and

substrate materials have elastic properties that di®er signi¯cantly. To gain

some insight into the in°uence of this e®ect on the critical thickness condi-

tion, the conditions for formation of a screw dislocation in a strained ¯lm

on a substrate are re-examined in this section for the case of a ¯lm and

substrate with di®erent elastic sti®nesses.

Before undertaking the full critical thickness calculation, a relatively

simple preliminary calculation can shed some light on the e®ect. Consider a

screw dislocation near the interface between a strained ¯lm and a substrate,

and suppose that the force on the dislocation due to the free surface of the

¯lm is negligible. This might be so if the distance of the dislocation from

the interface, which can be speci¯ed by its y¡coordinate, is much smaller

than hf , for example. If the Burgers vector of the dislocation is such that

it is strain relieving, the background mismatch ¯eld exerts a force ¡¿mb in

the y¡direction per unit length on the dislocation if the dislocation is in the

¯lm (y > 0) and no force at all if the dislocation is in the substrate (y < 0).

The negative sign indicates that the force acts toward the interface if the

dislocation is in the ¯lm. The con¯gurational force per unit length exerted

by the bimaterial interface on the dislocation, on the other hand, is

Fb = ¡¹fbkµ
4¼jyj ; kµ =

¹f ¡ ¹s
¹f + ¹s

; (6.48)

where the shear moduli in the ¯lm and substrate are denoted by ¹f and

¹s, respectively (Hirth and Lothe 1982). The parameter kµ is clearly the

counterpart for antiplane shear deformation of the Dundurs parameters de-

¯ned in (3.98) for plane strain deformation. The force acts in the positive

(negative) y¡direction if ¹s > ¹f (¹s < ¹f). It follows immediately that, if

¹s > ¹f , there is a stable equilibrium position for the dislocation within the
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¯lm at a distance

yeq = ¡¹fbkµ
4¼¿m

(6.49)

from the interface. If ¹s < ¹f , on the other hand, there is no stable equilib-

rium position for the dislocation at any value of y, although the net force

(6.48) acting on the dislocation falls o® very rapidly with distance into the

substrate. The purpose of going through the critical thickness calculation is

to determine how these preliminary conclusions are modi¯ed by the presence

of the free surface at y = hf .

The complete solution for the case of a screw dislocation in a con¯g-

uration consisting of a layer of uniform thickness bonded to a substrate has

been provided by Chou (1966). The critical thickness analysis proceeds by

calculating the work Wd(´) that must be done to insert a dislocation into

the material at a distance ´ from the interface, and then comparing the

result to the work Wm(´) that is done by the background mismatch stress

¯eld as the dislocation is formed. As in Section 6.2, the critical thickness

is de¯ned as the smallest value of hf for which any value of ´ can be found

for which Wd(´) +Wm(´) = 0. When ¹f 6= ¹s, there is no reason to expect

that ´ = hf , as was the case for ¹f = ¹s. The relationship between the shear

moduli of the ¯lm and the substrate is speci¯ed by the parameter kµ de¯ned

in (6.48). Although the solution provided by Chou (1966) is valid for the

full range of elastic constants, it is given in the form of an in¯nite series

in powers of kµ. Only terms up to and including those which are linear in

kµ are retained here. This means that the present result is valid only for

jkµj ¿ 1. If this is understood to imply that jkµj ∙ 0:1, then the results are

expected to be accurate for

9

11
∙ ¹f

¹s
∙ 11

9
: (6.50)

To this level of accuracy, the work of formation of the dislocation is

Wd(´) =
¹fb

2

4¼

8>>>>><>>>>>:
ln

2´

ro
+ kµ ln

h2f ¡ ´2

h2f
; ro < ´ < hf ¡ ro;

ln
2´

ro
¡ 2kµ ln

2´(´ ¡ hf)
1/2

ro(´ + hf)1/2
; hf + ro < ´ < 1:

(6.51)

When kµ = 0, it is evident that this result reduces to the appropriate limit for

a homogeneous material given in (6.44). Furthermore, if ¹s > ¹f (¹s < ¹f),

then the work required to form a dislocation anywhere in the ¯lm is increased

(decreased) from the corresponding result for a homogeneous material, as
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might be expected. Note that the terms that are proportional to kµ in (6.51)

are logarithmically singular at the interface ´ = h. Thus, no signi¯cance is

attached to values of these terms within the range hf ¡ ro < ´ < hf + ro.

The work done by the background mismatch ¯eld in forming a dislo-

cation at the distance ´ from the free surface of the ¯lm is

Wm(´) =

8><>:
¡¹f°mb´ ; ´ ∙ hf ;

¡¹f°mbhf ; ´ > hf :

(6.52)

For the dislocation to be strain-relieving, it must satisfy the condition that

°mb > 0. There is no loss of generality in assuming that °m > 0 and

b > 0 separately; if the signs are actually opposite to these in any particular

situation, then °m and b can be understood as magnitudes.

The in°uence of modulus di®erence on the behavior of dislocations

in a thin strained ¯lm epitaxially bonded to a substrate was considered

in a series of observations reported by Wu and Weatherly (2001). They de-

posited In1−xGaxAs1−yPy ¯lms onto InP(100) substrates at 480◦C. Through
cross-sectional transmission electron microscopy, it was observed that strain

relaxation occurred by twinning in the case of In0.5Ga0.5As0.5P0.5 ¯lms, for

which the mismatch strain was approximately 0.02. In this case, the elastic

modulus of the ¯lm is approximately 1.3 times the elastic modulus of the

substrate. It was established that the leading partial dislocation of the twin

structure was often found to be well within the substrate. While there is a

force on the leading partial due to the stacking fault energy that tends to

pull it back toward the interface, the relative compliance of the substrate

was apparently su±cient to draw the dislocation away from the interface

and deeper into the substrate. Wu and Weatherly (2001) carried out an ap-

proximate dislocation image force analysis, similar to that reported by Chou

(1966) for the case of a screw dislocation, to estimate the magnitude of the

force pushing the dislocation further into the more compliance substrate.

An exact, but quite intricate, analysis of this system for an edge dislocation

has been reported by Weeks et al. (1968).

It can be readily established from (6.49){(6.52) that the elastic modu-

lus mismatch between the ¯lm and the substrate can strongly in°uence the

propensity for formation of mis¯t dislocations for a given mismatch strain

as well as the preferred location for dislocation formation. These e®ects of

modulus mismatch are illustrated quantitatively in the following numerical

example.
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6.5.3 Example: Modulus difference and dislocation formation

Consider the model system for an epitaxial thin ¯lm on a substrate depicted in
Figure 6.21 with a shear strain °m = 0:01.

(a) Consider ¯rst an elastically homogeneous system with ¹f = ¹s. Determine
the critical ¯lm thickness at which it becomes unstable against formation of
an interface mis¯t dislocation. Assume that ® = 90± and ro = 1

2
b.

(b) Now consider the two di®erent cases of elastic modulus di®erence with ¹s =
9
11
¹f and ¹s =

11
9
¹f . Discuss how the elastic modulus di®erence in°uences

the propensity for the formation of the mis¯t dislocation and the location
at which such dislocation formation preferentially occurs.
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Fig. 6.22. Variation of Wd + Wm normalized by ¹fb
2 as a function of ´=b for the

three cases: ¹s =
9
11¹f , ¹s = ¹f and

11
9 ¹f for °m = 0.01, ® = 90 ± and ro = 1

2b.

Solution:

(a) For the elastically homogeneous ¯lm{substrate system with ¹s = ¹f , the
critical thickness is found from (6.46) to be hcr ¼ 40:5b. In Figure 6.22, a
graph of Wd(´) + Wm(´) is shown for ¹s = ¹f and hf = 40:5b (the solid
curve), from which it is clear that Wd(´) + Wm(´) ¯rst becomes zero at
´ = hf when hf reaches the value hcr.

(b) The variations of (Wd + Wm)=¹fb
2 versus ´=b for ¹s = 9

11
¹f and 11

9
¹f are

also plotted in Figure 6.22. By comparison with the case for which ¹s = ¹f ,
the graph for ¹s < ¹f passes well below the axis de¯ning Wd+Wm = 0. This
means that a critical thickness for dislocation formation was reached at a
value of hf smaller than hcr, and that the relatively greater elastic compliance
of the substrate assists in the formation of dislocations. Furthermore, the
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preferred location of a mis¯t dislocation is in the substrate at the distance
from the interface coinciding with the minimum in the graph of Wd(´) +
Wm(´). This minimum is rather shallow, and the gradual rise in the curve
beyond the minimum is due solely to the in°uence of the free surface of
the ¯lm. In contrast, the graph for ¹s > ¹f passes well above the axis
de¯ning Wd + Wm = 0. This means that ¯lm thickness is still below the
critical thickness for this case, and that the relatively greater sti®ness of
the substrate retards the formation of dislocations. If the thickness were to
increase until the graph just touches the Wm + Wd = 0 axis, it would be
found that it does so at a location within the ¯lm at a small distance from
the interface. This distance was anticipated in the result (6.49) above, which
provides a good approximation to its magnitude.

6.6 Non-planar epitaxial systems

The epitaxial material structures considered in the preceding sections were

two-dimensional or planar structures, according to the categorization intro-

duced in Section 1.1. In this section, attention is redirected to non-planar

epitaxial structures. Perhaps the simplest among these is a one-dimensional

structure known commonly as a quantum wire. An epitaxial quantum wire

structure is fabricated so that the spatial extent of the deposited mater-

ial, which will continue to be identi¯ed as the ¯lm material throughout the

discussion, is very large in one direction compared to its extent within a

cross-section perpendicular to that direction. Because of the higher degree

of con¯nement of an epitaxial wire, compared to a large area planar quan-

tum well, the strain levels that can be achieved before the structure becomes

unstable against the formation of strain relieving dislocations are substan-

tially greater than those for planar structure. This will be demonstrated for

particular structures in this section.

As the name implies, such structures are of interest in microelectron-

ics and optoelectronics in situations for which the cross-sectional dimensions

are su±ciently small so that electronic behavior is dominated by quantum

mechanical e®ects. The combined in°uences of two-dimensional quantum

con¯nement of charge carriers and of elastic strain due to the constraint of

epitaxy result in unique opportunities for tailoring the electronic or optical

properties of lasers, optical modulators and other devices. The extra de-

gree of charge carrier con¯nement, over and above that a®orded by planar

structures, gives rise to a narrowing of the distribution of density of states

which results in sharper optical spectral features. In addition, the range

of elastic strain states accessible in the wire con¯guration allows for signif-

icant modi¯cations of band structure of the material. An interesting and
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technologically important issue is whether or not electronic characteristics

of the structure can be interpreted within the framework of electronic band

theory. The theory presumes wave transport in a periodic medium, and the

in°uence of uniform strain on band structure has been studied extensively

(Luttinger and Kohn (1955), O'Reilly (1989) and Yu et al. (1992), for ex-

ample). Models have also been developed to consider the in°uence of strain

that is spatially nonuniform on a scale that is very long compared to atomic

dimensions (Yang et al. (1997) and Johnson et al. (1998), for example).

However, robust predictive methodologies for characterizing electronic be-

havior of very small nonuniformly strained material structures, particularly

those incorporating alloys, are not yet available.

In planar epitaxial systems whose in-plane dimensions are large com-

pared to layer thickness, the background equilibrium stress ¯eld due to mis-

match, if any, is laterally uniform. This feature leads to signi¯cant sim-

pli¯cation in the calculation of the work done by the mismatch stress ¯eld

during formation of a dislocation, introduced as Wm in Section 6.2. In the

case of a non-planar epitaxial structure with lattice mismatch, assessment of

the stability of the system against formation of strain relieving dislocations

is conceptually unchanged from the planar case but it is practically more

di±cult to extract quantitative estimates of instability conditions. For any

particular con¯guration, the goal in considering the onset of elastic strain

relaxation is still to establish circumstances under which Wm + Wd ¯rst

approaches zero through positive values, as in Section 6.2.1. The task is

complicated by the fact that the background mismatch stressed distribution

is no longer spatially uniform, as it is in the planar case. Consequently, the

calculation of Wm for any particular prospective dislocation becomes more

di±cult and the location which is most favorable for dislocation formation

is not always self evident, as it was in the planar con¯gurations.

In this section, two particular con¯gurations are discussed. Both are

two-dimensional con¯gurations in which the mismatch stress ¯eld results

in a state of generalized plane strain deformation. The ¯rst is a long mis-

¯tting inclusion with rectangular cross section which is embedded within

and is epitaxially bonded to a surrounding medium. All other boundaries

are su±ciently remote so as to be inconsequential. This con¯guration was

analyzed by (Gosling and Willis 1995) for a periodic array of inclusions.

The second con¯guration is a long mis¯tting inclusion which is epitaxially

deposited in a surface groove in a second material. Both con¯gurations are

within a class identi¯ed above as quantum wire con¯gurations. The ¯rst

of these con¯gurations is by far the simpler to analyze due to the rectan-

gular geometry and the absence of free surfaces, and a critical condition
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for dislocation formation will be obtained by constructing the exact stress

¯eld in the material. On the other hand, the second con¯guration with a

non-planar material structure and a free boundary is beyond the realm of

standard stress analysis, and a computational strategy for estimating the

critical conditions is introduced. Various two-dimensional con¯gurations of

periodic quantum wire arrays were considered by (Gosling 1996) within the

framework of anisotropic elastic material response.

6.6.1 A buried strained quantum wire

The two-dimensional con¯guration to be considered is depicted in the up-

per portion (a) of Figure 6.23. A long slender elastic inclusion occupies the

region ¡1
2w < x < 1

2w, 0 < y < h within an otherwise unbounded matrix of

an elastic material with nominally the same properties as the inclusion. The

mismatch strain of the quantum wire inclusion with respect to the surround-

ing material is assumed to be a pure volumetric strain represented in terms

of the linear mismatch ²m as ²mij = ²m±ij . The formation of this material

structure can be imagined to be the result of the following steps, starting

with the two materials completely separated. The inclusion is subjected to

an arti¯cial uniform normal surface traction ¾m = 2¹f(1 + ºf)²m=(1 ¡ 2ºf)

where the combination of parameters 2¹f(1 + ºf)=3(1 ¡ 2ºf) is the elastic

bulk modulus. Under these conditions, the elastic strain in the inclusion is

precisely ²mij and the inclusion ¯ts perfectly into the rectangular cavity with

zero stress everywhere in the matrix material. This is the state represented

in the lower left portion (b) of Figure 6.23, with the tractions acting on the

surface of the inclusion but not on the surrounding matrix. The interface

is next bonded to enforce the constraint of epitaxy. Finally, the arti¯cial

normal traction ¾m on the interface is removed from the lateral surface of

the inclusion, as represented in the lower right portion (c) of Figure 6.23.

At this point, the inclusion strain is partially relaxed under general-

ized plane strain conditions and a stress distribution has been generated in

the surrounding elastic material. The elastic strain ¯eld in the inclusion is

quite di®erent from the mismatch strain ²m at this point, emphasizing the

distinction between elastic strain as a ¯eld descriptor and mismatch ²m as

a system parameter. Since the equi-triaxial volumetric strain necessary to

¯t the inclusion into the cavity induces no shear stress in the material, it is

irrelevant in considering the work done in forming a glide dislocation. It is

only the stress arising from relaxation of the arti¯cial surface tractions in (c)

that gives rise to shear stress which can drive dislocation formation by glide.
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Fig. 6.23. The two-dimensional con¯guration of a buried strained quantum wire
(upper ¯gure), where a long slender elastic inclusion of the quantum wire is em-
bedded in an otherwise unperturbed matrix of an elastic material. In the lower
left ¯gure, the inclusion is subject to an imaginary uniform normal traction ¾m at
its surface in such a manner that it ¯ts perfectly into the rectangular cavity of the
surrounding matrix without inducing any stress in the matrix material. The lower
right ¯gure represents the situation where the arti¯cial normal traction ¾m on the
inclusion surface is removed, whereby the strain in the inclusion is partially relaxed
and the surrounding elastic matrix becomes stressed.

A necessary condition on hf , w, ²m and Burgers vector bi for formation of a

strain relieving dislocation is considered next.

An elegant general framework exists for the description of elastic ¯elds

in solids with mis¯tting inclusions (Eshelby 1957). However, the con¯gura-

tion under consideration here is su±ciently simple so that the stress distri-

bution can be determined directly in a relatively straightforward way.

Suppose that the equilibrium stress ¯eld resulting from the relaxation

step shown in part (c) of Figure 6.23 is denoted by ¾rij(x; y). An expres-

sion for this stress ¯eld can be written immediately by appeal to the rep-

resentation theorem for stress in terms of the elastic Green's function for

a concentrated force under plane strain conditions. Suppose a stress ¯eld

§ijk(x; y) can be found which, for ¯xed k, is the stress ¯eld in the plane due

to a concentrated force of unit magnitude applied at the origin x = 0, y = 0

and acting in the k¡th direction. This singular solution is known, so the

solution for any distribution of concentrated forces can be constructed by
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superposition. The components of 4¼(1¡ ºf)(x
2 + y2)2§ijk(x; y) are264 ¡x

£
(3¡ 2ºf)x

2 + (1¡ 2ºf)y
2
¤ ¡y

£
(3¡ 2ºf)x

2 + (1¡ 2ºf)y
2
¤

¡y
£
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2
¤

x
£
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¤

375 (6.53)

for k = x, and264 ¡y
£
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2 + (3¡ 2ºf)y
2
¤
375 (6.54)

for k = y. The concentrated force distribution is that shown in part (c)

of Figure 6.23 where the magnitude of each line of concentrated force is

2¹f(1 + ºf)²m=(1¡ 2ºf). Thus,

¾rij(x; y) = ¡2¹f²m
1 + ºf
1¡ 2ºf

Z
S
§ijk(x¡ »s; y ¡ ´s)nk(s) ds; (6.55)

where S is the boundary curve between the inclusion and the matrix, s is

arc length along S, (»s; ´s) is a point on S represented by s and nk(s) is

the outward unit normal vector to S at s. The integral can be evaluated in

terms of elementary functions, but the result is too complicated to warrant

its inclusion here for general values of the parameters.

Fig. 6.24. A buried strained quantum wire with a slip plane oriented at an angle
® to the x¡axis. The glide of a threading dislocation leaves behind a dislocation
dipole pair with la and lb denoting the positions of the dislocations. l denotes
distance along the slip plane.

The orientation of the glide plane on which the dislocation dipole

is formed and the location of the dislocations depends on the geometrical

con¯guration and crystallographic orientation of the material. To make

the discussion more concrete, consider the case when the material has cubic

crystallographic structure and the preferred slip planes are the f111g planes.
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Suppose that the xz¡plane coincides with a f100g crystallographic plane,

and the length of the quantum wire or, equivalently, the z¡axis, is aligned

with a h110i direction. If the generic slip plane indicated in Figure 6.24 is a

f111g plane lying along the length of the inclusion, then ® = 54:7◦ or 125:3◦.
Although the formation of dislocation lines on the f111g planes which cut

across the cross-section cannot be ruled out, such dislocations would result

in limited amounts of elastic strain relaxation compared to those lines which

run along the length of the inclusion and, therefore, such dislocations are

not considered here. The dislocation dipole is imagined to be formed by

glide of threading dislocations in opposite directions along the length of the

inclusion, leaving behind the dipole pair as they move apart, as illustrated in

Figure 6.18 for dislocation formation in a buried strained layer. In general,

the dislocations may be formed inside the inclusion, outside the inclusion or

on the interface.

Consider formation of 60◦ dislocations on the glide plane with orienta-

tion ® as depicted in Figure 6.24. The work done by the stress ¯eld ¾rij(x; y)

in forming a dislocation dipole on a part of a plane with normal n
(+)
i and

Burgers vector bi is

Wm =

Z lb

la
bi¾

r
ijn

(+)
j dl ; (6.56)

analogous to (6.12), where l is distance along the dashed glide plane mea-

sured in the sense shown in the ¯gure from some arbitrary origin. From

(6.36), the work that must be done to form this dipole in the absence of any

other stress ¯eld is

Wd =
¹f [b

2
x + b2y + (1¡ ºf)b

2
z]

2¼(1¡ ºf)
ln

lb ¡ la
ro

: (6.57)

The remaining task is to locate the position of the dislocations, represented

symbolically by la and lb in (6.56) and (6.57), for which it ¯rst becomes

possible to have Wm +Wd = 0.

In terms of ®, the Burgers vector in (6.56) is

bi = b
n√

3
2 cos®;

√
3
2 sin®; 12

o
(6.58)

for ²m > 0 and the slip plane normal is

n
(+)
i = f¡ sin®; cos®; 0g: (6.59)

If ²m < 0, then the sign of the Burgers vector must also be reversed but the

calculation is otherwise una®ected.

Suppose that dislocation formation is restricted to the inclusion itself.
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Then the preferred location for the dipole in the inclusion becomes clear

from examination of the integrand of (6.56). A contour plot of the non-

dimensional quantity W ∗m = (1 ¡ ºf)bi¾
r
ij(x; y)n

(+)
j =2¹f(1 + ºf)²mbx for an

inclusion with a square cross section, that is, with w = h and ® = 54:7◦,
is shown in Figure 6.25. In fact, ¡W ∗m represents the density per unit

length along the slip plane of work done by the background mismatch ¯eld;

regions in which W ∗m is negative and large in magnitude contribute most to

dislocation formation, whereas regions in which W ∗m is positive act to oppose

dislocation formation. On the basis of this intuitive argument, it is clear that

the glide plane should pass through the geometric center of the inclusion

at x = 0, y = 1
2h and that the dislocation pair should be symmetrically

positioned on the glide plane with respect to the center. Finally, in light of

the expression for Wd in (6.57), the dislocations should be as far apart as

possible; that is, they should lie in the interfaces at y = 0 and y = h.
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Fig. 6.25. Contours of constant values of the non-dimensional quantity W ¤
m = (1¡

ºf)bi¾
r
ij(x; y)n

(+)
j =2¹f(1+ºf)²mbx for an inclusion with a square cross section (w = h

and ® = 54:7±)
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For any value of w ¸ h cot®, Wm has the form

Wm = ¡2¹f
(1 + ºf)

(1¡ ºf)
²mbxhI(w=h; ®); (6.60)

where I(w=h; ®) is a non-dimensional factor depending only on the aspect

ratio w=h and the angle ®. It can be veri¯ed by direct calculation that

I(w=h; ®) ! 1 as w=h ! 1. Consequently, the correct result is obtained in

the limit as the inclusion shape approaches that of a uniform buried layer.

The condition necessary for the formation of a strain-relieving dislocation

dipole, obtained from Wm +Wd = 0, is then

[b2x + b2y + (1¡ ºf)b
2
z]

4¼(1 + ºf)bxh
ln

h csc®

ro
= ²mI(w=h; ®): (6.61)

For ® = arccos(1=
p
3) ¼ 0:955, the factor I(w=h; ®) is given approximately

by

I(w=h; 0:955) ¼ 0:91¡ 0:84
h

w
+ 0:0029

w

h
(6.62)

for 1 < w=h < 20. The ¯nite width of the rectangular wire has a very strong

e®ect on the strain needed to drive dislocation formation at a given value of

h. For example, I(1; 0:955) ¼ 0:1 which implies that the strain required for

dislocation formation in a square h£ h wire is in order of magnitude larger

than for a uniformly strained layer of the thickness h with a free surface,

and four times larger for a buried layer of that same thickness. This result

illustrates the point made above that the range of elastic strains in quan-

tum wire con¯gurations of certain cross-sectional dimensions is substantially

larger than strain levels at which a uniform thin ¯lm of comparable thickness

loses stability against formation of strain relieving dislocations.

6.6.2 Effect of a free surface on quantum wire stability

While the results obtained in the preceding section for a buried quantum wire

are useful and constructive, a more critical stage in the formation of such

a material structure is when the wire is being deposited onto the patterned

surface of the substrate. Such a con¯guration is illustrated in Figure 6.26

for a wire of rectangular cross-section. The con¯guration is identical to

that in Figure 6.23 except that the plane y = h is a free surface, and it

may be viewed as an intermediate con¯guration encountered in the process

of fabricating a buried wire. The presence of the free surface makes this

structure more susceptible to strain relaxation by dislocation formation than

is the corresponding buried wire.
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Fig. 6.26. A strained quantum wire structure formed in the patterned surface of a
substrate.

Based on the study of the buried wire in Section 6.6.1, it is clear that

the critical thickness condition in this case will again have the form (6.61)

where I(w=h; ®) is a dimensionless factor depending only on the aspect ratio

w=h, and the angle ®. As before, the factor I(¢) incorporates the complexity

of the geometry of the structure.

The same general approach can be followed for more complex con-

¯gurations. The most signi¯cant additional di±culty encountered is that

neither the stress analysis problem for the background mismatch ¯eld nor

that for the work of formation of the dislocation is mathematically tractable

in most cases. Consequently, both Wm and Wd must be determined by nu-

merical calculation. A situation of this kind of practical interest is described

next.

A structure that has been studied experimentally by Arakawa et al.

(1993) is illustrated schematically in the inset to Figure 6.27. Quantum

wires of InxGa1−xAs were deposited between the (1¹11) and (¹111) sidewalls

of an array of [110]-oriented V-grooves formed by lithographic patterning

of a (001) GaAs substrate. Once deposited, the wires were covered by a

thick overgrowth of AlGaAs, a material which is lattice-matched with the

GaAs substrate. The width of the wires was estimated to be of the order

of 10 nm and the spacing between the wires was a little more than 100 nm.

Photoluminescence spectra were obtained, yielding the emission energy peak

as a function of the In composition x. The values determined from the

experiments are represented by the discrete points in Figure 6.27. The solid

and dashed lines give the results of calculations by Arakawa et al. (1993)

based on a one-band quantum mechanical model. The solid line gives results

for an unstrained material, and the dashed line gives the equivalent results

for a strained material. At low In fractions the experimental values agree

closely with those calculated with the strain e®ect included. As the In

fraction is increased, the peak position tends to move towards the value

for an unstrained material and the peak width at half its maximum value
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Fig. 6.27. The discrete points, adapted from Arakawa et al. (1993), show the
measured photoluminescence peak energy versus In fraction x for the quantum
wires illustrated in the inset. The solid (dashed) line provides a theoretical estimate
of peak energy for unstrained (strained) InxGa1¡xAs.

was observed to increase, strongly suggesting the occurrence of mechanical

degradation and consequent strain relaxation.

Here we discuss the stability of the quantum wire structure at that

point in its formation when the top surface of the wire is free. For purposes

of this discussion, it is assumed that the spacing between the wires and the

depth of the V-grooves are both large enough for it to be a good approxima-

tion to model each wire as being isolated and in a deep groove. Furthermore,

the apex of the groove is taken as being sharp and the wire cross-section

is assumed to be triangular with a °at top surface. The possible formation

of thin layers of material up the side walls of the groove is ignored. This

idealized con¯guration is illustrated in part (a) of Figure 6.28. It is assumed

that the strain tends to relax via the formation of a 60◦ dislocation along

the wire, having a f111g glide plane and 1
2h110i Burgers vector. The forma-

tion of the dislocation is driven by the elastic energy arising through lattice

mismatch ²m. The expectation is that for a given h there will be a critical

value of ²m that divides the regimes which are stable and unstable against
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dislocation formation. The aim is to de¯ne this critical relationship between

h and ²m by adapting the approach that was introduced in the preceding

section.

The task is to calculate Wd, the work required to form a dislocation

at any position on any f111g plane within the wire, and Wm, the work done

by the mismatch stress ¯eld as that dislocation is formed. The critical state

is then de¯ned as being the most conservative combination of ²m and h for

which Wd + Wm = 0. Both Wd and Wm can be computed e®ectively by

means of the ¯nite element method. This numerical method cannot accu-

rately represent the singular ¯eld of an elastic dislocation, but the discrete

dislocation can be incorporated analytically by the superposition scheme in

Figure 6.28. Suppose that the goal is to compute Wd for the position of the

dislocation in part (a) of the ¯gure. In part (b), the entire elastic plane is

considered with a dislocation in the assigned location and a second disloca-

tion with equal but opposite Burgers vector at a nearby location outside the

region of the solid being considered. Problem (b) can be simply analyzed,

and the solution has already been used in Section 6.6. The second disloca-

tion is not included to enforce any particular boundary condition. Instead,

its inclusion signi¯cantly improves the accuracy of the numerical solution of

the complementary problem discussed next.

Fig. 6.28. Part (a) shows a schematic illustration of a quantum wire in a V-groove
formed by patterning a f100g surface of a cubic crystal substrate, with the glide
dislocation on a f111g crystallographic plane within the structure. The conditions
for formation of such a dislocation are considered in terms of a superposition of the
stress ¯elds of the con¯gurations depicted in parts (b) and (c). The superposition
scheme is described in the text.

The pair of dislocations in problem (b) induces a traction distribution

T di along the surface which coincides in position with the free surface in the
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physical problem at hand. Thus, the complementary boundary value prob-

lem is one concerned with the actual con¯guration of the solid, as shown in

part (c) of Figure 6.28, but with no dislocation present. Instead, the surface

of the solid is subjected to a traction distribution ¡T di . This boundary value

problem must be solved numerically, and it is here where the signi¯cance of

the second dislocation becomes evident. The numerical procedure is neces-

sarily e®ected only over a ¯nite portion of the solid. The second dislocation

ensures that the stress components decay in amplitude su±ciently rapidly as

(x2 + y2)1/2 becomes large with respect to h. Consequently, the calculation

can be carried out over a region of size ¡10h ∙ x ∙ 10h, ¡10h ∙ y ∙ 10h

with con¯dence that the stress resultant on the outer boundary will be very

small indeed and that the results in the vicinity of the wire will be accurate.

Superposition of the two solutions (b) and (c) provides the solution for a

dislocation in the solid in (a) with a free surface. Wd can then be calculated

according to (6.6) where ¾ij is the net stress obtained from superposition of

the two solutions.

This approach has been applied by Freund and Gosling (1995) in order

to determine critical conditions for dislocation formation in the structure il-

lustrated in part (a) of Figure 6.28. Intuitively, the dislocation will most

likely form along the interface on the right side of the wire in the orientation

illustrated in the ¯gure. Calculations were performed for a range of positions

of the dislocation along this interface in order to search out the location a

greatest susceptibility; both Wd and Wm were calculated for each of these

positions. For given dimensions, the smallest value of mismatch strain ²m
for which dislocation formation becomes possible is plotted against the nor-

malized height h=b of the wire in Figure 6.29. The parameter range within

which degradation of structures occurred in the experiments is shown by the

shaded rectangle in the ¯gure. For conditions on the left and bottom sides

of the rectangle, no degradation was detected whereas, for conditions on the

right and topsides, degradation was observed. The results of the critical

thickness calculation are consistent with this observation.

These results can be compared to the critical mismatch strain results

for a buried wire of height h and for a uniformly strained layer of thickness h.

It is found that the critical mismatch strain for the quantum wire is approx-

imately 20% of the critical mismatch for the corresponding buried wire and

about 250% of the critical mismatch strain for a uniform layer. Therefore,

much of the advantage seen for the case of a buried or completely con¯ned

wire in Section 6.6.2 is lost when the wire is in a con¯guration with a free

surface. This observation emphasizes the importance of preventing disloca-

tion nucleation in the structures at this critical juncture in their fabrication;
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computational procedure based on Figure 6.28; adapted from Freund and Gosling
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size within which degradation of the optical characteristics was observed to occur.
Adapted from Arakawa et al. (1993).

once they become fully con¯ned, their stability against strain relaxation by

dislocation formation is enhanced signi¯cantly.

6.7 The influence of substrate compliance

The ¯lm thicknesses at which many strained epitaxial thin ¯lm materials be-

gin to degrade in quality due to dislocation formation are too small to permit

their use in electronic device development. For very thick substrates of the

kind assumed in preceding sections in this chapter, any lattice mismatch

between the ¯lm and the substrate must be accommodated by deformation

of the ¯lm. This situation can be alleviated to some degree if the thickness

of the substrate is of the same order of magnitude as the thickness of the

¯lm deposited on it. In this case, accommodation of a mismatch in lattice

parameter can be shared between the ¯lm and substrate materials, thereby
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decreasing the elastic strain in the ¯lm and extending the range of thickness

over which a particular ¯lm{substrate system is stable against formation of

strain-relieving dislocations. The substrates which have been developed for

this stress management function in epitaxial systems are called compliant

substrates.

The development of a compliant substrate presents a challenging fab-

rication problem. The basic idea is to provide a substrate of good quality

which has a lateral extent on the order of centimeters and thickness on

the order of tens of nanometers. A free-standing structure of this kind is

very fragile. A more promising con¯guration is that in which the very thin

compliant substrate is weakly bonded to a substantial handle wafer which

constrains it to remain °at but permits it to extend or contract in its own

plane. The goal of this section is to estimate the degree to which the critical

thickness for dislocation formation can be increased by means of substrate

compliance of this kind.

6.7.1 A critical thickness estimate

Consider the substrate{¯lm system shown in Figure 6.30. The bi-layer is

constrained against bending, presumably by a relatively thick handle wafer,

but it is unconstrained against extension or contraction in the plane of the

interface. The isotropic elastic materials of the ¯lm and the substrate have

the same shear modulus ¹ and Poisson ratio º. The common biaxial modulus

is then M = 2¹(1+º)=(1¡ º). The elastic biaxial extensional strains in the

substrate and ¯lm are denoted by ²s and ²f , respectively. The mismatch in

lattice parameter is denoted by ²m.

Fig. 6.30. A ¯lm{substrate bilayer system which is constrained against bending by
a relatively thick handle wafer. However, the structure is free to extend or contract
in its own plane.

The compatibility of deformation of the layers is assured if

²f ¡ ²m = ²s; (6.63)

and the equilibrium condition of zero net force on any internal plane per-

pendicular to the interface requires that

M²fhf +M²shs = 0: (6.64)
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These two conditions determine the elastic strain in each layer prior to for-

mation of dislocations as

²f = ²m
hs

hs + hf
; ²s = ¡²m

hf
hs + hf

: (6.65)

Note that this result is consistent with the more familiar result for a thick

substrate, that is, ²s ! 0 and ²f ! ²m as hf=hs ! 0.

Suppose now that a dislocation with Burgers vector of magnitude

b and components fbx; by; bzg is introduced at the ¯lm{substrate interface

from within the substrate, as depicted in Figure 6.31. If the net work which

must be done to form such a dislocation is negative (positive), then the dislo-

cation can (cannot) form spontaneously. Thus, the discriminating condition

of zero net work provides the critical thickness condition, as discussed in

Section 6.2. To be more speci¯c, the work of tractions acting on the plane

shown as dashed in Figure 6.31 during formation of the dislocation is esti-

mated. The work of the initial stress, corresponding to the strain in (6.65),

is Wm = ¡M²shsbx where it has been tacitly assumed that the direction of

the Burgers vector is such that ²mbx > 0, that is, the dislocation relieves

background strain.

�

Fig. 6.31. A dislocation with Burgers vector of magnitude b and components
fbx; by; bzg which is introduced at the ¯lm{substrate interface from within the sub-
strate.

Next, the self-energy of the dislocation, which is the work required

to create the dislocation in the bilayer in the absence of any other loading,

must be determined. A mathematical solution of general applicability for a

dislocation in a plate with free surfaces is not available. Thus, an estimate

of this self energy is made for general Burgers vector in order to derive

an approximate critical thickness condition. The quality of the estimate is

examined in Section 6.7.4. It is well known that a dislocation parallel to a

°at free surface in an otherwise unbounded elastic material is subject to an

image force which is inversely proportional to the distance of the dislocation

line from the free surface. This result is illustrated in Section 6.1, and the

con¯gurational force on the dislocation is termed the half-space image force.

The estimate here is based on the assumption that the total force on a
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dislocation in the bi-layer is the sum of the half-space image forces acting

on the dislocation due to the two free surfaces separately. That is, the total

image force on a dislocation in the bi-layer at a distance ´ from the free

surface of the substrate, and acting in a direction of increasing ´ as shown

in Figure 6.31, is estimated to be

F (´) =
¹[b2x + b2y + (1¡ º)b2z]

4¼(1¡ º)

∙
1

hs + hf ¡ ´
¡ 1

´

¸
: (6.66)

The self-energy of the dislocation at the interface is then the total work

which must be done in overcoming this image force as the dislocation is

moved from the surface of the substrate to the interface, which is

Wd = ¡
Z hs

ro
F (´) d´ =

¹[b2x + b2y + (1¡ º)b2z]

4¼(1¡ º)
ln

hshf
ro(hs + hf)

; (6.67)

where ro is the core cut-o® radius.

The external work done in creating the dislocation in the bi-layer

initially strained according to (6.65) is Wd + Wm. This work is positive if

the thicknesses of the layers are su±ciently small, but it can become negative

for larger thicknesses. The discriminating condition of zero net work de¯nes

the smallest thickness of the ¯lm for ¯xed thickness of the substrate (or vice

versa) at which dislocation formation becomes energetically possible. Thus,

the critical thickness condition based on this reasoning is

²m =
[b2x + b2y + (1¡ º)b2z]

8¼(1 + º)bx

hs + hf
hshf

ln
hshf

ro(hs + hf)
(6.68)

Several noteworthy features of (6.68) are immediately evident. For

one thing, it is symmetric in hs and hf , a feature which might have been

anticipated in advance. Because there is no fundamental distinction between

the ¯lm and the substrate, their roles should be interchangeable. A second

observation is that, if the condition is examined in the limit of a thin ¯lm on

a much thicker substrate, then the result obtained in Section 6.2 is recovered,

namely,

²m ! [b2x + b2y + (1¡ º)b2z]

8¼(1 + º)bx

1

hf
ln

hf
ro

as
hs
hf

! 1: (6.69)
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Fig. 6.32. Plots of the magnitude of mismatch strain at which dislocations begin to
nucleate in the ¯lm{substrate bilayer as a function of the ¯lm thickness for di®erent
values of substrate thickness. These results were obtained for a cubic system which
relaxes by the formation of 60± dislocations. The Burgers vector is chosen for a
negative mismatch strain in the ¯lm.

6.7.2 Example: Critical thickness for a compliant substrate

A thin ¯lm of SiGe, a cubic material, is epitaxially grown on a Si(100) substrate.
Show how the substrate thickness in°uences the ¯lm mismatch strain at which dis-
location formation ¯rst becomes energetically possible in the ¯lm{substrate bilayer
as a function of the ¯lm thickness. Assume that the system relaxes by the forma-
tion of 60± dislocations as described in Section 6.2.2, º = 0.25 and ro = 1

2b. For
this material combination, the mismatch ²m < 0 is negative. Compare the critical
conditions for dislocation formation with those that prevail for a thin ¯lm on a
relatively thick substrate.

Solution:

If ²m < 0, then a possible choice of Burgers vector is bx = ¡b=2, by = b=
p
2

bz = b=2. For this case, the critical thickness condition (6.68) for the compliant
substrate is plotted as graphs of the magnitude of mismatch strain at which dislo-
cations begin to form in the bilayer versus ¯lm thickness. These plots are shown
in Figure 6.32 for a range of values of substrate thickness. The critical thickness
condition on hf for a very thick substrate is also shown as a dashed line for the case
of hf=hs ! 0, hf 6= 0. It is obvious that if hf is less than the thin ¯lm critical thick-
ness as determined from (6.69), then dislocations should not form no matter how
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thick the substrate might be. Furthermore, it may still be possible to grow a sub-
critical strained ¯lm of thickness in excess of the thick substrate critical thickness
on a su±ciently thin substrate before the bilayer critical thickness condition (6.68)
is violated. For example, if the mismatch strain is 0.01, then the thick substrate
critical thickness is approximately 20 b. But if the substrate has a thickness of only
hs = 40 b, say, then the compliance of this substrate implies that a ¯lm can be
grown up to a thickness of about 60 b before the bilayer critical thickness condition
(6.68) is exceeded. It is emphasized that this result is based on the assumption of
ideal compliance. The degree to which this ideal situation can be approached in
practice is uncertain.

6.7.3 Misfit strain relaxation due to a viscous underlayer

The concept of compliant substrate as introduced in Section 6.7.1 is based

on the idea of relaxation of mis¯t strain in a ¯lm deposited epitaxially on

a thin substrate through viscous °ow in a layer between the thin compliant

substrate and its support. Such structures have been fabricated by several

methods, motivated by the potential advantages of compliance and by the

success of the silicon-on-insulator device con¯gurations as a means of elec-

tronic isolation of active elements. One approach is to implant oxygen ions

into a Si wafer at some depth, with the implant energy chosen to result

in a distribution of oxygen within a narrow range of depth centered a few

hundred nanometers from the surface. Upon high-temperature annealing,

damage caused to the lattice by passage of high energy ions is repaired and

the implanted oxygen reacts with the Si to form a SiO2 layer buried below

a crystalline Si layer at the wafer surface. In another approach, the surface

of a Si wafer is oxidized to a certain depth. This wafer is then bonded to a

second Si wafer with the oxidized surface at the bonded interface. One of the

wafers is then etched away from the backside to an etch stop, again leaving

the con¯guration of a thin crystalline layer above the buried oxide layer. In

either case, the ¯nal con¯guration is a thin crystalline Si layer a few tens

of nanometers thick bonded to a SiO2 layer of comparable thickness which

is, in turn, bonded to a thick handle wafer. The idea behind the compliant

substrate concept is that a thin ¯lm can be grown epitaxially on the thin

crystalline layer at high temperature. If strain is generated due to lattice

mismatch, then the strain can be partially relaxed through viscous °ow in

the oxide layer, thereby diminishing the likelihood of dislocation formation

in the layer. The purpose in this section is to obtain an estimate of the time

required for such relaxation to occur in terms of the relevant system para-

meters. The comparison of this relaxation time to the time elapsed in other
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Fig. 6.33. Schematic diagram of a thin elastic ¯lm bonded to a thin viscous layer
which, in turn, is bonded to a thick substrate. Strain in the layer is relaxed by °ow
in the viscous layer which progresses in a di®usive manner from the edges of the
¯lm inward toward its center.

stages of processing is an important consideration in assessing the potential

integrity of material structure.

A simple version of the material con¯guration of interest is depicted in

Figure 6.33. A thin elastic layer with plane strain modulus ¹Ef and thickness

hf is bonded to a thin viscous layer with viscosity ´v and thickness hv. The

opposite face of the viscous layer is bonded to a relatively thick base which

is assumed to be rigid for purposes of this discussion. The lateral extent

of both materials is 2a as shown, and the deformation is assumed to occur

under two-dimensional plane strain conditions. If the uniform strain ²m
exists in the elastic ¯lm at time t = 0, how much time must elapse before

substantial relaxation occurs at the center of the ¯lm? As a result of the

edges of the ¯lm being free of stress, di®usive relaxation of the ¯lm stress

progresses inward from each free edge toward the center. For this reason,

the stress level at the center of the ¯lm will be larger than the stress level

remaining anywhere else along its length.

The con¯guration of practical interest is slightly more complicated

than that depicted in Figure 6.33, and that the elastic layer consists of both

of ¯lm and a substrate with a mismatch in lattice parameter. In that case,

the ¯lm is initially strained and the compliant substrate is initially stressed

free. Under these conditions, the long-time strain states in these components

once the structure is fully relaxed are those given in (6.65). The aspect of

principal interest here is the characteristic time for that relaxation process,

and that time is precisely the time estimated in this section, as long as the

moduli of the ¯lm and substrate materials are comparable in magnitude.

The gradient of ¯lm force hf¾(x; t) along the length of the elastic ¯lm

is balanced by the shear stress q(x; t) acting on the interface between the

¯lm and the viscous layer, or

@¾

@x
hf = q : (6.70)
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For simple shear deformation in the viscous layer, the shear stress q(x; t)

is proportional to the shearing rate in the layer, which is the speed of the

top surface with respect to the bottom surface in a direction parallel to the

interface, or

q =
´v
hv

@u

@t
(6.71)

where u(x; t) is the displacement of the cross-section in the elastic ¯lm from

its position x in the unrelaxed state of the ¯lm. Finally, the extensional

strain ²(x; t) = ¾(x; t)= ¹Ef in the elastic ¯lm is related to the displacement u

according to

² = ²m +
@u

@x
: (6.72)

Elimination of u and q from among (6.70), (6.71) and (6.72) yields the single

di®erential equation for ²(x; t) in the form

@2²

@x2
¡ ´v

¹Efhfhv

@²

@t
= 0 (6.73)

with its boundary and initial conditions

²(§a; t) = 0 and ²(x; 0) = ²m ; (6.74)

respectively.

The boundary value problem represented by (6.73) and (6.74) is an

elementary di®usion problem in a ¯nite domain, and a solution is readily ob-

tained in the form of an in¯nite series by means of separation of variables.

Plots of the distribution of normalized strain ²(x; t)=²m as a function of

normalized distance x=a along the ¯lm for several values of normalized time

t ¹Efhfhv=a
2´v are shown in Figure 6.34. From the plots, it is evident that re-

laxation begins at the center of the ¯lm at normalized time of approximately

0.1, and it becomes fully relaxed at a normalized time of approximately 1.0.

The behavior of the stress relaxation solution implies that a characteristic

time for the process is

tchar =
a2´v
¹Ehfhv

: (6.75)

This result makes clear the important in°uence of con¯guration size, as

represented by a, on the relaxation process. For example, suppose that

a = 1 cm, ¹Ef and hf = hv = 100 nm. The borosilicate glass at 800◦C might

have a viscosity as low as ´v = 107N¢s/m2, in which case the characteristic

time is roughly 106 s or about 10 days. A small metastable material structure

held at elevated temperature for that length of time would lose its de¯ning
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Fig. 6.34. Unrelaxed strain ²(x; t)=²m versus distance x=a along the elastic ¯lm for
four values of normalized time t ¹Efhfhv=a

2´v as determined from solution of (6.73)
and (6.74). Unpublished results obtained in collaboration with W. D. Nix, Stanford
University.

features. At the a = 100¹m length scale, on the other hand, the stress relief

mechanism can be e®ective.

6.7.4 Force on a dislocation in a layer

In order to examine the mechanics of dislocation formation in a compliant

¯lm{substrate system, the energy of a dislocation at an arbitrary position in

this structure in the absence of any other stress ¯eld is required. This energy

is equivalent to the con¯gurational force on the dislocation as a function of

position through the thickness of the composite layer. In order to determine

an approximate form for the critical thickness condition in Section 6.7.1,

an ad hoc assumption on the variation of this force was made in (6.66).

While the assumed variation of the force is asymptotically correct near either

free surface and it has the obvious virtue of simplicity, the quality of the

approximation is not evident. Thus, in this section, the variation of this

force with position is examined in greater detail.
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For the case of a screw dislocation in the layer with free surfaces, a

complete solution of the boundary value problem is known (Eshelby 1979).

For the notation established in Figure 6.31, the force on a screw dislocation

is

F z =
2¼ht
¹b2z

F (´) =
¼

2
tan

¼
³
´ ¡ 1

2ht
´

ht
; (6.76)

where ht = hs + hf . The approximation of the magnitude of this force as

given in (6.66) is asymptotically exact as ´ ! 0 or ´ ! ht, and it is a good

approximation for any practical purposes over the full range 0 < ´ < ht.
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Fig. 6.35. Two edge dislocations in an unbounded elastic plane. (a) Schematic
showing the traction distribution, represented by T d

i , on the planes y = 0 and
y = ht which is induced by the dislocations. (b) Complementary boundary value
problem which can be solved by the ¯nite element method.

For the edge component of the Burgers vector, a simple closed form

expression for the force F (´) comparable to (6.76) is not available. However,

an accurate result can be obtained by a numerical simulation based on the

¯nite element method. As in Section 6.6.2, the result is obtained by relying

on linear superposition so that the singular ¯eld of the dislocation is taken

into account analytically and a nonsingular boundary value problem is solved

numerically. Convergence of the numerical solution is greatly facilitated by

including the ¯eld of a second dislocation in the superposition scheme as

depicted in Figure 6.35, where the origin of coordinates is chosen arbitrarily

to lie on the lower face of layer. The two dislocations in an unbounded

elastic plane shown in part (a) of Figure 6.35 induce a traction distribution

represented by T di on the planes y = 0 and y = ht. The displacement ¯eld

diminishes with distance as (x2 + y2)−1/2 for (x2 + y2)1/2 À ht due to the

presence of the second dislocation. The force on the dislocation within the

layer in part (a) alone is Fa(´) = ¡¹b2y=4¼(1¡ º)´.

An accurate numerical solution of the complementary boundary value

problem shown in part (b) of Figure 6.35 can be obtained by means of the

¯nite element method. The contribution to the total force on the disloca-

tion from this solution is Fb(´) = by¾xy(0; ´) where ¾xy is the numerically
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computed shear stress component at the position of the dislocation in part

(a). On the basis of dimensional considerations, it is evident that ¾xy has

a factor ¹by. To see this, note that the traction T di found in part (a) must

be linear in by and must have the physical dimensions of stress. It follows

that each component of T di must have the form of a product of ¹by=ht and

a dimensionless factor. Part (b) is a traction boundary value problem in

elasticity. In this case, the stress ¯eld magnitude at any point in the ma-

terial scales with the magnitude of the applied traction, but it is otherwise

independent of the elastic moduli. It follows that the stress component ¾xy
from which force on the dislocation is determined has the form of ¹by=ht
times a dimensionless factor.

The force on the dislocation has been computed at a large number

of discrete points in the range 0 < ´ < 1
2ht, and then at a small number

of points in the range 1
2ht < ´ < ht to con¯rm that the result is anti-

symmetric with respect to the midplane of the layer. The computed results

were then approximated by means of a least squares ¯t to an analytic form

which represents a compromise between simplicity and accuracy. A ¯t which

agrees with all computed data to within 5% is

F y =
2¼(1¡ º)ht

¹b2y
F (´) =

(´t ¡ 1
2)

´t(1¡ ´t)
+ 9:0(´t ¡ 1

2)´t(1¡ ´t) (6.77)

for bx = bz = 0, where ´t = ´=ht, and

F x =
2¼(1¡ º)ht

¹b2x
F (´) =

(´t ¡ 1
2)

´t(1¡ ´t)
¡ 31:5(´t ¡ 1

2)´t(1¡ ´t) (6.78)

for by = bz = 0.

Graphs of the expressions (6.76), (6.77) and (6.78) for force on a dislo-

cation in a traction free layer for the three components of the Burgers vector

are shown in Figure 6.36. A predictable feature of this graph is that the force

is zero at the midplane position, as it must be due to symmetry. Therefore,

this is an equilibrium position for all three cases. While this equilibrium

position is unstable for by 6= 0 and bz 6= 0, it is surprising to ¯nd that this

position is a stable equilibrium position for bx 6= 0. Apparently, this is due

to the bending stress ¯eld which arises in the layer when the dislocation is

formed.

Comparison of the more accurate results for force to the ad hoc form

assumed in (6.66) for the choice of Burgers vector bx = ¡1
2b, by =

1√
2
b, bz =

1
2b as for a 60◦ dislocation in a material with f100g surfaces, con¯rms that

the ad hoc approximation is reliable for this case. For other crystallographic
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Fig. 6.36. Graphs of the con¯gurational force on the dislocation in a layer associated
with each component of the Burgers vector. The expressions for force are given in
(6.76), (6.77) and (6.78), where the subscript indicates the nonzero component of
Burgers vector in each case.

orientations of the surfaces of the layer, say f111g planes or f110g planes,

the ad hoc approximation should be applied with caution.

6.8 Dislocation nucleation

The discussion of dislocation formation in the foregoing sections follows the

point of view of global stability of a small-scale strained material structure

against dislocation formation. For the various con¯gurations considered,

relationships among system parameters { elastic moduli, geometrical shape

and crystallographic features, for example { that are necessary for insertion

of a dislocation into the material structure were established. It was recog-

nized in the course of obtaining such results that they are not su±cient to

ensure that dislocations will indeed form once the critical conditions are

met. The free energy path in con¯guration space from a crystallographi-

cally `perfect' material structure to a dislocated material structure does not

proceed along a path of steadily decreasing free energy. Instead, the appear-

ance of a dislocation implies only that the end state has lower free energy

than the beginning state. Before a dislocation can relieve strain by motion



494 Dislocation formation in epitaxial systems

on its glide plane, it must be nucleated somehow. If there is a signi¯cant

energetic barrier to nucleation in a particular system, then the process of

strain relaxation in that system is controlled by dislocation nucleation and

the conditions necessary for dislocation glide take on a less signi¯cant role.

The purpose in this section is to consider the question of dislocation

nucleation in small-scale epitaxial material structures. This is an issue with

many facets and with few clear, unambiguous conclusions. At the simplest

level, the question concerns the activation energy for nucleation of the ¯rst

dislocation to appear in a small structure and comparison of that energy

to the available energy, usually in the form of background thermal energy.

Such a question is addressed in Section 6.8.1. At a signi¯cantly higher level

of complexity, all aspects of dislocation behavior are considered together

to draw conclusions on ensemble behavior that a®ects overall strain relax-

ation. This might include consideration of nucleation statistics, dislocation

glide kinetics, dislocation interactions or reactions, and multiplication mech-

anisms; some illustrations are considered in Chapter 7 but conclusions are

largely qualitative. However, such approaches seem to represent the path

to be followed in order to reach quantitative or predictive understanding of

the connections between growth/processing conditions and the appearance

of macroscopically detectable strain relaxation.

These issues have enormous practical rami¯cations for producing high

quality material structures. The most relevant point of view usually de-

pends on the materials involved, the geometrical con¯guration of the mate-

rial structure of interest, the steps involved in processing, and the eventual

functional environment of the structure. For example, once certain strained

quantum structures { planar wells, wires or dots { have been formed on

their substrates, they are overgrown epitaxially with a material that is lat-

tice matched to the substrate; a quantum wire illustration was discussed

in Section 6.6.2. Circumstances are commonly such that the structures are

unstable against dislocation formation when deposited, but are stabilized

by the overgrowth. Consequently, the time and temperature sensitivities of

dislocation nucleation during the intermediate processing phase are of im-

portance. As another example, consider the situation in which the amount

of elastic strain relaxation in a thin ¯lm structure is not of paramount impor-

tance, but rather the number density of threading dislocations terminating

at the free surface in the ¯nal structure is important. It is obvious that a

certain level of strain relaxation, represented by the net length of interface

mis¯t dislocation created per unit area, can be achieved by having many

threading dislocations within that area each glide over a small distance or

by having a small number each glide a large distance. Thus, situations are
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desirable for which the likelihood of dislocation nucleation is diminished,

the likelihood of an increase in dislocation glide speed at a certain level of

stress is increased, and the likelihood of impeding dislocation motion upon

interactions with other dislocations is diminished. Such e®ects can be in-

°uenced by temperature, strain gradients, growth surface morphology, and

other factors (Fitzgerald 1995).

In the sections that follow, illustrations of homogeneous and nonho-

mogeneous dislocation nucleation are presented. The former case implies

dislocation formation in a material system that is otherwise spatially uni-

form; nucleation is equally likely at all locations. Nonhomogeneous nucle-

ation, on the other hand, implies that spatial nonuniformity arising through

con¯guration, material structure, or material defects renders certain sites in

the structure far more susceptible to dislocation nucleation than other sites.

6.8.1 Spontaneous formation of a surface dislocation loop

In the case of antiplane shear deformation, the behavior of a semicircular

dislocation loop at a free surface with Burgers vector parallel to the surface

under the action of a mismatch shear stress ¿m, as depicted in Figure 6.37,

is identical to the behavior of a circular loop in an unbounded solid due

to the same shear stress. The traction on the boundary vanishes due to

symmetry in the latter case. According to Hirth and Lothe (1982), the

energy of formation of such a surface half loop of radius R is

Wd(R) =
2¡ º

8(1¡ º)
¹b2R ln

4R

e2ro
(6.79)

for elastic constants ¹ and º, Burgers vector of magnitude b parallel to the

free surface, and cut o® radius ro; the quantity e is the natural logarithm

base. The value of cuto® radius is assumed to be 1
2b throughout this discus-

sion.

The corresponding work done against the background elastic deforma-

tion ¯eld due to mismatch is

Wm(R) = ¡1
2¿mb¼R

2; (6.80)

where the minus sign re°ects the fact that the slip occurs in a sense for

which energy is drawn from the elastic energy reservoir due to mismatch in

forming the dislocation.

The total work done in forming the dislocation is then

W (R) = Wd(R) +Wm(R): (6.81)
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Fig. 6.37. A semicircular dislocation loop at a free surface with Burgers vector
parallel to the surface. The dislocation loop is under the in°uence of a shear stress
¿m.

For very small values of R=b, the behavior of the function is dominated by

Wd(R), and W (R) increases from W (0) = 0 with increasing R=b. On the

other hand, for large values of R=b, the behavior is dominated by Wm(R)

and W (R) decreases to ever more negative values. The function assumes a

maximum value at some intermediate value of R; this maximum value repre-

sents the activation energy that must be supplied through random thermal

°uctuations in order to nucleate a dislocation in the form of a surface half

loop. The value of R at which this maximum occurs, say Rmax, satis¯es the

equation W I(Rmax) = 0 which implies that

2¡ º

8(1¡ º)
ln

8Rmax
eb

= ¼°m
Rmax
b

(6.82)

for ro =
1
2b. Aside from numerical factors, this equation is identical to the

critical thickness condition (6.46). The corresponding activation energy is

Wmax = W (Rmax) or

Wmax = ¹b3
Ã
¼°m

R2max
b2

+
2¡ º

4(1¡ º)

Rmax
b

!
: (6.83)

Graphs of Rmax=b and Wmax=¹b
3 versus °m are shown in Figure 6.38

for º = 1
4 . Based on modeling of this kind, it appears that spontaneous or

thermally activated nucleation of the surface dislocation loops in strained

¯lms is unlikely (Fitzgerald et al. 1989). An activation energy of 10¹b3
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implies that Wmax ¼ 10−16 J. The corresponding loop radius is roughly 15b,

so the number of atoms which must displace in coordination to form this

loop is on the order of 100. The associated thermal energy is roughly 100kT

or about 10−18 J at a typical ¯lm growth temperature. Consequently, the

likelihood of homogeneous surface loop nucleation is remote.

Rmax  / b

0.00 0.01 0.02 0.03 0.04

γm - mismatch strain

0

25

50

75

100

Wmax  / µb3 

Fig. 6.38. Variation of Rmax=b and Wmax=¹b
3, from (6.82) and (6.83), respectively,

as a function of the mismatch strain °m for º = 1
4
and ro = 1

2
b.

The activation energy estimates obtained above can be lowered some-

what if it is recognized that thermal °uctuations are needed only to create

an unstable stacking fault in the material, rather than a fully formed dis-

location (Beltz and Freund 1993). This would result in a reduction of the

estimates of activation energy by perhaps a factor of two, but surely not

by the two orders of magnitude di®erence between activation energy and

background thermal energy noted above. It is more likely that heteroge-

neous dislocation nucleation sources are required to produce the dislocation

densities observed in real material systems.

6.8.2 Dislocation nucleation in a perfect crystal

The issue of dislocation nucleation in an initially perfect crystal has been

studied experimentally by Gouldstone et al. (2001) who used the soap bubble
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Fig. 6.39. Images of dislocation nucleation in a bubble raft model of a single crystal
subjected to surface indentation. In the case of the smallest surface roughness (a),
dislocation nucleation occurs at the peaks of the asperities where they contact
the indenter. At the intermediate scale (b), dislocation nucleation occurs at the
reentrant corners at the bases of the asparities. Finally, for the largest scale asperity
(c), the stress level near the stress concentrations has been reduced geometrically,
and dislocations nucleated homogeneously at an interior point where the shear
stress is the largest. Each bubble in this raft is 1 mm in diameter and it represents
an atom which is approximately 0.3 nm in diameter. Reproduced with permission
from Gouldstone et al. (2001).

raft as a model system for metal crystals. In their study, a two-dimensional,

defect-free closed-packed array of soap bubbles was subjected to indentation

in the plane of the raft in an attempt to determine the conditions for the

nucleation of dislocations in the highly strained region of indentation. The

bubble raft represents an analogue of atoms in equilibrium positions in a

face-centered cubic crystal, and the interaction among bubbles provides a

simple description of the interatomic potential of Cu (Bragg and Nye 1947)).

When the edge of the raft in contact with the rounded tip of the indenter

is `atomically' smooth, dislocation nucleation is observed at the interior

point at which the shear stress is the largest (Johnson 1985). However,

when asperities with width and height of a few `atomic' radii are introduced

at the indented surface, dislocation nucleation occurs at the peaks of the

asperities where they contact the indenter which has tip radius that is much

larger than the asperity dimension, as shown in Figure 6.39(a). When the

asperity size is large compared to the atomic dimension but smaller than

the indenter tip radius, dislocation nucleation is observed at the reentrant

corners of the base of the asperities due to the stress concentration there,
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Fig. 6.40. Variation of indentation load P as a function of depth of penetration h
of a three-sided diamond pyramid indenter into the f133g surface of single crystal
aluminum. Adapted from Gouldstone et al. (2000).

as shown in Figure 6.39(b),. When the asperity size is comparable to the

indenter tip radius, the stress level at the base of the asperities is reduced

geometrically. Consequently, dislocation nucleation appears to occur at an

interior point, similar to the case of an atomically smooth surface subjected

to indentation: see Figure 6.39(c).

On the basis of this analogy, Gouldstone et al. (2001) have studied the

possibility of nucleation of dislocations in the interior of face-centered cubic

metal single crystals subjected to indentation. Figure 6.40 is a plot of the

indentation load P versus the depth of penetration of the indenter h into a

single crystal of pure aluminum along the <133> crystallographic direction.

During this load-controlled indentation, elastic deformation of the crystal

is observed until a critical load at which the indenter abruptly sinks into

the material with and associated discontinuity or displacement `burst' in

the P{h curve. Post-indentation transmission electron microscopy observa-

tions of f111g-textured polycrystalline Cu ¯lms by Gouldstone et al. (2000)

revealed that defect nucleation occurs in the highly strained region of in-

dentation through the emission of dislocations. The maximum shear stress

induced in the crystal interior by the applied indentation load at the onset

of the ¯rst displacement burst is on the order of several GPa, or the theo-
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retical shear strength of aluminum, suggesting the possibility of nucleation

at the point interior to the crystal. Similar trends have also been noted for

Al, Cu, Au and Ir single crystals of several di®erent crystallographic orien-

tations which were subjected to ultra-¯ne scale indentation (Corcoran et al.

(1997); Kiely and Houston (1998); Suresh et al. (1999); Gouldstone et al.

(2000); Minor et al. (2001)). These results are somewhat surprising, given

the expectation that steps, ledges and reentrant corners of asperities at the

indented surface would easily provide sites for the heterogeneous nucleation

of dislocations. However, the observations shown in Figure 6.39 suggest that

nucleation of dislocations in the crystal interior is possible when the scale

of surface roughness is comparable to the tip radius of the indenter. Be-

cause ultra-¯ne scale depth-sensing instrumented indentation, such as that

used to produce the result plotted in Figure 6.40, is commonly performed

with a pyramid-shaped diamond indenter with a tip radius on the order

of 50 nm, nucleation of dislocations may be possible even in the presence

of surface asperities with dimensions larger than 50 nm. Results such as

those plotted in Figure 6.40 also indicate that the elastic properties of thin

¯lms are una®ected by size scale since the rising portion of the P versus

h curve between the displacement bursts at indenter penetration depths as

small as tens of nms can be predicted from knowledge of the elastic prop-

erties of the ¯lm material obtained by means of specimens of macroscopic

dimensions (Gouldstone et al. 2000).

To examine the mechanics of dislocation formation in the interior of

a crystal, Li et al. (2002) have adopted a criterion for material stability

introduced by Hill (1962) and Rice (1976) for the study of strange local-

ization in nonlinear elastic materials. The basic idea is to examine the

deformation ¯eld throughout a crystal during an application of indentation

loads to its surface, and to identify the interior point and the load level at

which the material ¯rst becomes unstable. In this context, instability is im-

plied by vanishing of the incremental inelastic sti®ness for any homogeneous

deformation, vanishing of the propagation speed of any incremental plane

acceleration wave, or loss of ellipticia of the elasticity tensor; these criteria

are basically equivalent. Physically, the instability is manifested in the de-

formation ¯eld by the formation of the stationery slip and with a certain

orientation and a certain polarization of displacement discontinuity across

set.

In a continuum analysis, Li et al. (2002) adopted an approach whereby

the nonlinear elastic response of the material was based on the known ho-

mogeneous deformation response of the single crystal of interest. The stress

¯eld throughout the performing elastic crystal is then determined incremen-
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tally as the indentation forces applied, and the stability of response at each

material point is monitored by calculating the quantity

¤ (k; w) =
³
c0ijklwiwk + ¾0jl

´
kjkl > 0: (6.84)

where ¾0ij is the local value of thought stress tensor at the current level

of indentation load, c0ijkl is the local value all of the incremental elasticity

tensor, ki is the propagation vector of the test acceleration wave and wi is

the displacement polarization direction of the acceleration wave. Material

response is locally stable as long as ¤ > 0 for all possible orientations of ki
and wi. The response becomes locally unstable once ¤ = 0 for any possible

combination of ki and wi.

Physically, the onset of instability at the point is interpreted as the

formation of crystal defect there. It should be noted that local instability

does not imply global instability of the con¯guration. If angle between the

vectors k andw established in this way is larger than 60◦, then the nucleated

defect is expected to be a dislocation with slip plane normal k and Burgers

vector approximately along w. On the other hand, if the angle between k

and w and instability is less than 30◦, the nucleated defect would likely be

a microcrack or a void.

Li et al. (2002) have implemented this defect nucleation criterion in a

molecular dynamics simulation of an fcc crystal undergoing surface indenta-

tion for purposes of comparison to the continuum elasticity results. It was

found that the vectors w and k which render ¤ = 0 agree well with the

slip direction and slip plane normal, respectively, determined in the mole-

cular dynamics simulations. These simulations also provide insights into

the mechanisms by which the ¯rst discontinuity during indentation triggers

homogeneous nucleation of dislocations at GPa-level local stresses and into

the dislocation interaction processes by which subsequent discontinuities oc-

cur at MPa-level local stresses. Although the foregoing discussion has been

presented in the context of indentation, the criterion for defect formation is

expected to be applicable for a wide variety of deformation conditions.

6.8.3 Effect of a stress concentrator on nucleation

The circumstances of formation of a dislocation loop at the surface of a

strained ¯lm considered in the preceding section presumed no conditions to

make dislocation nucleation more likely at one location then at another. This

is the essential characteristic of homogeneous nucleation. In reality, epitaxial

¯lms are never geometrically perfect. Irregularities can take the form of

surface or interface features (Jesson et al. 1993), precipitate particles due to
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chemical impurities (Perovic et al. 1989), residual oxide or other debris on

the growth surface (Tuppen et al. 1989), grown-in stacking faults (Eaglesham

et al. 1989), and so on. Any such irregularity has the potential to elevate

the stress ¯eld in the material locally, thereby making dislocation nucleation

more likely in the vicinity of the irregularity than elsewhere. Nucleation

under circumstances of threading dislocations leaving behind interface mis¯t

dislocations as they glide away from debris particles from which they were

nucleated have been modeled by Zhang and Yang (1993).

The range of circumstances that have the potential for giving rise to

nonhomogeneous nucleation is enormous, and models intended to assess the

e®ectiveness of mechanisms quantitatively can become very complex. Here,

only a relatively simple model of nonhomogeneous nucleation is considered.

Study of this model leads to a basis for some conclusions concerning dislo-

cation nucleation of general applicability for strained ¯lms. The features of

the model are depicted in Figure 6.41; for the most part, these features are

retained from the material system represented in Figure 6.37 and considered

in the preceding section. The main di®erence is that the free surface of the

¯lm is no longer °at. Instead, the surface shape is perturbed by a cylindrical

groove that is semicircular in cross-section and of radius a. The value of a

is assumed to be smaller than the ¯lm thickness hf . The groove provides a

site of potential local stress concentration. Retaining the simplicity of shear

loading exploited in Section 6.8.1, the shear stress component ¾xz on the

glide plane extending into the ¯lm from the base of the groove along the

plane x = 0 varies as

¾xz = ¿m

Ã
1 +

a2

r2

!
; r ´ hf ¡ y ¸ a : (6.85)

Far from the groove, the ¯lm stress has the magnitude ¿m, while the mag-

nitude is 2¿m at the root of the groove at r = a. In other words, the stress

concentration or ampli¯cation factor for the groove is 2. It follows immedi-

ately that dislocation nucleation is more likely from the base of the groove

than from the surface of the uniform ¯lm. The enhanced propensity for nu-

cleation can be examined quantitatively, following the discussion of Freund

et al. (1989).

Suppose that the semicircular glide dislocation loop of radius R and

Burgers o®set b parallel to the groove axis emerges from the base of the

groove into the ¯lm as depicted in Figure 6.41. The free surface condition is

somewhat di®erent here from that for the case of homogeneous nucleation,

but the expression for self energy of formation Wd given in (6.79) is again

adopted for convenience.
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Fig. 6.41. Schematic diagram of dislocation nucleation from the base of a cylindrical
groove in the surface of a strained ¯lm. The radius of the groove of semicircular
cross-section is a and the radius of the semicircular dislocation line is R.
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Fig. 6.42. Plot of the stress ampli¯cation factor enclosed in square brackets in
(6.86). The stress magnitude is e®ectively doubled by the presence of the groove
when R=a is small, but the e®ect is diminished as R=a becomes larger.

The work done against the background elastic deformation ¯eld, equiv-

alent to Wm in (6.80) for homogeneous nucleation, is more involved in this

case because the stress ¯eld varies nonuniformly over the glide plane prior

to dislocation formation, as indicated in (6.85). This work of formation is

readily determined to be

Wm(R) = ¡1

2
¿mb¼R

2

"
1 +

2

¼

a2

R2

Z π

0

Z R/a

0

1

(1 + s sinÁ)2
s ds dÁ

#
: (6.86)

The integral expression in (6.86) can be evaluated in terms of elementary

functions, but the result does not render the behavior transparent. Instead,

the dependence of the non-dimensional quantity enclosed in square brackets

in (6.86) on R=a is illustrated graphically in Figure 6.42. This factor has the
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value 2 for R=a ! 0 and it decreases monotonically as R=a increases. As was

anticipated by the stress concentration factor of 2, the e®ect of the groove

is to double the work done by the background elastic ¯eld in forming the

dislocation, compared to the case of homogeneous nucleation, when R=a is

small. The magnitude of the e®ect is diminished, however, as R=a becomes

larger. The result leads immediately to the following general observation.

Qualitatively, if the loop can be expanded to its unstable equilibrium size

within the region of stress concentration of the notch, then the presence

of the groove has a strong e®ect on activation energy. However, if the

equilibrium size of the loop is large compared to the size of the groove,

then the presence of the groove has little e®ect on the process of dislocation

loop nucleation.

A number of additional trends can be noted. For example, if the stress

concentration factor is larger than 2 { it is approximately 3 for a circular

groove in a tension ¯eld { then the site is more e®ective as a source of dis-

locations. If the con¯guration of the stress concentrator is a notch with a

very high curvature of the notch surface at its root, then the stress concen-

tration factor can be very large compared to 2, but the spatial extent of the

localized stress ¯eld is signi¯cantly reduced from that of the circular stress

concentrator. For the case of a planar crack, which is the ultimate sharp

notch, the issue of dislocation nucleation has been modeled by Rice and

Thomson (1973) and Rice and Beltz (1994). Similar techniques have been

adapted for the study of dislocation nucleation at the edge of an epitaxial

island (Johnson and Freund 1997).

6.9 Exercises

1. A very large, but very thin, plate of a metallic material contains a long,
straight screw dislocation of Burgers vector length b. In the reference coor-
dinate system introduced in Figure 6.2, the larger surfaces of the plate are
parallel to the xz¡plane, the thickness direction is parallel to the y¡axis,
and the dislocation line, located at y = 0, ´ = hf=4, is oriented along the
z¡axis; the thickness of the plate hf is much smaller than its length and
width. If the shear modulus of the material is ¹, determine the total glide
force acting on the dislocation line.

2. A new experimental technique for substrate curvature measurement is pro-
posed by an inventor. It is claimed that this high precision technique is
capable of detecting the critical curvature at which mis¯t dislocations nu-
cleate in a ¯lm{substrate system by monitoring continuously the changes in
curvature during the epitaxial growth of the ¯lm on the substrate and by
identifying very small discontinuities in the curvature versus ¯lm thickness
plot associated with the nucleation of dislocations. The inventor attempts
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to demonstrate the accuracy of the method by identifying the critical value
of substrate curvature during the deposition of a cubic epitaxial ¯lm on a 0.7
mm thick Si(100) substrate. The ¯lm mismatch strain is {0.4%, the biaxial
modulus of the ¯lm is 96% of that for the substrate, and the Poisson ratio
of the ¯lm is 0.25. The Burgers vector magnitude for mis¯t dislocations in
this system are approximately 0.5 nm, and the dislocation core cut-o® radius
ro ¼ 1

2b. The inventor claims that the radius of curvature of the substrate
is 880 m when the critical thickness condition is reached, that the substrate
is concave on the face away from the bonded ¯lm, and that the critical ¯lm
thickness for dislocation formation is within 10% of the value that can be
expected from the theory (Section 6.2). Are the inventor's claims valid?

3. The lattice parameter of a ¯lm material is 0.6% larger than that of a sub-
strate material. In one set of experiments, a strained buried quantum wire,
similar to the arrangement shown in Figure 6.23, is patterned inside the sub-
strate material. The rectangular wire, with w=h = 5, is epitaxially bonded
to its surrounding matrix. In another experiment, a continuos layer of the
same ¯lm material, of thickness h, is epitaxially grown on the same substrate
material. In both sets of experiments, the free surface is parallel to the f100g
crystallographic plane of the cubic ¯lm and substrate materials, and the pre-
ferred slip plane is the f111g crystallographic plane, which is oriented at an
angle of 54.7± to the free surface. Is the mismatch strain required to nucleate
the mis¯t dislocation in the ¯rst experiment is higher, lower or the same as
that in the second experiment? If it is di®erent, by how much?

4. Spontaneous formation of a semicircular dislocation loop was considered in
Section 6.8. Consider a thin ¯lm on a substrate for which the mismatch
strain is ²m.

(a) In some situations, it may be possible to assume that the homoge-
neous nucleation rate for the dislocation loop is of the form

N » Adn− exp¡E¤=kT ; (6.87)

where N denotes the number of dislocation nucleation events per unit
volume per unit time, Adn is a constant with units of inverse time, E¤
is the activation energy for nucleation, − is the atomic density, k is
the Boltzmann constant and T is absolute temperature. Derive an ex-
pression for the approximate dependence of the dislocation nucleation
rate on the mismatch strain and temperature.

(b) A change in ¯lm deposition process is introduced as a consequence
of which the ¯lm processing temperature is changed from 500 ±C to
700 ±C. Approximately what relative change in the ¯lm mismatch
strain should occur, in response to this process change, in order that
the dislocation nucleation rate remains ¯xed.
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Dislocation interactions and strain relaxation

The issue of dislocation formation in a strained epitaxial heterostructure

was the focus of attention in the preceding chapter. Residual stress was

assumed to originate from the combination of a mismatch in lattice para-

meters between the materials involved and the constraint of epitaxy. The

discussion in Chapter 6 led to results in the form of minimal conditions

which must be met by a material system, represented by a geometrical con-

¯guration and material parameters, for dislocation formation to be possible.

Once the values of system parameters are beyond the point of ful¯lling such

minimal conditions, dislocations begin to form, propagate and interact. The

ensemble behavior is usually termed strain relaxation.

There are several practical aspects of strain relaxation which originate

from the small size scales involved, the relatively low dislocation densities

which are observed, and the fact that kinetic processes occur on a timescale

comparable to growth or processing timescales. Can signi¯cant strain re-

laxation be suppressed? Can threading dislocation densities be controlled?

Under what conditions can ensemble dislocation behavior be captured by a

continuum plasticity representation? How do length scales associated with

geometrical con¯guration and microstructure, such as ¯lm thickness and

grain size, respectively, in°uence the process of strain relaxation?

Progress toward resolving such questions is summarized in this chap-

ter. The discussion begins with the issue of fundamental dislocation inter-

action phenomena and nonequilibrium behavior of interacting dislocations.

Attention is then shifted from consideration of ¯lms with low dislocation

density to the modeling of inelastic deformation of thin ¯lms with a rela-

tively high densities of dislocations. For this purpose, constitutive models

for time-independent and time-dependent deformation of thin ¯lms are ex-

amined by appeal to continuum plasticity theory. Overall features of ma-

terial behavior captured by such theories are then compared with available

506
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experimental results and observations, and some general trends pertaining

to the size-dependence of inelastic deformation in thin ¯lms are extracted.

Commonly used experimental methods for probing the inelastic properties

of thin ¯lms are described along with a brief summary of the advantages

and limitations of each method.

7.1 Interaction of parallel misfit dislocations

Consider a strained thin ¯lm on a relatively thick substrate, and suppose

that the ¯lm thickness is beyond the critical thickness as de¯ned in Chap-

ter 6. If a mis¯t dislocation is formed at the ¯lm{substrate interface by glide

on some crystallographic plane, it does so by drawing elastic energy from the

background elastic mismatch strain ¯eld and, as a result, strain is partially

relaxed in the vicinity of the dislocation line. At some distance from the

dislocation line, large compared to ¯lm thickness, the elastic strain remains

essentially unrelaxed from its initial value based on lattice mismatch. Con-

sequently, it is likely that other mis¯t dislocations will form at some distance

away on parallel glide planes. The question addressed in this section con-

cerns the spacing of such dislocations for a given set of system parameters.

To provide quantitative answers, attention is limited to periodic arrays of

equally spaced dislocations. Furthermore, to avoid having the main ideas

obscured by algebraic complexity, the discussion is based largely on the case

of residual shear strain °m in the ¯lm and Burgers vector orientations ap-

propriate for screw dislocation models. Results for more general Burgers

vectors are summarized and original literature sources are cited.

Fig. 7.1. Schematic representation of a periodic array of parallel mis¯t dislocations
at the interface between a strained layer of thickness h and its substrate. The
assumed glide planes are shown shaded. The mismatch strain is a shear strain
°xz = °m, the common Burgers vector of length b lies along the dislocation line,
and the dislocation spacing is p.
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The physical system studied is depicted in Figure 7.1. A thin ¯lm

of thickness h is epitaxially bonded to relatively thick substrate, and the

lateral extent of the interface is assumed to be very large compared to h.

The lattice mismatch between the ¯lm and substrate materials is represented

by the mismatch shear strain °m. Prior to formation of any dislocations in

the ¯lm, the elastic strain in the ¯lm is uniform and is given by ²xz =
1
2°m,

°yz = 0. Dislocation formation occurs at the expense of the energy stored in

this strain ¯eld. The critical thickness condition for dislocation formation

is given in (6.46) for general cut o® radius ro, and it is restated here for the

particular value ro =
1
2b as

b

4¼hcr
ln

4hcr
b

= °m; (7.1)

where b is the magnitude of the Burgers vector. The sense of the Burgers

vector must be consistent with a reduction of elastic energy in the ¯lm due

to dislocation formation. In other words, °m and b must have the same

algebraic sign in (7.1). Without loss of generality, it is assumed that both

°m > 0 and b > 0 for the remainder of this discussion. It is implied in

Figure 7.1 that the ¯lm thickness is such that h > hcr, and that a peri-

odic array of identical dislocations has been formed at the ¯lm{substrate

interface. The spacing between adjacent dislocations is p. Given that such

an array exists, what is the smallest value for p based on overall work and

energy considerations? This question is addressed in several ways in the

subsections that follow.

7.1.1 Spacing based on mean strain

A rough estimate of the minimum equilibrium spacing of the dislocations in a

periodic array can be obtained by basing the calculation on the mean elastic

strain in the ¯lm, rather than on the spatially nonuniform elastic strain ¯eld

that actually exists. While the strain ¯eld due to the dislocations in the

¯lm in Figure 7.1 is highly nonuniform, the average displacement gradient

per period in the array is necessarily b=p. This is the mean value of the

shear strain 2²xz due to dislocation formation and it represents a reduction

in average value of elastic strain from °m to (°m ¡ b=p). If it is assumed

that the current ¯lm thickness h is the critical thickness for this reduced

background elastic strain, then (7.1) is reinterpreted, in accordance with

the mean ¯eld consideration, as

b

4¼h
ln

4h

b
= °m ¡ b

p
: (7.2)
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Fig. 7.2. Plots of equilibrium spacing ln(p=b) of a periodic array of mis¯t disloca-
tions versus ¯lm thickness ln(h=b) for a mismatch strain of °m = 0:01. The result
based on mean strain is given in (7.2), on simultaneous dislocation formation in
(7.6), and on insertion of the last dislocation in the array in (7.12).

This provides a relationship between the ¯lm thickness h and the dislocation

spacing p for all h > hcr. As h=b ! 1, the result implies that the dislocation

spacing approaches b=°m or, equivalently, that all strain is relieved in the

¯lm. The behavior implied by (7.2) is plotted in Figure 7.2 in the form of

ln(p=b) versus ln(h=b). Clearly, the critical thickness condition is recovered

from (7.2) as p=b ! 1. As h=b becomes very large, (7.2) implies that all

elastic strain is eventually relaxed for a relatively thick ¯lm. Figure 7.2

also shows estimates of equilibrium spacing of mis¯t dislocations obtained

by recourse to other lines of reasoning, which are described in the following

paragraphs.

7.1.2 Spacing for simultaneous formation of dislocations

An estimate of the minimum value of p can also be obtained by following

the approach adopted for calculation of the critical thickness condition in

Section 6.2. According to this approach, it is necessary to compare the
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work required to form each dislocation in the periodic array in the absence

of any other stress ¯eld to the work done by the background mismatch

stress ¯eld in forming that dislocation. These two work quantities will again

be denoted by Wd and Wm, respectively, and they are measured per unit

length of dislocation line per period. As before, Wd is the dislocation self-

energy and Wm is the interaction energy between the dislocation ¯eld and

the background mismatch strain ¯eld. The self energy in this case must be

understood to be equal to the work required to form a dislocation in a cell

of width p subjected to periodic boundary conditions.

The value of Wm = ¡¿mbh is unchanged from that in (6.45). The

background stress which does work as each dislocation forms is still ¿m and

the displacement o®set as a result of dislocation formation is still b.

The calculation of Wd is a bit more involved, but is again based on

the fundamental expression

Wd = ¡
Z h

1
2
b

1
2b¾xz(0; y) dy; (7.3)

which is a particular case of (6.6) for the problem at hand, with the cuto®

radius chosen as ro =
1
2b (see Section 6.1). The stress distribution ¾xz(0; y)

on the glide plane of the dislocation forming at x = 0 that appears in (7.3)

can be obtained by superposition from the elastic ¯eld of a single dislocation

as given in (6.4), such that

¾xz(0; y) = ¡¹b

2¼

∞X
n=−∞

∙
y

y2 + n2p2
¡ y ¡ 2h

(y ¡ 2h)2 + n2p2

¸

= ¡¹b

2¼

∙
¼

p
coth

¼y

p
¡ ¼

p
coth

¼(y ¡ 2h)

p

¸
: (7.4)

Evaluation of the integral in (7.3) yields

Wd(h; p) =
¹b2

4¼
ln

µ
2p

¼b
sinh

2¼h

p

¶
: (7.5)

As anticipated, this result reduces to (6.44) as p=b ! 1.

For a given value of h, the minimum value that p can have for spon-

taneous dislocation formation is again established by the condition that

Wd +Wm = 0 or

b

4¼h
ln

µ
2p

¼b
sinh

2¼h

p

¶
= °m: (7.6)

This condition also reduces to the critical thickness condition (7.1) as p=b !
1.
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The behavior implied by (7.6) is also plotted in Figure 7.2 in the

form of ln(p=b) versus ln(h=b) and it is labeled `simultaneous formation'.

The reason for this label becomes evident if the process of formation of the

dislocation array is considered to be a consequence of glide of threading

dislocations. With this point of view, the arguments outlined in Section 6.3

again imply that

G(h; p) = ¡ [Wd(h; p) +Wm(h; p)] (7.7)

is the con¯gurational force or driving force on each threading dislocation

in the array as that dislocation glides, leaving behind its corresponding

interface mis¯t dislocation. Furthermore, because all dislocations are treated

in exactly the same manner, and it follows that all threading dislocations

move through the ¯lm in perfect unison when the result is viewed from the

mechanistic point of view. This is a particularly unrealistic aspect of this

approach, not only because such a degree of coordination is unlikely but also

because the con¯guration with all threading dislocations positioned along

the line is probably unstable. It is likely that the free energy of the system

could be reduced simply by letting the threading dislocations break ranks

and move in a less coordinated way. Furthermore, as h=b becomes large,

(7.6) implies that p ! b=2°m. If this were so, then the ¯nal elastic strain

after all dislocations were formed would actually be opposite in sense to °m,

or the ¯lm would be over-relaxed. These unrealistic aspects of (7.6) suggest

an alternative and more realistic point of view for estimating p based on the

notion of sequential formation of the dislocations in the array.

7.1.3 Spacing based on insertion of the last dislocation

Consider, once again, the formation of the periodic array of parallel mis¯t

dislocations shown in Figure 7.1. In the present instance, however, the

dislocations do not all form simultaneously. Instead, it is assumed that all

dislocations have formed with spacing p except for one member of the array.

This leaves a gap of width 2p in the array which may accommodate one

more mis¯t dislocation. What is the smallest value of p for which the ¯nal

dislocation can be inserted spontaneously? In the discussion to follow, it is

assumed without loss of generality that the last dislocation formed is the

one at x = 0 in the array.

In providing an answer to the question, three independent equilibrium

stress ¯elds must be considered, rather than the two ¯elds considered in

similar cases up to this point. These equilibrium ¯elds are the background

mismatch ¯eld characterized by ¿m or °m, the net ¯eld of all previously
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formed dislocations, and the self-stress ¯eld of the last dislocation being

inserted. Thus, in analogy with (6.46), the con¯gurational driving force on

the threading segment of the last dislocation being inserted incorporates

three contributions,

G(h; p) = ¡ [Wd(h; p) +Wm(h; p) +Wa(h; p)] ; (7.8)

where Wd is again the self energy contribution given in (6.44) and Wm is

the interaction energy between the background ¯eld and the dislocation as

it forms, as given in (6.45). The remaining contribution Wa on the right side

of (7.8) is the work of interaction between the dislocations formed previously

and the one just being inserted. This work of interaction is

Wa(h; p) = ¡
Z h

0
b¾(a)xz (0; y) dy; (7.9)

where ¾
(a)
xz (0; y) is the stress distribution on the prospective glide plane x = 0

of the last formed dislocation in the array. This stress distribution is readily

constructed by subtracting the ¯eld of a single dislocation at x = 0, y = 0

from the ¯eld (7.4) of the complete array to obtain

¾(a)xz (0; y) = ¡¹b

2¼

∙
¼

p
coth

¼y

p
¡ 1

y
¡ ¼

p
coth

¼(y ¡ 2h)

p
+

1

y ¡ 2h

¸
: (7.10)

Evaluation of the integral expression in (7.9) yields

Wa(h; p) =
¹b2

2¼
ln

µ
p

2¼h
sinh

2¼h

p

¶
(7.11)

for this interaction energy.

All three contributions to the driving force G de¯ned in (7.8) are now

known in terms of h and p. If the available energy supply is more than

adequate to drive the formation of the last dislocation in the array, then

conditions are such that G > 0. On the other hand, if the energy supply is

inadequate, G < 0 and any threading dislocation inserted will retract rather

than advance. The critical or discriminating condition between these two

types of behavior is de¯ned by G = 0 or

b

4¼h
ln

4h

b
+

b

2¼h
ln

µ
p

2¼h
sinh

2¼h

p

¶
= °m: (7.12)

For a given value of h, the value of p that satis¯es this equation yields a

minimum possible spacing for which the last dislocation can be inserted into

the periodic array. The behavior implied by (7.12) is plotted in the form of

ln(p=b) versus ln(h=b) for °m = 0:01 in Figure 7.2.

This result can be compared directly with similar results obtained
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from consideration of mean strain relaxed by the dislocations and of the

simultaneous formation of all members of the dislocation array. Examina-

tion of the expression (7.12) reveals that the mean stress approximation is

accurate only for p=h ¿ 1. In terms of the results plotted in Figure 7.2,

this is the case in a region roughly to the right and below the straight line

ln(p=b) ¼ ln(h=b)¡ 2. Comparison of the condition for insertion of the last

dislocation in a periodic array in Figure 7.2 with the corresponding result

for simultaneous formation adds support to the suggestion that the premise

of the latter point of view is unrealistic and that the result is °awed. This

is an issue requiring further study from the mechanistic point of view.

Fig. 7.3. Pyramid of f111g planes in a cubic ¯lm material epitaxially bonded to a
cubic substrate with a (001) interface. The planes represent potential glide planes
for strain relieving dislocations in the ¯lm, and the edges of the pyramid extending
from the apex identify the directions of possible Burgers vectors of 60± dislocations.
The edges of the cube cell are identi¯ed by the triad of crystallographic vectors.

7.2 Interaction of intersecting misfit dislocations

The preceding section was concerned with the interaction of dislocations

that form on parallel glide planes in a strained ¯lm. These interactions

arise through the elastic ¯elds of the dislocations, particularly through the

in°uence of the elastic ¯eld of a mis¯t dislocation on those strain relieving

dislocations that form subsequently. The same general issue is again ad-

dressed in this section, but with a focus on the interaction of dislocations

that form on intersecting glide planes. This is a more complex interaction

to investigate, mainly because the feature of translational invariance of the

con¯guration in one direction along the interface is lost. Nonetheless, the

general nature of the interaction can be understood. The discussion is mo-

tivated by considering the behavior of a thin ¯lm of a cubic material which
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is epitaxially bonded to a cubic substrate with the shared f100g surface as

the interface. An equi-biaxial strain in the ¯lm is presumed to exist due to

a mismatch in ¯lm and substrate lattice parameters. A pyramid of f111g
planes on which dislocation glide can occur in the ¯lm is shown in Fig-

ure 7.3. The cube edge directions are [100] and [010] in the interface and

the direction normal to the interface is [001]. The possible orientations of

Burgers vectors of the glide dislocations are the four edges qa, qb, qc and

qd extending from the apex of the pyramid, and the lines of interface mis¯t

dislocations lie along the h110i directions in the interface.

Suppose that an interface mis¯t dislocation has been formed by glide

of the threading dislocation and that this mis¯t lies along the line bc, that is,

along [¹110]. It could have been formed by glide on the plane qbc with Burg-

ers vector along either qb or qc, or by glide on a plane parallel to qad with

Burgers vector along either qa or qd. The direction of the Burgers vector

must be consistent with relaxation of the background mismatch strain. Sub-

sequently, a threading dislocation approaches this mis¯t dislocation, leaving

behind an interface mis¯t dislocation with its line orthogonal to the one in

its path which was formed earlier, say along the line ad in the [1¹10] direction.

The threading dislocation glides on the plane qab with Burgers vector along

one of the edges qa or qb. Again, the sense of the Burgers vector must be

consistent with relaxation of the mismatch strain.

When the threading dislocation is far from the mis¯t dislocation in

its path, its driving force depends only on the background mismatch stress

¯eld and geometrical parameters. More precisely, it depends on the shear

stress acting on its glide plane due to the background stress ¯eld. As the

threading dislocation approaches the mis¯t dislocation in its path, this shear

stress is altered by the stress ¯eld of the mis¯t dislocation and this e®ect,

in turn, alters the driving force. This complex interaction process has been

discussed in detail by Freund (1990). The mis¯t dislocation can have any

of four Burgers vectors, as noted above, and the approaching threading

dislocation can have either of two possible Burgers vectors so that there are

eight possible combinations to be considered. In some cases, the dislocations

may react with each other, say if their Burgers vectors are colinear or if they

split into certain combinations of partial dislocations. A complete study

of the interaction would require determination of the ever-changing shape

of the threading segment as it travels through the nonuniform stress ¯eld

of the mis¯t dislocation, as well as determination of any de°ection of the

mis¯t dislocation out of the interface. Progress in this direction on the

basis of detailed computational models has been reported by Schwarz and

Terso® (1996). That blocking does indeed occur has been demonstrated
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Fig. 7.4. Transmission electron microscopy image of threading dislocations in a
SiGe/Si(001) material system that have been blocked by an interface mis¯t dis-
location. The image was produced by means of a high-resolution TEM equipped
with in-situ CVD capabilities at 600 ±C. It shows two threading dislocations, the
upper of which had been traveling from right to left and the lower from left to
right, that have been blocked by the same interface mis¯t segment. Reproduced
with permission from Stach (2000).

experimentally. The possibility of blocking was suggested on the basis of

transmission electron microscopy images by Hull et al. (1989) and clear

evidence in the form of direct observation has been provided by Stach et al.

(1998). A transmission electron microscopy image from this work is shown

in Figure 7.4; the phenomenon of blocking of the threading dislocation by

an interface mis¯t dislocation is evident in the image.

7.2.1 Blocking of a threading dislocation

The issue of blocking of a threading dislocation is investigated here on the

basis of screw dislocation models, following the general approach outlined

by Freund (1990) for a buried layer and by Freund (1990) for interaction

of 60 degree dislocations in an equi-biaxial strain ¯eld in a ¯lm with a free

surface. The model system is illustrated in Figure 7.5. A ¯lm of thickness

h is bonded to a relatively thick substrate. The ¯lm supports a mismatch

shear strain ²mxz = 1
2°m = 1

2¿m=¹. An interface mis¯t dislocation with its
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Fig. 7.5. Schematic diagram of a threading dislocation gliding on the yz¡plane
approaching an interface mis¯t dislocation (parallel to the x¡axis) lying in its
path.

line oriented parallel to the x¡axis is assumed to exist from the outset.

Then, a threading dislocation on a perpendicular glide plane is considered

as it approaches the mis¯t dislocation. In the ¯gure, the glide plane of the

threading dislocation lies in the yz¡plane; the mis¯t dislocation it leaves

behind as it advances lies along the z¡axis.

� * � " � & ! & " *

! ' "

! ' $

&

& ' #

Fig. 7.6. Contours of constant shear stress ¾
(md)
x;z =¿m due to the preexisting mis¯t

dislocation acting on the glide plane of the threading dislocation for °m = 0:01 and
h = 1:5hcr.

When the threading segment is still far from the mis¯t dislocation

in its path compared to h, its behavior is that of an isolated threading

dislocation in the strained ¯lm. As it approaches the mis¯t dislocation,

however, the shear stress acting on its glide plane is altered from the ¯eld
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consisting only of its self-stress and the uniform background mismatch stress.

The alteration in stress ¯eld is readily determined from (6.4) by replacing

the coordinate x with the coordinate z in the expressions for stress to be

consistent with the orientation shown in Figure 7.5. Thus, the additional

stress acting on the glide plane due to the mis¯t dislocation is

¾(md)xz (y; z) = ¡¹b

2¼

∙
y

y2 + z2
¡ y ¡ 2h

(y ¡ 2h)2 + z2

¸
: (7.13)

The shear stress acting on this glide plane due to the mismatch ¯eld is ¾xz =

¿m, ¾xy = 0. The additional shear stress due to the stress-relieving mis¯t

dislocation is illustrated in Figure 7.6 by means of level curves of normalized

shear stress ¾xz=¿m on the glide plane for the case when h = 1:5hcr for this

particular system. The value of critical thickness for this system is de¯ned

in (6.46). Because this additional stress is opposite in sign to the mismatch

stress, it tends to retard the progress of the threading dislocation. The total

work of interaction that must be provided to move the threading dislocation

past the mis¯t dislocation, to a distance far beyond it compared to h, is

¡
Z h

0

Z ∞
−∞

b ¾(md)xz (y; z) dy dz = ¹b2h : (7.14)

This is the total work that must be done to overcome the retarding force

as the threading dislocation moves past the mis¯t dislocation. This result

provides no direct information on how this work is distributed over the path

taken by the threading dislocation. However, it is evident that the stress

¯eld of the mis¯t dislocation acts to some degree to retard the progress of

the threading dislocation.

Various strategies can be adopted to arrive at an estimate of the re-

tarding e®ect. For example, it is evident from Figure 7.6 that the stress ¯eld

of the mis¯t dislocation completely negates the background stress ¯eld over

some portion of the glide plane; this is the region bounded by the contour

labeled ¡1:0. Suppose that the average stress is ¿∗ over the remaining gap

of width h∗ on the glide plane between the boundary of this region and the

free surface. Then, a plausible criterion for identifying the conditions which

discriminate between the range of parameters for which blocking occurs and

the range for which it is unlikely to occur is that h∗ must be the critical

thickness for an e®ective strain °∗ = ¿∗=¹ according to (7.17). It is readily

shown that ¾
(md)
xz (y; 0) = ¡¿m for

y = y∗ = h¡
q
h2 ¡ bh=¼°m = h¡ h∗ : (7.15)
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Fig. 7.7. Curve in the plane of ¯lm thickness ln(h=b) versus mismatch strain °m
showing the criterion described by (7.17) for blocking of a threading dislocation due
to a mis¯t dislocation in its path. Also shown by the dashed curve is the critical
thickness criterion for the same system as given in (7.13). Blocking is predicted
for states below and to the left of the solid curve, whereas the blocking mechanism
should not be e®ective for states above and to the right of the solid curve.

The average strain remaining within this gap is

°∗ = °m +
1

¹h∗

Z h

y∗
¾(md)xz (y; 0) dy

= °m ¡ b

2¼h
p
1¡ b=¼h°m

ln

Ã
1 +

p
1¡ b=¼h°m

1¡p
1¡ b=¼h°m

!
: (7.16)

If h∗ is then required to be the critical thickness corresponding to the e®ec-

tive mismatch strain °∗, that is, if

b

4¼h∗
ln

4h∗
b

= °∗; (7.17)

it is found that h and °m are related as shown in Figure 7.7. This plot is

constructed by ¯nding roots h of (7.17) numerically for many choices of °m
within the range of interest.

This criterion can be interpreted in the following way. For thin ¯lm
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growth with steadily increasing h at ¯xed mismatch °m, glide of thread-

ing dislocation segments is not possible until h increases to a value of hcr.

For thicknesses greater than hcr but still below the thickness given by the

blocking condition, any threading dislocations that have been formed are

able to glide, leaving behind ever increasing lengths of interface mis¯t dis-

locations and thereby contributing to relaxation of the background elastic

strain. However, if the path of a threading dislocation were crossed by a mis-

¯t dislocation formed earlier in the relaxation process, its progress would be

arrested, as shown in Figure 7.4, if the thickness did not exceed the critical

thickness. However, as the ¯lm thickness h is increased further to bring the

state of the system to a point above the solid curve in Figure 7.7, a threading

dislocation is able to bypass a mis¯t dislocation in its path. The range of

stress and ¯lm thickness for which blocking occurs was determined experi-

mentally by Stach et al. (1998) for the Si1−xGex/Si(001) material system,

and these experimental results are reproduced in Figure 7.8. The curves ap-

pearing in this ¯gure represent results based on the same conceptual model

as was developed here but with crystallographically correct Burgers vectors

rather than the screw dislocation Burgers vector. An interesting aspect of

this interaction reported by Stach et al. (1998) is that, once a threading

dislocation is actually stopped for some time by a mis¯t dislocation in its

path, it is unlikely to resume its motion even after the ¯lm thickness has

been increased 5 further deposition to a value beyond which blocking should

not occur. The reason for this behavior is not clear.

An alternate interpretation of the blocking criterion has been given

by Gillard et al. (1994) on the basis of strain relaxation experiments, which

were also conducted with the Si1−xGex/Si(001) material system. In these

experiments, ¯lms that were essentially dislocation-free were grown at a

relatively low temperature to thicknesses well beyond the critical thickness

for various choices of mismatch strain, as determined by Ge content of the

¯lm alloy. The materials were then annealed at a temperature well above

the growth temperature. Strain relaxation was monitored at elevated tem-

perature by means of the substrate curvature method, and it was allowed

to proceed until no further relaxation was detectable. It was hypothesized

that the magnitude of residual elastic strain in the ¯lm after the cessation

of relaxation and the current value of ¯lm thickness could be identi¯ed with

points on the blocking curve. The reasoning was simply that if any threading

dislocation could continue to propagate, then relaxation would also continue

as observed in the experiments. On the other hand, once the background

elastic strain fell to a magnitude that was too small to drive threading dislo-

cations past mis¯t dislocations, all threading dislocations would be arrested
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Fig. 7.8. Summary of in-situ transmission electron microscopy observations of en-
counters between advancing threading dislocation segments and mis¯t interface
dislocation segments lying across their paths on a graph of elastic ¯lm strain due
to mis¯t versus ¯lm thickness normalized by the Burgers vector magnitude. Open
symbols show situations in which blocking was not observed, whereas ¯lled symbols
indicate situations in which blocking was observed to occur. Examples of encoun-
ters that resulted in blocking are shown in Figure 7.4. The observations were made
on SiGe/Si(001) ¯lm-substrate systems at 600 ±C. Adapted from Stach (1998).

and stress relaxation would stop. The experimental observations were con-

sistent with this hypothesis. The data in Figure 7.8 was obtained in e®ect

by varying thickness at ¯xed elastic strain, that is, by a sequence of states

in Figure 7.7 along the line parallel to the thickness axis. The experiments

reported by Gillard et al. (1994) are complementary, in the sense that the

sequence of states along the line parallel to the strain axis were interro-

gated. The identi¯cation of the necessary condition for blocking in terms of

thickness and elastic strain were similar in the two approaches.

7.2.2 Intersecting arrays of misfit dislocations

The foregoing results in Section 7.1 on interaction of parallel mis¯t disloca-

tions and in the preceding subsection on intersecting mis¯t dislocations are



7.2 Interaction of intersecting misfit dislocations 521

now combined to obtain a result of potential use in describing overall elastic

strain relaxation in a strained ¯lm. The model is again based on the idea

of critical conditions for advance of a single threading dislocation through

the ¯lm, as illustrated schematically in Figure 7.5. However, in the present

case, it is assumed that a complete periodic array of mis¯t dislocations, each

parallel to the x¡axis and equally spaced at intervals p in the z¡direction,

has already been formed. Also, it is assumed that a second array of interface

mis¯t dislocations, each parallel to the z¡axis and equally spaced at inter-

vals of p in the x¡direction, also exists; this array is complete except for

a single missing member. This last mis¯t dislocation is to be inserted and,

without loss of generality, the glide plane of this last dislocation is taken to

lie in the plane x = 0. The mismatch strain to be relieved is a shear strain

²mxz = °m=2 and ²yz = 0, and the Burgers vector of each dislocation has

length b and orientation parallel to the interface.

Consider a threading dislocation advancing in the ¯lm along the plane

x = 0, thereby depositing a mis¯t dislocation along the line x = 0, y = 0 as

it moves. What is the driving force G on this dislocation? This driving force

varies with distance traveled by the threading dislocation in the z¡direction,

but it does so periodically with spatial period p. Therefore, while determina-

tion of the driving force G itself at all points along the path of the threading

dislocation is an unsolved problem, it is possible to calculate the average

driving force per period, say

¹G(h; p) =
1

p

Z z0+p

z0
G(h; p; z) dz; (7.18)

which is independent of the choice of z0.

There are contributions to ¹G(h; p) from several sources. Among these

are the self-energy per unit length Wd of the mis¯t dislocation being formed

and the work of interaction Wm with the background mismatch strain ¯eld;

these contributions are de¯ned in (6.44) and (6.45), respectively. There is

also the work of interaction Wa with all mis¯t dislocations that are parallel

to the one being inserted; this interaction energy is given in (7.11). Finally,

there is the work of interaction between the dislocation being formed and

the mis¯t dislocation array with its members lying across the path of the

advancing threading dislocation. The sheer stress on the plane x = 0 in

the ¯lm, say ¾
(ia)
xz (y; z), due to the array of mis¯t dislocations parallel to

the x¡axis and intersecting the path of the threading dislocation can be
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constructed by superposition based on (6.4) to yield

¾(ia)xz (y; z)¡ ¹b
sinh 2πh

p

³
cosh 2πh

p ¡ cos 2πzp cosh 2π(h−y)
p

´
³
cos 2πzp ¡ cosh 2πy

p

´ ³
cos 2πzp ¡ cosh 2π(2h−y)

p

´ : (7.19)

The average interaction energy due to the intersecting array, say Wia, as the

value

Wia = ¡1

p

Z p/2

−p/2

Z h

0
b ¾(ia)xz (y; z) dy dz =

¹b2h

p
; (7.20)

where the value z0 = ¡p=2 in (7.18) has been chosen for convenience.
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Fig. 7.9. Illustration of the results established as critical conditions for formation
of two arrays of periodic interface mis¯t dislocations, one array orthogonal to the
other, at the interface between a strained epitaxial ¯lm and its substrate. The lower
curve is a plot of the result (7.21) for insertion of the last dislocation necessary to
complete one of the arrays, the other being already complete, and the upper curve
is the equivalent result (7.22) based only on mean strain measures and the critical
thickness condition for insertion of an isolated mis¯t dislocation. The graphs are
based on the screw dislocation model with a mismatch strain °m = 0:01.

If the four contributions to ¹G(h; p) identi¯ed above are taken into
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account, then

¹G(h; p) = ¹bh

∙
°m ¡ b

4¼h
ln

4h

b
¡ b

2¼h
ln

µ
p

2¼h
sinh

2¼h

p

¶
¡ b

p

¸
: (7.21)

This is the period-averaged driving force on the threading dislocation as it

leaves behind the mis¯t dislocation that completes a doubly periodic array

with spacing p and ¯lm thickness h. The equation ¹G(h; p) = 0 provides a

lower bound on possible dislocation spacing for ¯xed values of h and °m for

which the last dislocation can be inserted. The relationship between p=b

and h=b de¯ned by this condition is shown in Figure 7.9 for the particular

choice in °m = 0:01. Asymptotic behavior as p=b ! 1 is again the critical

thickness condition (7.1). As h=b ! 1, on the other hand, this critical

condition implies that p=b ! 2=°m, which is the spacing for the doubly

periodic array for which the elastic strain °m is completely relaxed, on the

average.

A mean strain approach, as described in Section 7.1, to this same

relaxation problem would lead to a condition of the form

b

4¼h
ln

4h

b
= °m ¡ 2b

p
(7.22)

for the minimum spacing p of a doubly periodic array. This result is also

shown in Figure 7.9 for purposes of comparison. The mean strain result

(7.22) shares asymptotic behavior with (7.21), but the transition between

asymptotes is somewhat sharper in the latter case.

7.3 Strain relaxation due to dislocation formation

How the motion of individual dislocations in°uences bulk strain relaxation

is not fully understood at this time, but some progress has been made (Tsao

et al. (1987); Dodson and Tsao (1987); Gosling et al. (1994)). Motivated by

results obtained in Chapter 6 on dislocation formation and in this chapter

on dislocation interactions, a procedure for obtaining a closed set of evolu-

tion equations that describes elastic strain relaxation in a strained ¯lm is

outlined here. Numerous trade-o®s between physical detail and mathemat-

ical simplicity must be considered and, as is the case with all constitutive

theories, questions of validity and consistency of any particular description

obtained can only be addressed through appeal to experiments. In this sec-

tion, the procedure for constructing a complete relaxation model is outlined

by integrating the essential elements on which it is based. This is followed by

a summary of experimental observations of relaxation processes which are

designed to achieve structures with speci¯c features; in one case, the goal
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is to minimize relaxation whereas, in a second case, the goal is to maximize

relaxation but with us a few remaining threading dislocations as possible.

7.3.1 Construction of a relaxation model

The matter is considered ¯rst within the framework of the model based on

relaxation of elastic shear strain by the formation of screw dislocations. This

avoids a certain degree of complexity without abandoning essential physical

features. Consider a small rectangle or patch of interface between a strained

¯lm and its relatively thick substrate. The geometrical con¯guration of the

¯lm{substrate system is illustrated in Figure 7.5, along with a convenient

rectangular coordinate reference. Suppose that the extent of the patch is ¢x

in the x¡direction and ¢z in the z¡direction. Furthermore, suppose that,

at a certain instant of time, the elastic strain in the ¯lm is partially relaxed

by periodic arrays of dislocations, one aligned with the x¡axis and another

aligned with the z¡axis, both of period p. The direction of the Burgers

vector of both arrays is such that a positive background elastic strain °m
is partially relaxed by dislocation formation; the magnitude of the Burgers

vector is b. The total shear strain in the ¯lm during relaxation is ¯xed at °m
by symmetry; this is the elastic strain before any dislocations form. On the

average, the inelastic strain due to the dislocation arrays is °d = 2b=p; this

relationship gives the microscale quantity b=p a macroscopic interpretation.

The residual elastic strain °r in the ¯lm following formation of these arrays

is

°r = °m ¡ °d = °m ¡ 2b=p: (7.23)

Consider once again the ¯lm attached to the same patch of interface

of dimensions ¢x by ¢z. Suppose that the edges of the patch parallel to the

z¡direction are held ¯xed for the moment, and imagine the consequences

of moving a single threading dislocation at speed vtd across the width ¢z

of the patch, as depicted schematically in plan view in Figure 7.10. The net

change in residual elastic strain is a reduction, that is, the inelastic strain

due to formation of the mis¯t dislocation is

¢°d =
b

¢x
(7.24)

once the threading dislocation has moved completely across the patch. The

transit time of the dislocation across the patch is ¢t = ¢z=vtd, so the aver-

age strain rate due to dislocation formation during transit is approximately

¢°d
¢t

=
bvtd

¢x¢z
: (7.25)
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Fig. 7.10. Schematic diagram of a single threading dislocation (represented by the
circular dot) traveling across the width of a typical patch of ¯lm at speed vtd,
leaving behind an interface mis¯t dislocation as it goes.

Any mis¯t dislocations already present do not contribute to strain rate.

Suppose next that instead of just one dislocation, many threading

dislocations glide across the patch, all moving at approximately the same

speed. Assume also that there are n threading dislocations per unit area

of interface at the present instant, so that the total number of threading

dislocations contributing to strain relaxation within the patch is n¢x¢z.

Each makes essentially the same contribution to inelastic strain rate. Con-

sequently, the total instantaneous inelastic strain rate due to glide of the

threading dislocations is

_°d = nbvtd; (7.26)

which is the classical Orowan equation for the con¯guration at hand (Orowan

1940). It provides a macroscopic interpretation for the microscopic parame-

ter vtd through the homogenization parameter n.

The average threading dislocation speed vtd can be expressed in terms

of the average driving force ¹G(h; p) acting on it, which was de¯ned in (7.21),

as

vtd = v0

Ã
¹G(h; p)

¹hb

!m
e−Q0/kT ; (7.27)

which is the form of (6.29) for the case when the glide plane of the threading

dislocation is perpendicular to the interface and the relevant elastic modulus

is the shear modulus ¹. The parameter p can be eliminated from (7.27) in
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favor of °d by appeal to (7.23), yielding

_°d(t) = n(t)bv0

Ã
¹G [h(t); 2=°d(t)]

¹bh(t)

!m
e−Q0/kT : (7.28)

It is recognized here that °d, as well as density n, thickness h and tem-

perature T , may vary with time t. Since the thickness and temperature are

normally controlled parameters in a relaxation process, the histories h(t) and

T (t) can be assumed to be known for many circumstances. However, n(t) is

an internal variable that cannot be controlled. The density evolves during

a relaxation process in a way that has not yet been captured in a concise

and generally applicable representation. This evolution includes contribu-

tions resulting from nucleation, multiplication, annihilation and blocking.

For most purposes, it is probably adequate to postulate that n(t) evolves

according to a rate equation of the form

_n(t) = _n1N1 [n(t); °d(t); h(t); T (t)] ; (7.29)

where N1(¢) is some dimensionless function of its arguments and _n1 is a

material parameter with dimensions of number per unit area per unit time.

An alternate and simpler form for an evolution equations for n(t) is

n(t) = n0N0 [°d(t); h(t); T (t)] ; (7.30)

where N0(¢) is some other dimensionless function of its arguments and n0 is

a material parameter with dimensions of number per unit area representing

a reference density of threading dislocations.

Suppose that n(t) is scaled by some reference threading dislocation

density nr. Furthermore, attention is limited for the time being to cases of

relaxation at constant temperature. Then (7.28) can be rewritten as

_°d(t) =
1

tγ

Ã
¹G(t)

¹bh(t)

!m
n(t)

nr
; (7.31)

where tγ = e−Q0/kT=nrbv0 is a characteristic time for the process. Similarly,

(7.29) can be rewritten as

_n(t)

nr
=

1

tn
N1(t); (7.32)

where tn = nr= _n1 is a second characteristic time. Then, if a nondimensional

time variable s is introduced as s = t=
p
tγtn, the two di®erential equations

(7.31) and (7.32) reduce to the nondimensional forms

°Id(s) =
Ã

¹G(s)

¹bh(s)

!m
¯(s) ; ¯I(s) = N1(s); (7.33)
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where

¯(s) =
n(t)

nr

s
tn
tγ

(7.34)

and both ¹G(s) and N1(s) depend on s through the arguments identi¯ed in

their de¯nitions in (7.21) and (7.29), respectively. The equations (7.33) are

universal, in the sense that all material parameters have been suppressed

through scaling of variables. Solution of the pair of ordinary di®erential

equations requires speci¯cation of initial conditions; the choices

°d(0) = 0 ; ¯(0) = 0 (7.35)

are suitable for most cases, provided that N1(0) 6= 0.

As a speci¯c form for N1(s) in (7.33), assume that

N1(s) =
q
°2m + °d(s)2: (7.36)

This form is motivated by the idea that the dislocation formation rate is

dominated by nucleation and that it scales with the level of background

elastic strain °m when °d ¼ 0. Once the value of °d due to density of mis¯t

dislocations becomes comparable in magnitude to °m, which implies that

many intersections of mis¯t dislocations have been formed, the dislocation

formation rate may involve both nucleation and multiplication. Under such

conditions, the rate is enhanced by the increasing magnitude of °d. The

parameter tn has dimensions of time and it represents a timescale for dislo-

cation formation. A certain amount of relaxation can be achieved by having

many threading dislocations with each moving for a short time (large nr
and/or small tn) or having a few threading dislocations with each moving

for a long time (small nr and/or large tn). A numerical solution of the pair

of di®erential equations (7.33) is shown in Figure 7.11 for the case when

°m = 0:01. If a di®erent value is chosen for °m, the same curve results due

to the universal form of the di®erential equations but the time scale is al-

tered. This result has the general form of elastic strain relaxation with time

that was observed in the experiments by Gillard et al. (1994).

7.3.2 Example: Dislocation control in semiconductor films

The stress associated with the elastic strain induced in heteroepitaxial material sys-
tems with lattice mismatch provides a driving force for the formation and growth
of strain-relieving dislocations. In some device applications, it is essential that the
induced strain be maintained because of its in°uence on functional characteristics.
For cases involving signi¯cant mismatch strain, the critical thickness condition for
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Fig. 7.11. Strain relaxation history determined by numerical solution of the dif-
ferential equations (7.33) with the particular form (7.36) to represent the rate of
increase of threading dislocations.

dislocation formation discussed in Chapter 6 imposes a severe constraint on feature
dimensions that can be achieved without loss of stability of the strained con¯g-
uration. Consequently, e®ective approaches that lead to stabilization of strained
heteroepitaxial structures against dislocation formation and/or growth are of great
practical interest. One such approach is based on the compliant substrate concept
introduced in Section 6.7. Progress in the use of growth area patterning, another
promising approach, is described in this section. In other device applications, it is
desirable to relax as much of the mismatch strain as possible, and to do so in such a
way that the relaxed material provides a high quality growth surface for subsequent
deposition. Progress in this direction is also described in this section.

Both of the cases described are concerned with the epitaxial deposition of a
SiGe alloy on a Si substrate. The choice of substrate is in°uenced by the widespread
use of Si as the bulk substrate material in complementary metal-oxide semiconduc-
tor (CMOS) applications. SiGe alloys are attractive materials for ¯lm growth for
several reasons, in addition to their basic compatibility with Si substrates. Since
Si and Ge are completely miscible over the full range of solid solution composi-
tions, alloy crystals of very high quality can be grown at moderate temperatures,
and dopants are readily introduced. Retention of mismatch strain is critical for
microelectronic applications because of the way in which the strain alters elec-
tronic characteristics of the material. Perhaps the most signi¯cant changes are the
decrease in electronic bandgap with an increase in Ge content at ¯xed strain, the
decrease in electronic bandgap with increase in magnitude of biaxial strain of either
sign at ¯xed composition, and alteration of band alignment at SiGe/Si interfaces.

Speci¯c device con¯gurations in which curtailment of mis¯t dislocation for-
mation enhances performance are the heterojunction bipolar transistor and the
modulation doped ¯eld e®ect transistor. In order to suppress mis¯t dislocation for-
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50 µm (b)
50 µm

(a)

Fig. 7.12. Electron-beam-induced current (EBIC) images showing the plan view
of (a) GeSi deposited on unpatterned Si substrates and (b) GeSi deposited on
patterned Si substrates. The ¯gures reveal changes in mis¯t dislocation densities
in a Ge0:19Si0:81 alloy on a (001) Si substrate. Adapted from Fitzgerald et al.
(1991) and Fitzgerald (1995). Reproduced with permission from E.A. Fitzgerald,
Massachusetts Institute of Technology.

mation, device designers can tailor SiGe ¯lm thicknesses to those below the critical
value hcr at which mis¯t dislocations nucleate and/or modulate mismatch strains
by recourse to alloying. Further gains in performance can be achieved by creating
highly strained, metastable layers of SiGe by purposely introducing kinetic barriers
that serve to limit the extent of mis¯t dislocations (Fitzgerald 1995). This is accom-
plished through the introduction of patterns on the substrate prior to deposition.
Following deposition, the pattern features restrict the range of in°uence of active
dislocation sources. Figure 7.12(a) is an electron-beam-induced current (EBIC)
image of a Si0:81Ge0:19 alloy grown on an unpatterned Si substrate. Mis¯t dislo-
cations, which appear as dark lines in the image, are seen to be aligned along two
<110> directions. Figure 7.12(b) is an EBIC micrograph of the specimen in which
the Si substrate was patterned and etched to form a square grid { approximately
50{70 ¹m in length/width and 2 ¹m deep with edges along the <110> directions
{ before the deposition of the SiGe ¯lm by MBE at 550 ±C. Signi¯cant reduction
in mis¯t dislocation density is evident in the case of the patterned GeSi/Si system,
compared to the case of the sample with a spatially uniform growth surface. The
range of in°uence of any active nucleation source is con¯ned by the grid features,
particularly the trenches which serve to arrest the progress of advancing threading
dislocations. Substrate patterning thus suppresses relaxation of mis¯t strains by
limiting the length of the mis¯t dislocations. Such patterning methods employing
selective epitaxy inside oxide windows have been used to fabricate metastable GeSi
diodes.

Some applications, such as optoelectronic devices which emit at 1.3 ¹m and
1.55 ¹m wavelengths for ¯ber-optic telecommunications, require relaxed epilayers
for optimal performance. For example, epitaxial growth of relaxed GaAs or GeSi
on Si substrates is required for high transconductance transistors and optoelec-
tronic devices. Relaxed InGaAs on GaAs substrate facilitates the integration of 1.3
¹m wavelength optoelectronic devices with GaAs electronics. The ability to pro-
duce relaxed InGaP layers on GaP substrates allows the fabrication of transparent
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1 µm

Fig. 7.13. Cross-sectional TEM image showing a dislocation-free Si0:70Ge0:30 cap
layer which is grown on a graded SiGe bu®er layer. The thick, bright white line
running from the top to the right of the ¯gure is a quantum well light-emitting
diode. Adapted from Fitzgerald (1995). Reproduced with permission from E.A.
Fitzgerald, Massachusetts Institute of Technology.

substrate light emitting diodes (LEDs). Similarly, GeSi alloy epilayers need to be
relaxed to the bulk state for infrared detectors and devices requiring biaxial tensile
layers. Such relaxation of mismatch strains necessitates the introduction of mis¯t
dislocations. The objective then is to control the density and kinetics of threading
dislocations in the relaxed epilayers so that certain wavelength emitting quantum
wells could be protected and the device performance enhanced.

A di®erent situation { one in which it is desirable to relax all mismatch strain
in a SiGe/Si epitaxial ¯lm structure { arises in seeking a means to integrate direct
bandgap III-V compound semiconductors into Si-based systems in order to exploit
the optical properties of the direct bandgap materials. A fully relaxed SiGe ¯lm for
which the free surface has high Ge content provides a growth surface with lattice
parameter comparable to that of GaAs. If the relaxed SiGe ¯lm also has a low
density of threading dislocations, it provides a substrate surface for deposition of
high-quality ¯lms of GaAs or other III-V semiconductor ¯lms.

The stress relaxation of the SiGe ¯lm proceeds by formation of mis¯t disloca-
tions which are left behind as threading dislocations propagate throughout the ¯lm.
The goal is to force all of the threading dislocations to the edges of the wafer so that
they cannot be extended into the layer to be deposited subsequently. To achieve
this end, it is desirable to grow a low-mismatch layer at a high temperature in
such a manner that it is relaxed without a high threading dislocation density. This
relaxed layer could then be used to grow another layer on top of it with the same
stepwise increase in lattice constant. This process could be repeated to generate a
gradual change in lattice constant in a multilayer structure. In the limit, a linearly
graded composition results where a virtual bu®er layer of an alloy (such as GeSi or
InGaAs) with varying composition in the ¯lm thickness direction is created on a
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bulk substrate. Proper grading of composition facilitates the suppression of rapid
dislocation nucleation, and the enhancement of dislocation glide. Thus, proper
compositional grading leads to relaxed heteroepitaxial layers with low threading
dislocation densities.

17µm

Fig. 7.14. EBIC image showing the plan view of the cap layer where a low density
of threading dislocations, revealed as black dots, is seen. Adapted from Fitzgerald
(1995) and Fitzgerald et al. (1991, 1999). Reproduced with permission from E.A.
Fitzgerald, Massachusetts Institute of Technology.

Figure 7.13 is a cross-sectional TEM micrograph of a SiGe alloy whose com-

position is graded from the Si substrate to the cap layer of Si0:70Ge0:30 over a

distance of approximately 0.25 ¹m. Note the slow grading of composition at ap-

proximately 10% Ge/¹m. The cap layer is a Si0:70Ge0:30 alloy with a uniform

thickness of 1.5 ¹m. Note that the cap layer with 30% Ge has no dislocations as

a result of the introduction of the graded bu®er layer. Had the Si0:70Ge0:30 cap

layer been grown directly on the Si substrate, a high rate of dislocation nucleation

would have resulted in a high density of threading dislocations. Figure 7.14 is a

plan-view EBIC image of the relaxed Si0:70Ge0:30 layer of the same system shown

in Figure 7.13. The black dots in Figure 7.14 are individual threading disloca-

tions. The threading dislocation density is of the order of 1010 m¡2. This is some

three orders of magnitude smaller than that expected for a uniform composition

Si0:70Ge0:30 alloy grown directly on Si.

7.4 Continuum analysis of ideally plastic films

The issue of elastic strain relaxation has been discussed up to this point

within the framework of formation, growth and interaction of glide disloca-
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tions. While such an approach provides considerable physical insight, the

prospect of developing quantitative models of experimentally observed phe-

nomena in material systems exhibiting high dislocation densities in this way

is remote. The bene¯ts of such modeling must be seen in the trends in be-

havior that are predicted, in the sensitivity of predicted response to values of

parameters incorporated to characterize the models, and in the admissible

forms of constitutive equations implied. The most likely circumstances for

capturing important aspects of physical behavior with dislocation models are

probably in the study of ¯lms with low dislocation density, such as epitaxial

semiconductor ¯lms. In this section, the task of modeling inelastic behavior

of ¯lms is addressed for the opposite extreme of relatively high densities of

dislocations, typical of metal ¯lms. In such cases, the tools of continuum

plasticity theory can be adopted. These tools include constitutive equations

that serve as models of the behavior of materials. The underlying phenom-

ena are simply too complicated to represent in any complete or exact sense.

Instead, constitutive equations involving a few parameters, values of which

must be determined by experiments, are used as approximate representa-

tions of these phenomena for practical purposes. The transition between

discrete dislocation modeling and continuum plasticity modeling remains a

work in progress, and some aspects will be addressed later in this chapter.

Continuum descriptions of the evolution of stress, substrate curvature

and plastic deformation also provide a useful and broad framework with

which experimental observations of strain relaxation in thin ¯lms on sub-

strates can be assessed. As shown in later sections of this chapter, such

analyses provide some tools with which the plastic deformation response

can be experimentally determined by recourse to methods such as substrate

curvature measurement, x-ray di®raction or indentation.

7.4.1 Plastic deformation of a bilayer

The issue of substrate curvature in an elastic bilayer system with arbi-

trary layer thicknesses was considered in Section 2.2.1, where results were

presented for the variation of equi-biaxial stress through the thickness of

isotropic ¯lm-substrate systems for any ratio of thicknesses and any ratio

of elastic moduli. In this section, extensions of these results into the realm

of plastic response are pursued whereby useful insights into the conditions

governing the onset and spread of plastic °ow in the bilayer can be extracted.

If one or both of the materials are modeled as being elastic-ideally plas-

tic, then the methods adopted for study of elastic response can be extended

to establish conditions for onset of plastic deformation and the progression
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of plastic °ow through the thickness of the system. This line of reasoning

is pursued in this section for the case when stress in the ¯lm-substrate sys-

tem is a consequence of mismatch in thermal expansion properties between

the two materials involved; the typical system comprises a metal ¯lm with

a relatively high coe±cient of thermal expansion bonded to an insulating

substrate with the relatively low coe±cient of thermal expansion. As shown

by ?, certain speci¯c values of temperature can be identi¯ed with the onset

of plastic deformation and with transitions in the overall response arising

from plastic deformation.

The discussion here follows directly from that in Section 2.2. A ¯lm

of thickness hf is bonded to a substrate of thickness hs, with no restrictions

on the thickness ratio. The stress and deformation ¯elds are referred to

a cylindrical coordinate system with polar coordinates in the plane of the

system and with the z¡direction normal to the interface; the origin of coor-

dinates lies in the substrate midplane. The equi-biaxial stress components

are referred to polar coordinates, but they could equally well be expressed

in rectangular coordinates. As long as the response is in the range of geo-

metrically linear behavior, the common shape of the ¯lm and substrate in

plan view is immaterial. As in Section 2.2, the biaxial elastic moduli of

the ¯lm and substrate are Mf and Ms, respectively, and the corresponding

coe±cients of linear thermal expansion are ®f and ®s, respectively.

The ¯lm material is assumed to be elastic{ideally plastic for the time

being; the in°uence of strain hardening in the course of plastic strain accu-

mulation will be considered subsequently. The substrate material is taken to

be elastic, although the analysis can be generalized to account for the onset

of plastic deformation in both the ¯lm and the substrate. For plastically

incompressible material response, the condition on stress for plastic yield

due to equi-biaxial tension ¾ acting on a material element is identical to the

condition under uniaxial compression of the same magnitude. Consequently,

the conditions for plastic yielding under equi-biaxial stress conditions can

be expressed in terms of a uniaxial yield or °ow stress. As will be seen sub-

sequently, however, the overall plastic response under biaxial deformation

is di®erent from that for uniaxial deformation. It is assumed that, at any

temperature T , there is a level of stress denoted by ¾Y(T ) > 0 such that

the material responds elastically when the equi-biaxial stress ¾ is such that

j¾j < ¾Y(T ) and that plastic °ow may occur when j¾j = ¾Y(T ). The range

j¾j > ¾Y(T ) is inaccessible. In the case of equality, whether or not plastic

°ow does occur depends on whether or not an increment in plastic strain,

due to an increment in temperature in this case, corresponds to a positive

or negative plastic dissipation of mechanical work in the material; only in-



534 Dislocation interactions and strain relaxation

crements in plastic strain resulting in positive dissipation are admissible.

Although the behavior of the system can be given a more formal mathemat-

ical description, the response in the present case is evident without doing so.

When referring speci¯cally to the ¯lm material, the °ow stress is denoted

by ¾Yf .

Some state of the ¯lm{substrate system is identi¯ed as the initial state.

The temperature in this state is the reference temperature To, and T repre-

sents the current temperature. All components of stress and plastic strain

are presumed to be equal to zero in the reference state; minor modi¯cations

are required to consider any other initial state. The reference substrate cur-

vature is also zero at To. A change in temperature from the reference state

is denoted as T = T ¡ To in all subsequent discussion.

The in-plane extensional strain and curvature in the ¯lm-substrate

system arises as a consequence of thermal expansion mismatch between the

¯lm and substrate materials during temperature excursion from the refer-

ence temperature. Conditions are assumed to be such that the temperature

is uniform throughout the ¯lm and substrate at all times during thermal

cycling. Some particular temperatures at which distinct transitions occur

in the elastoplastic deformation of the ¯lm material are ¯rst identi¯ed by

adopting the assumption that, over the range of temperature, the properties

of the ¯lm and substrate materials remain essentially unchanged; e®ects of

temperature dependence of plastic yield or °ow behavior on the evolution

of ¯lm stress and substrate curvature are examined subsequently.

The variations of elastic equi-biaxial stress and in-plane extensional

strain through the thickness of a ¯lm{substrate system of arbitrary layer

thickness were described in Section 2.2 for the case of arbitrary mismatch

strain ²m; a distribution of the in-plane extensional strain through the thick-

ness of a ¯lm-substrate system is illustrated in Figure 2.5. Combining the

results of (2.19) through (2.21) with (2.31), the variation of radial and cir-

cumferential stress components ¾rr and ¾θθ, respectively, through the layer

thickness during thermal excursion from the reference temperature prior to

plastic yielding is

¾rr(z) = ¾θθ (z) =

8><>:
Ms (²o ¡ ∙z) for ¡1

2hs < z < 1
2hs;

Mf (²o ¡ ∙z + ²m) for 1
2hs < z < 1

2hs + hf
(7.37)

where the curvature ∙ of the substrate midplane is given in (2.19), the in-

plane extensional strain ²o of the substrate midplane is given in (2.20), and
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the mismatch strain is

²m = (®s ¡ ®f)T (7.38)

in this case.

In terms of the thickness ratio ´ = hf=hs and the modulus ratio m =

Mf=Ms, the curvature ∙ and midplane extensional strain ²o appearing in

(7.37) are

∙ =
6²m
hs

∙
´m

1 + 4´m+ 6´2m+ 4´3m+ ´4m2

¸
; (7.39)

²o = ¡²m

∙
m´(1 + ´3m)

1 + 4´m+ 6´2m+ 4´3m+ ´4m2

¸
: (7.40)

It follows from the through-the-thickness pro¯le of biaxial stress given in

(7.37) that the location of the stress of largest magnitude in the ¯lm is at

the ¯lm-substrate interface z = 1
2hs. The sign of the stress there is the same

as the sign of ²m. It follows that the change in temperature at which the

stress in the ¯lm ¯rst satis¯es the plastic yield condition, say TY, is given

by

TY(®s ¡ ®f) = §¾Yf
Mf

"
1 + 4´m+ 6´2m+ 4´3m+ ´4m2

1 + 3´2m+ 4´3m

#
: (7.41)

The upper sign on the right side applies if ²m > 0, whereas the lower sign

applies if ²m < 0. This is consistent with the intuitive notion that the

¯lm will yield in tension (compression) if the mismatch strain is positive

(negative). The substrate curvature at ¯rst yield, say ∙Y, is given by

∙Y = § 6¾Yf
hsMf

∙
´m(1 + ´)

1 + 3´2m+ 4´3m

¸
(7.42)

where the sign is chosen as in (7.41). In other words, if the ¯lm yields

plastically in tension, then the substrate curvature is positive, or concave

to the ¯lm side, whereas the curvature is negative if the ¯lm ¯rst yields in

compression.

With further increase in the magnitude of temperature di®erence T ,

the edge of the zone of plastically deforming ¯lm material advances from

the interface to the free surface, whereupon the entire ¯lm is deforming

within the plastic range. The temperature di®erence at which the plastic

region extends completely across the ¯lm thickness is denoted by T pl. Upon

reaching this temperature di®erence, the distribution of equi-biaxial stress

in the ¯lm is uniform and is given by

¾rr(z) = ¾θθ(z) = §¾Yf (7.43)
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throughout 1
2hs < z < 1

2hs + hf . In the substrate, the stress distribution

varies linearly across the thickness according to

¾rr(z) = ¾θθ(z) = ¨¾Yf

∙µ
z

hs
+

1

2

¶
´(4 + 3´) +

µ
z

hs
¡ 1

2

¶
´(2 + 3´)

¸
(7.44)

for 1
2hs < z < 1

2hs where the sign is again chosen in a manner consistent

with the convention established in (7.41). This stress distribution does not

change with further increase in the magnitude of T beyond T pl.

The corresponding extensional strain and curvature of the substrate

midplane are

²o = ®sT ¨ ¾Yf
Mf

m´(4 + 3´) ; (7.45)

∙pl = § 6¾Yf
hsMf

m´(1 + ´) ; (7.46)

respectively. For the assumptions invoked in lthe results leading up to this

point, that is, for elastic{ideally plastic response of the ¯lm material with

no dependence of °ow stress on temperature, the substrate curvature ∙pl
is a limiting value which remains unchanged during further increase in the

magnitude of temperature di®erence. However, the extensional strain of the

midplane as given in (7.45) continues to vary linearly with increasing magni-

tude of temperature T , albeit at a di®erent rate with respect to temperature

than that given by the elastic solution (7.40). This is solely a thermoelastic

response, and it is accommodated by ongoing plastic °ow at constant stress

in the ¯lm.

Combining (7.37) and (7.38) with (7.46), the temperature change from

the reference state beyond which the curvature of the bilayer remains unal-

tered with further increase in the magnitude of temperature change can be

written in nondimensional form as

T pl (®s ¡ ®f) = §¾Yf
Mf

h
1 +m´(4 + 9´ + 6´2)

i
: (7.47)

Figure 7.15 schematically shows the transitions in the onset and spread

of plastic yielding in a bilayer comprising an elastic{ideally plastic ¯lm on an

elastic substrate, in response to an increase in temperature from a reference

state, presuming that ®s < ®f and that T > 0. The temperature increase

TY at which plastic yielding commences in the ¯lm and the temperature

change T pl at which the entire ¯lm material ¯rst becomes fully plastic are

marked on this ¯gure. Note that the substrate curvature varies linearly

with temperature when both the ¯lm and substrate are elastic, that is, for

T < TY; beyond this point, the slope of the curvature versus temperature
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Fig. 7.15. Schematic representation of the variation of substrate curvature ∙ as a
function of the temperature change T for an arbitrary bilayer for which ®s < ®f . It
is assumed that the ¯lm material is an elastic{ideally plastic solid whose properties
do not vary with temperature. The onset of plastic yielding at T = TY and of
complete yielding at T = T pl of the ¯lm material and the corresponding substrate
curvatures, ∙Y and ∙pl, respectively, are marked in the ¯gure. Note that reversing

the temperature from T < T r;el to T = 0 produces only elastic unloading with
residual curvature ∙res.

plot becomes nonlinear. As described in Section 7.7.3, this transition point

can be used to extract the plastic yield strength of a ¯lm material from a

thermal cycling experiment using any of the substrate curvature measure-

ment methods described in Section 2.3. Once the ¯lm becomes fully plastic

at T pl, the substrate curvature attains a critical value ∙pl which remains

unaltered with further change in temperature. This transition point can

also be determined experimentally from the development of a plateau in the

substrate curvature versus temperature plot, provided that the response of

¯lm material is captured by as elastic{perfectly plastic idealization with a

temperature-independent yield strength over the range of temperature of in-

terest. If ®s > ®f and/or if the temperature is decreased from the reference

value, behavior is as shown in the Figure 7.15, but with the curves re°ected

with respect to one or both of the coordinate axes.

The development of thermal mismatch strain in the bilayer is accom-

modated by either substrate bending, by plastic yielding in the ¯lm, or by

the in-plane extensional strain ²o. Once the ¯lm material becomes fully plas-
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tic at T pl, the ¯rst two of these three avenues of strain relief are exhausted,

and any further change in thermal mismatch strain due to a change in tem-

perature is accommodated solely through a change in ²o, as indicated by

(7.45).

Conditions governing the onset of reverse yielding during thermal cy-

cling can also be identi¯ed for the present problem (?). As the temper-

ature is raised beyond TY, there exists another critical temperature, say

T = T r,el, such that unloading at or prior to this temperature leads only to

elastic deformation without reversed plastic °ow in the ¯lm. If the tensile

and compressive yield strengths of the elastic{ideally plastic ¯lm are equal,

elastic unloading is ensured when the temperature is reversed from a value

smaller than

T r,el = 2TY : (7.48)

The temperature T r,el is also indicated in Figure 7.15. If the bilayer is

subjected to thermal cycles between the temperature limits T = 0 and T =

T r, el, there is no net accumulation of plastic strain with increasing number of

thermal cycles, and the system is said to have undergone elastic shakedown.

The relative magnitudes of TY, T r,el and T pl are strongly in°uenced by the

elastic modulus ratio m and the thickness ratio ´ for the ¯lm{substrate

system.

If the substrate is also an elastic{ideally plastic material with yield

strength magnitude ¾Ys , it follows from (7.37) through (7.40) that plastic

yielding will always commence at the interface within the ¯lm material and

that it there will be no yielding in the substrate material if

¾Yf
¾Ys

<
1 + 3´2m+ 4´3m

´(4 + 3´ + ´3m)
: (7.49)

Note that the magnitude of stress in the substrate is higher after full plastic

yielding of the ¯lm than at the onset of yielding in the ¯lm. It can also be

easily shown from (7.44) that, if the substrate were also to be an elastic{

ideally plastic metal with equal yield strength magnitude ¾Ys in tension and

compression, it would remain in the elastic range along its entire thickness

if
¾Ys
¾Yf

> ´(4 + 3´) : (7.50)

7.4.2 Thin film subjected to temperature cycling

If the ¯lm bonded to a substrate is thin enough compared to the substrate,

say for ´ = hf=hs ∙ 0:025, the state of stress within the ¯lm material is essen-
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tially uniform throughout its thickness and the deformation response does

not depend on the deformation of the substrate (see Chapter 2). These are

the essential features of the thin ¯lm approximations underlying derivation

of the Stoney formula, and they can be invoked here to great advantage.

Along with the property of translational invariance of the ¯lm{substrate

structure in directions parallel to the interface, these features imply that

the total in-plane biaxial strain at any point in the ¯lm, consisting of elas-

tic strain plus plastic strain plus thermal strain, does not change during

temperature cycling. This observation enables a useful picture of the ¯lm

response during excursions in ambient temperature. Circumstances at the

¯lm edges will be discussed subsequently.

For a start, the critical temperatures for the onset and spread of plas-

ticity in the thin ¯lm can easily be determined from the results obtained

in the preceding section for the bilayer of arbitrary layer thickness. For a

thin ¯lm on a relatively thick substrate, consider ¯rst the situation where

the ¯lm is elastic{ideally plastic with equal magnitudes of yield strength in

tension and compression which do not vary with temperture. In this case,

the temperature TY at which plastic yielding ¯rst occurs in the ¯lm and the

temperature T pl at which plastic °ow has spread throughout the ¯lm thick-

ness di®er only in second-order terms involving the small thickness ratio

´ = hf=hs. Consequently, these two temperatures which de¯ne transitions

in behavior are virtually identical for thin ¯lms. Similarly, the correspond-

ing values of substrate curvature, ∙Y at ¯rst yield and ∙pl for fully plastic

response, are also identical to ¯rst-order in the small ratio ´ = hf=hs, so that

they are also indistinguishable for thin ¯lms. Thus, for thin elastic-ideally

plastic ¯lms on relatively thick substrates

TY = T pl =
¾Yf

Mf (®s ¡ ®f)
; ∙Y = ∙pl =

6¾Yfhf
Msh2s

: (7.51)

Now consider the system comprising the thin elastic{ideally plastic

¯lm on a relatively thick elastic substrate which is subjected to a tempera-

ture history as shown in the inset of Figure 7.16. Starting from the reference

temperature T = T ¡ To = 0, the temperature is ¯rst increased to Tmax,

then decreased to zero, and then again increased to Tmax. This history is

plotted against `time' but, because no aspect of the response is sensitive to

rate of deformation, the detailed shape or `waveform' of the curve of tem-

perature versus time is unimportant except for the general property that it

varies monotonically from zero to Tmax, decreases from Tmax to zero, and

again increases to Tmax.

The stress response of the ¯lm is constructed in Figure 7.16. The
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Fig. 7.16. Stress{temperature history for a thin ¯lm of elastic{ideally plastic ma-
terial on a relatively thick substrate during a temperature excursion. The tensile
yield stress of the ¯lm material depends on temperature according to ¾Y(T ). After
one temperature cycle, the response adopts a cyclic behavior for ¯xed temperature
limits.

stress{temperature response is con¯ned to the range between the dashed

°ow stress{temperature yield curves j¾j = ¾Y(T ) in this plane; if not on a

yield locus, the response must follow a straight line with slope ¡Mf®f for

j¾j < ¾Y(T ). Starting from the point where the stress magnitude equaled

some arbitrary initial stress ¾ = ¾0 and T = 0, the equi-biaxial stress de-

creases elastically along a straight line until the lower stress{temperature

yield locus is reached. Thereafter, the stress increases gradually due to the

assumed thermal softening of the material during heating until the temper-

ature Tmax is reached at the stress level ¾Y(Tmax). As the temperature is

reduced from Tmax, the material undergoes a stress reversal with its magni-

tude following a straight line with slope ¡Mf®f for j¾j < ¾Y(T ) and passing

through zero to tensile values. Upon reaching the upper stress-temperature

yield locus, extensional in-plane plastic strain begins, and it continues until

the temperature is reduced to zero at a stress level of ¾Y(0). If the temper-

ature is again increased from zero to Tmax, the response follows an elastic

line to the lower yield locus, and then moves along that yield locus until the

point at which T = Tmax is reached. For further cycling of the tempera-

ture between the limits zero and Tmax, the response follows the closed loop

established in Figure 7.16.
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Once the stress history is determined or, equivalently, once the de-

pendence of stress on temperature of a prescribed temperature history is

determined, the dependence of curvature on time or on temperature follows

immediately from the Stoney formula (2.7) for thin ¯lms. Qualitatively,

the stress versus temperature history depicted in Figure 7.16 captures the

essential features of observations such as those reported by Doerner et al.

(1986) and Shen and Suresh (1995a) for Al ¯lms on the Si substrates. Stress

variations based on more complex constitutive behavior are considered in

the following sections.

7.5 Strain-hardening response of thin films

In this section, the description of plastic response as it applies to the behavior

of thin metal ¯lms is broadened signi¯cantly. The ideas of a range of elastic

behavior and of a condition for plastic yielding were adopted in the preceding

section in order to discuss plastic response under thermal cycling in the most

idealized circumstances. Here, the basic tenets of rate-independent plasticity

theory are brie°y reviewed so that subsequent discussion can be placed in

the broader setting of plastic yield conditions, history dependence of plastic

deformation and °ow rules relating plastic strain to the prevailing state of

stress in the material. The topic of rate-dependent plastic deformation will

be addressed in the following section in the same vein.

No single choice of constitutive relation for a material can be expected

to provide an accurate description of behavior in all circumstances. On

the other hand, some structure of constitutive representation of the ma-

terial must be adopted as a basis for comparison and correlation of data

and, ultimately, to make predictions of material behavior for prescribed cir-

cumstances. A few of the unifying concepts in constitutive theory for rate-

independent deformation of solids, primarily metals, that exhibit permanent

deformation are summarized. Once a constitutive structure is established,

the concepts are specialized to the states of stress and deformation typical

of thin metal ¯lms.

The ¯rst of the concepts of broad applicability is the existence of

a yield surface in stress space; this same quantity is known by a variety of

names, including yield locus, the elastic limit surface and yield function. The

function de¯ning the surface is denoted by Á and its role is to identify the

boundary of the elastic range in a space spanned by the stress components

¾ij . In the most general circumstances to be considered here, this function

takes the form

Á(¾ij; ») ´ ©(¾ij ¡ ®ij(»))¡ ¯(»); (7.52)



542 Dislocation interactions and strain relaxation

where ©(¢) is a prescribed function which de¯nes the shape of the yield

surface in stress space. The scalar » is an internal variable that represents

history of deformation in some way; the most common choices of history

variables are measures of accumulated plastic strain and dissipated plastic

work per unit volume at the material point. In some cases, more than one

such internal variable representing history of deformation is found to be

useful. The quantity ®ij is a reference stress, sometimes called a back stress,

that identi¯es the location of the yield surface in the stress space. Finally,

¯ is a history dependent quantity that speci¯es the size of the yield surface

in stress space. The condition Á(¾ij; ») = 0 de¯nes the yield surface for

any particular value of ». In general, the plastic strain rate vanishes for

any stress state for which Á < 0, and stress states for which Á > 0 are

inaccessible. If Á = 0 for a particular state of stress, plastic strain rate may

be nonzero but it is not necessarily so.

A concept that has been central to the development of relationships

between plastic strain rate and current state of stress, which are the flow

rules of plasticity, underlies the postulate of a maximum plastic resistance.

This postulate can be stated in the following way. Consider an elastic{

plastic material under circumstances in which the state of stress ¾ij satis¯es

the yield condition Á(¾ij ; ») = 0. In geometrical terms, ¾ij is a point on the

surface Á(¾ij; ») = 0 in stress space. Let ¾∗ij be any stress that is distinct

from ¾ij , being either inside or on the yield surface. According to this

postulate, the rate of plastic strain _²pij will always adopt values for which

the actual rate of plastic dissipation ¾ij _²
p
ij is equal to or greater than the

rate of plastic dissipation ¾∗ij _²
p
ij for any other possible stress state, or

¾ij _²
p
ij ¸ ¾∗ij _²

p
ij : (7.53)

Immediate consequences of the postulate are that the yield function de¯nes

a convex surface in stress spacey and that the plastic strain rate _²pij is normal

to the yield surface at any point at which the surface is smooth. General-

ization of the feature of normality to surfaces with an edge or an apex is

straightforward. The feature of normality implies that

_²pij = ¤
@Á

@¾ij
; (7.54)

where ¤ is a scalar function of stress ¾ij, stress rate _¾ij and history ».

The relation (7.54) is usually called the associated flow rule, re°ecting the

† A surface in stress space is said to be convex if, for any two states of stress σ(a)ij and σ
(b)
ij either

inside or on the yield surface, all states of stress σij = λσ
(a)
ij + (1− λ)σ

(b)
ij for 0 ≤ λ ≤ 1 are

also either inside or on the yield surface.
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connection between the yield function and the plastic strain rate implied by

a a particular stress on the yield surface.

To render the response rate-independent, the quantity ¤ must be lin-

ear in _¾ij. In approximate terms, any stress rate that is directed from the

yield surface into the elastic range of response, or that is tangent to the yield

surface with _¾ij @Á=@¾ij = 0, induces no plastic deformation. This implies

that only the component of _¾ij acting in the direction of the outward yield

surface normal contributes to plastic strain. It follows that (7.54) must have

the form

_²pij =
1

H

@Á

@¾ij

@Á

@¾kl
_¾kl; (7.55)

where H is a scalar function of plastic deformation history which must be

speci¯ed in a way that renders it consistent with the yield condition. The

relationship applies as long as Á = 0 and _¾ij @Á=@¾ij0 > 0; otherwise, the

plastic strain rate is zero. Once the yield function Á and a hardening function

H are chosen, the plastic response is fully speci¯ed. Two particular idealized

hardening rules { isotropic hardening and kinematic hardening, both with

and without temperature dependent yield characteristics { are considered

here. In the former case, the yield surface expands in stress space in a

self-similar fashion without translation whereas, in the latter case, the yield

surface translates in stress space without change in shape or size. In terms

of the general form of the yield function in (7.52), isotropic hardening is

the special case with ®ij ´ 0 and kinematic hardening is the special case

with ¯ = constant. Combinations of these two e®ects can be considered in

order to capture various subtleties in plastic behavior. The case of isotropic

hardening is examined next.

7.5.1 Isotropic hardening

Assume that plastic response of the material is isotropic. This is usually

a reasonable assumption when considering initial yielding of a material or

when ongoing plastic deformation occurs without load reversals or stress

cycling. The condition of isotropy implies that the yield function can de-

pend on stress only through the principal stresses or, equivalently, through

the scalar invariants of stress. For metals deforming plastically by crystal-

lographic slip under common circumstances, response is insensitive to mean

normal stress or pressure, the ¯rst stress invariant. A stress measure that

has been central to the description of isotropic plastic response of metals

under combined stress loading is the Mises stress (Von Mises 1913). This is
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a scalar equivalent stress denoted by ¾M and de¯ned in terms of the values

of principal stresses ¾1, ¾2, ¾3 at a point as

¾M =
q
1
2 [(¾1 ¡ ¾2)2 + (¾2 ¡ ¾3)2 + (¾3 ¡ ¾1)2] : (7.56)

This stress measure has the properties that it is invariant under coordinate

transformations, that it is insensitive to changes in hydrostatic stress, that

it has the same value under reversal of sign of all stress components, and

that its value is equal to the magnitude of the tensile or compressive stress

for the special case of uniaxial state of stress. From its de¯nition in terms

of di®erences of principal stress values, it is seen that ¾M is a measure of

the tendency for shear of any state of stress. Because inelastic deformation,

particularly deformation due to dislocation glide or twinning, is essentially

a shearing response, the usefulness of ¾M as a driving force for such a re-

sponse is not surprising. An equivalent de¯nition of Mises stress in terms of

deviatoric stress components sij is

sij = ¾ij ¡ 1
3¾kk±ij ) ¾M =

q
3
2sijsij : (7.57)

If the plastic response remains essentially isotropic, then there must

be an equivalent plastic strain measure, having the form of some function

of the principal values of the plastic strain rate tensor, such that the Mises

stress times the equivalent plastic strain rate is the local rate of plastic work

per unit volume of material. In terms of the principal plastic strain rates

_²p1 , _²
p
2 and _²p3, this equivalent plastic strain rate is de¯ned as

_²pM =
q
2
9 [( _²

p
1 ¡ _²p2)

2 + (_²p2 ¡ _²p3)
2 + (_²p3 ¡ _²p1)

2] : (7.58)

The subscript `M' is included to indicate that this plastic strain rate measure

is work-conjugate to ¾M, so that ¾M _²pM is the plastic work rate per unit

volume of material.

The most commonly adopted isotropic yield function is the von Mises

yield function which depends on stress only through the equivalent stress

¾M. If the accumulated equivalent plastic strain ²pM, which is a nonnegative

measure of the history of plastic deformation, is adopted as a particular

choice of the history parameter », then

Á(¾ij; ») ´ ¾M ¡ ¯(²pM) : (7.59)

In this case, the associated °ow rule (7.55) takes the form

_²pij =
3

2

1

H(²pM)

_¾M
¾M

sij : (7.60)
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If the magnitude of each side of this expression is formed, it follows that

_²pM =
_¾M

H(²pM)
; (7.61)

so that H emerges as the tangent modulus of the ¾M versus ²pM relationship

during plastic °ow according to an isotropic hardening rule. Note that

the condition Á(¾ij ; ») = 0 must be satis¯ed identically in time, so that

_¾M = ¯I(²pM) _²
p
M where the prime denotes di®erentiation of ¯ with respect to

its argument. It follows that the functions ¯ and H must be related by

¯I(²pM) ´ H(²pM) (7.62)

for consistency. In view of (7.61), either of these functions of e®ective plastic

strain can be determined from a single experimental stress{strain curve for

monotonic loading, and the result completes speci¯cation of the °ow rule

(7.60) for any stress history and isotropic hardening.

Consider some simple cases in which the direction of principal stress

and deformation are aligned with the directions of xyz coordinate axes.

For the special case of plastic straining due to a uniaxial tensile stress, say

¾xx = ¾ with all other stress components being zero, the Mises stress is

¾M = j¾j. For a plastically isotropic response, the plastic strain rate in

the x¡direction is denoted by _²pxx = _²p where _²p has the same sign as ¾.

The other two principal plastic strain rates are then equal to each other

with values _²pyy = _²pyy = ¡1
2 _²
p for deformation without volume change. The

equivalent plastic strain rate is _²pM = j _²pj. The product ¾M _²pM = ¾ _²p is

clearly the rate of plastic work per unit volume in this case.

Another special state of stress of particular relevance for the study of

thin ¯lms is equi-biaxial tension, say ¾xx = ¾zz = ¾ with all other stress

components being equal to zero in value. The Mises stress in this case is

again ¾M = j¾j. The nonzero components of plastic strain rate in this case

are _²pxx = _²pzz = _²p, _²pyy = ¡2_²p for plastic response that is isotropic and

incompressible. It follows that _²pM = 2j _²pj. Consequently, the rate of plastic

work per unit volume in this case is ¾M _²pM = 2¾ _²p, as expected. For the case

of equi-biaxial stress and strain, the relationship between plastic strain rate

and stress rate given in (7.60) becomes

_¾

_²p
= 2H(²pM) (7.63)

where ²pM is twice as large as the equivalent strain under uniaxial conditions,

as was noted above. It is noteworthy that the hardening rate under biaxial

loading, as represented by (7.63), is signi¯cantly larger than for the same

material under uniaxial loading at the given level of stress.
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7.5.2 Example: Temperature cycling with isotropic hardening

A thin ¯lm of rate-independent elastic-plastic material is subjected to temperature
cycling between some reference absolute temperature To and a higher temperature
To + T . The ¯lm material exhibits isotropic strain hardening, and the quantity ¯
in the yield function (7.59) has been determined to be

¯(²pM ) = ¾Yf

∙
1 +

²pM
¾Yf

Ef

¸N
(7.64)

from a uniaxial stress experiment, where ¾Yf
is the initial tensile yield stress, Ef

is the elastic modulus and N = 0:2. This is an example of power-law hardening
behavior. The temperature is cycled su±ciently slowly so that the temperature
distribution can be assumed to be uniform throughout the material. The initial
stress in the ¯lm is zero in this case and ºf = 0:3.

(a) If ¾Yf
and other parameters do not depend on temperature, determine the history

of normalized equi-biaxial stress ¾=¾Yf
versus temperature for the range 0 ∙

Ef(®f ¡ ®s)T=¾Yf
∙ 2 in the ¯lm.

(b) Suppose that the quantity ¾Yf
is the initial yield stress at temperature To =

2¾Yf
=(®f ¡ ®s)Ef , and that the initial yield stress at a higher temperature T > 0

is ¾Yf
To=(To+T ) for the range 0 ∙ T ∙ To. Determine the history of normalized

equi-biaxial stress in the ¯lm in terms of normalized temperature within this
temperature range.

Solution:

(a) For a thin ¯lm on a relatively thick substrate, the ¯lm strain is not altered
signi¯cantly by deformation of the substrate. Consequently, it remains constant
during temperature cycling. The contributions to the total equi-biaxial strain in
this case are the elastic strain ¾(t)=Mf , the thermal strain (®f ¡®t)T (t) and the
plastic strain ²p(t). The time rate of change of total strain, which is the sum of
these three contributions, is zero or

_¾(t)

Mf
+ (®f ¡ ®s)

_T (t) + _²p(t) = 0; (7.65)

where the plastic strain rate is given in terms of stress by (7.63). The initial
condition is ¾(0) = 0. This ordinary di®erential equation is readily recast in
terms of the normalized stress and normalized temperature identi¯ed above, and
the resulting di®erential equation is integrated numerically. The temperature T
is cycled between zero and its maximum value, but the results are insensitive to
its actual time dependence. For present purposes, the form

T (t) =
2¾Yf

(®f ¡ ®s)Ef
sin2(3¼t) ; 0 ∙ t ∙ 1 (7.66)

is found to be convenient. The result of the numerical integration for the ¯rst
three cycles is shown by the solid curve in Figure 7.17.
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Fig. 7.17. Variation of normalized equi-biaxial ¯lm stress as a function of normal-
ized temperature, for the example considered in Section 7.5.2 where the ¯lm mater-
ial is modeled as an isotropically hardening solid. The solid lines denote the response
obtained from the numerical integration of (7.65) for the ¯rst three thermal cycles
where it is assumed that the material properties do not vary with temperature, over
the range considered. The dashed lines denote the corresponding behavior for the
case where the thin ¯lm plastic response is taken to be temperature-dependent.

(b) If the plastic response of the material is temperature dependent as prescribed,
the procedure for ¯nding stress is essentially unaltered. The only modi¯cation
required from part (a) is that some coe±cients in the ordinary di®erential equa-
tion to be integrated for stress are now time dependent. The result of numerical
integration in this case for the ¯rst three cycles is shown by the dashed curve in
Figure 7.17.

7.5.3 Kinematic hardening

According to the assumption of isotropic strain hardening of an elastic{

plastic material, the yield surface expands or contracts in a geometrically

self-similar manner in stress space, as discussed in Section 7.5.1. In the ide-

alization of strain hardening commonly known as kinematic hardening, the

yield surface retains its shape and size during ongoing plastic straining but

the surface translates in stress space in a prescribed way. Kinematic hard-
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ening re°ects a feature that is common to most metal thin ¯lms undergoing

plastic deformation.

Suppose that plastic deformation ¯rst proceeds in a certain direction

of plastic strain rate due to a certain state of stress. Then, let the direc-

tion of stress be reversed to the point of causing plastic straining in the

opposite direction. If the magnitude of the stress at which reversed yielding

¯rst occurs is signi¯cantly less than the magnitude of the stress that caused

forward yielding, the ensuing asymmetry of plastic yielding upon reversal of

stress direction is called the Bauschinger e®ect (Bauschinger 1886). As re-

viewed in Suresh (1998), the origins of the Bauschinger e®ect in bulk metals

and alloys are related to changes in the internal stress systems arising from

the changes in dislocation substructure, from the interaction of dislocations

with other dislocations, particles or interfaces, and from the dissolution of

sub-grain boundaries during reverse loading. Structural obstacles opposing

the motion of dislocations generate a back stress during forword deforma-

tion; this back stress assists the motion of dislocations upon load reversal,

thereby leading to the asymmetry.

Contributions to strain hardening in a metallic material during for-

ward deformation may arise from a variety of mechanisms, including intrin-

stic hardening e®ects, such as solid solution strengthening, glide resistance

of grain boundaries or interfaces; interaction of mobile dislocations with in-

tersecting or forest dislocations in the ¯lm; and a back stress arising through

dislocation interactions at barriers to glide. The ¯rst two of these three ef-

fects must be overcome in essentially the same way for forward straining

as well as for reversed straining. However, the last of these three factors

aids reverse deformation rather than opposing it, thereby engendering the

Bauschinger e®ect.

For a thin metallic ¯lm on a thick substrate, deformation in the ab-

sence of any di®usive processes occurs by dislocation glide or mechanical

twinning. The likely scenario is that native oxide or the passivation layer

and the substrate serve as primary obstacles to shear deformation. Since

the thickness of the ¯lm is small, the spread of plastic deformation by cross

slip or dislocation climb is restricted. Instead, dislocations would simply

glide back and forth on the planes on which they were formed (Shen et

al. 1998). This process then provides a possible mechanism for the gen-

eration of back stress during cyclic variations in stress through dislocation

interactions, and a mechanistic rationale for the Bauschinger e®ect re°ected

in kinematic hardening response in thin metal ¯lms on elastic substrates.

This back stress can give rise to a size e®ect in plastic deformation of thin

¯lms (Kraft et al. 2002).
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The essential features of this asymmetry are represented by a yield

function that has the form (7.52) with ¯ being constant, independent of

deformation history. The location of the yield surface Á = 0 in stress space

for any given straining history represented by » is speci¯ed by the symmetric

tensor ®ij(»). If plastic deformation occurs with zero volume change, that

is, if ²pkk = 0 identically in time, then ®ij is a deviatoric tensor or ®kk = 0.

In this case, (7.52) takes the form

_²pij =
1

H

@©

@sij

@©

@skl
_skl; (7.67)

where H is again a scalar function of deformation history.

Many special forms of the dependence of ®ij on plastic straining his-

tory have been proposed in the literature (?). To make the discussion more

concrete, suppose that the yield function (7.52) is given by

© ´
q
3
2(sij ¡ ®ij)(sij ¡ ®ij) ; ®ij ´ °p(²

p
M )²pij; (7.68)

where °p is a scalar function of accumulated equivalent plastic strain. This

de¯nition of ®ij assumes that the 'origin' of the current yield locus in stress

space is displaced from its initial position in the direction of current plastic

strain. In this case, the associated °ow rule (7.67) takes the form

_²pij =
3

2H¯2
(sij ¡ °p²

p
ij)(skl ¡ °p²

p
kl) _skl : (7.69)

For uniaxial deformation with extensional plastic strain ²p in the direction

of tensile stress ¾, this reduces to

_²p =
1

H
_¾ : (7.70)

Thus, H again serves the role of uniaxial incremental strain hardening mod-

ulus, as in (7.61). Finally, the consistency condition in the case of kinematic

hardening is

H(²pM) = °Ip(²
p
M)²

p
M + °p(²

p
M) ; (7.71)

analogous to the corresponding result (7.62) for isotropic hardening.

Suppose that a thin ¯lm of elastic{plastic material bonded to an elastic

substrate is subjected to temperature cycling, as in the example discussed

in Section 7.5.2. Furthermore, suppose that the ¯lm material has precisely

the same uniaxial stress{strain response under monotonic loading as does

the material considered there. However, in the present context, the ¯lm

is assumed to strain harden according to the kinematic hardening idealiza-

tion. Under these circumstances of temperature cycling , with the conditions
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Fig. 7.18. Variation of normalized equi-biaxial ¯lm stress as a function of normal-
ized temperature, using conditions speci¯ed in the example in Section 7.5.2. The
¯lm material is now modeled as a kinematically hardening solid. The solid lines
denote the response obtained from the numerical integration of (7.65) for the ¯rst
three thermal cycles where it is assumed that the material properties do not vary
with temperature, over the range considered. The dashed lines denote the corre-
sponding behavior for the case where the thin ¯lm plastic response is taken to be
temperature-dependent.

described in Section 7.5.2, the stress versus temperature history that is ob-

tained by numerical integration of the di®erential equation (7.65) is shown

in Figure 7.18. For the ¯rst half cycle of temperature variation, the behavior

is identical to that illustrated in Figure 7.17. Thereafter, the two hardening

idealizations lead to signi¯cantly di®erent responses, even though the two

materials have identical uniaxial response under monotonic loading.

A more e®ective or versatile model for describing plastic response of

rate independent materials under complex loading histories is to adopt the

yield function which combines isotropic and kinematic hardening. The gen-

eral form of such a function is shown in (7.52), and the basic idea is to

consider both nonzero ®ij and a value of ¯ that depends on deformation

history. Any such model must be calibrated by appeal to an experimental

data set that is su±ciently rich in stress histories, both magnitude range

and deviation from straight line or proportional loading/unloading in stress

space, to deduce particular forms for the parameters involved.
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7.5.4 Proportional stress history

In some circumstances of plastic deformation under multi-axial states of

stress of practical interest, neither the principal stress directions nor the

ratios of principal stresses themselves change over the course of time. Stress

histories with this characteristic are called proportional stressing or propor-

tional loading histories. In such cases, the state of stress can be represented

by the value of a single time-dependent amplitude, the so-called stress fac-

tor or load factor, and the constant stress ratios. An elastic{plastic thin

¯lm sustaining an equi-biaxial stress is an example of a case of proportional

stressing. In this instance, the stress factor is the time-dependent magni-

tude of the equi-biaxial stress ¾ and the corresponding plastic strain rate _²p

is given by (7.63) for monotonic loading with ¾ ¸ ¾Y and either isotropic

hardening, kinematic hardening or some combination of the two forms of

hardening. Given the dependence of the hardening parameter on accumu-

lated plastic strain, that equation can be integrated to yield a relationship

between ¾ and ²p at constant temperature.

A particular choice of the function H that has found utility in the

study of thin ¯lms is

H(») = Cn»n−1 (7.72)

where C > 0 is a material constant with dimensions of stress and n is a

dimensionless number in the range 0 < n < 1. The implied relationship

between uniaxial stress and plastic strain for this hardening function is the

power-law hardening expression

¾ = C(²p)n for ¾ ¸ ¾Y : (7.73)

For the case of the same material subjected to equi-biaxial stress,

¾ = C(2²p)n for ¾ ¸ ¾Y (7.74)

with the same material parameters as in (7.73). For this description of

hardening, the stress level is 2n higher for a given level plastic strain during

biaxial stressing than during uniaxial stressing.

Another explicit relationship between equi-biaxial stress ¾ and its cor-

responding plastic strain ²p that has been found useful in describing thin

¯lm behavior is a variant of power law hardening in which current stress is

related to total strain, rather than only plastic strain, according to

¾ = C(²e + ²p)n for ¾ ¸ ¾Y ; (7.75)

where C and n are again assumed to be material parameters. Although it

is somewhat more awkward to cast this form of the relationship between
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stress and plastic strain in the form of the rate equation (7.63), it has the

advantage that C can be determined in terms of the biaxial elastic modulus

Mf and the yield stress ¾Yf of the ¯lm material. This is accomplished by

recognizing that ²e = ¾Yf=Mf and ²p = 0 when ¾ = ¾Yf during initial

loading, from which it follows that C = Mn
f ¾

1−n
Yf

.

Observations of plastic response of metal thin ¯lms deforming plas-

tically under conditions of proportional stressing with occasional stress re-

versals suggest that the monotonic loading stress-strain relation (7.75) can

also be used to describe response under stress reversal Shen et al. (1998).

Suppose that a ¯lm is deformed under forword loading according to (7.75)

until some state of stress ¾∗ and total strain ²∗ = ²e∗ + ²p∗ is achieved. Upon
stress reversal, within the constraint of proportional stressing, the ¯lm de-

forms elastically according to ¾∗ ¡ ¾ = Mf(²
e∗ ¡ ²e) as ¾ decreases from ¾∗

until ¾∗ ¡ ¾ = 2¾Yf . For further reduction in ¾, the plastic response can be

approximated by

¾∗ ¡ ¾ = 2Mn
f ¾

1−n
Yf

h
1
2(²

e
∗ ¡ ²e) + 1

2(²
p
∗ ¡ ²p)

i
; (7.76)

where the values of material parameters are the same as those for forward

loading. Any temperature dependence of plastic °ow arises through the

temperature dependence of ¾Yf . This description presumes that the extent

of the elastic range at the prevailing temperature is 2¾Yf . Aside from the

kinematic translation of the plastic range along the stress axis during plastic

deformation, dependence of the response on plastic deformation history is

wiped out upon each load reversal.

The stress-temperature histories implied by the constitutive equations

for kinematic hardening under proportional stressing given in (7.75) and

(7.76) are compared with experimental observations of stress{temperature

variations in thin Al ¯lms subjected to thermal cycling in Figure 7.19. The

discrete data points in this ¯gure show the experimentally determined ¯lm

stress versus temperature variation for several thermal cycles for a 1 ¹m thick

Al{1 wt% Si ¯lm which was deposited at room temperature onto a 525 ¹m

thick (100) Si which had a diameter of 10 cm. The specimen was ¯rst heated

from room temperature to 300 ◦C, held at that temperature for 30 min., and

then cooled to a minimum temperature before being heated again to 300 ◦C.
This minimum temperature was chosen to be 110, 50, 20 and {10 ◦C for the

four thermal cycles for which experimental results are plotted in Figure 7.19.

A constant heating rate of 10 ◦C/min and a cooling rate of 6 ◦C/min was

used; during each cycle the specimen was held at 300 ◦C for 30 min. so as to

relax the ¯lm stress. The substrate curvature was continuously monitored

during thermal cycling by recourse to the scanning laser method; ¯lm stress
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was then determined from the substrate curvature using the Stoney formula

(2.7). The ¯rst heating cycle was applied to exhaust the tendency for grain

growth in the ¯lm material, and comparison between observations and the

model stress-strain relations was considered only after completion of this half

cycle. Thus, the comparison begins with the ¯lm at the stress-free reference

temperature of approximately To = 275 ◦C. The solid curves in Figure 7.19

show the predicted constitutive response for elastic and plastic deformation

using (7.75) and (7.76). The dashed line in this ¯gure represents the assumed

variation of tensile yield stress of the ¯lm as a function of temperature, which

was approximated by the linear relationship

¾Y, f = ¾∗
µ
1¡ T

T ∗

¶
; (7.77)

where T is the prevailing absolute temperature at any instant, ¾∗ is a refer-

ence yield strength at absolute zero, and temperature T ∗ is chosen so that

¡¾∗=T ∗ approximates the gradient of yield stress with respect to tempera-

ture in the range of interest (Shen et al. 1998). A single choice of values for

the material constants with n = 0:4, ¾∗ = 190MPa and T ∗ = 1373K is seen

to match the observed ¯lm stress variation with temperature during all four

thermal cycles.

7.6 Models based on plastic rate equations

The range of material behavior considered next is broadened signi¯cantly

by appeal to the notion of a plastic rate equation as a model for any possible

physical mechanism of deformation that may be operative. The ideas will

be developed for general states of stress, but will be applied primarily for

the case of thin ¯lms in equi-biaxial tension. Constitutive relationships

that serve as models for inelastic response of materials for a wide variety of

physical mechanisms of deformation have been compiled by Frost and Ashby

(1982). These constitutive equations are represented as scalar equations

expressing the inelastic equivalent strain rate
p
3 _²pM in terms of the e®ective

stress ¾M=
p
3 and temperature T . These strain rate and stress measures

are denoted by _° and ¾s by Frost and Ashby (1982), and the rate equations

representing models of material behavior all take the form

_° = fre (¾s; T ) , _²pM =
1p
3
fre

³
¾M=

p
3; T

´
; (7.78)

where the function fre includes all the material parameters and microstruc-

tural features that are needed to describe behavior. When written in this
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Fig. 7.19. Experimentally determined stress versus temperature hysteresis data for
a 1 ¹m thick Al ¯lm deposited on a relatively thick elastic substrate. The specimen
was ¯rst heated from room temperature to 300 ±C (the data point set marked `1'),
held at that temperature for 30 min., and then subsequently cooled to a minimum
temperature before being heated again to 300 ±C. This minimum temperature was
chosen to be 110, 50, 20 and ¡10 ±C for the four thermal cycles, the heating portions
of which are denoted by the numbers 2, 3, 4 and 5, respectively. The specimen
was held at 300 ±C for 30 min. during each thermal cycle. The as a function
of temperature. The solid curves in Figure 7.19 show the response for elastic and
plastic deformation implied by (7.75) and (7.76). To denotes the stress-free reference
temperature. Experimental data provided by Y. J. Choi, Massachusetts Institute
of Technology (2002).

form, it is tacitly assumed that microstructural features and values of mate-

rial parameters remain unchanged as plastic straining proceeds at a material

point under the action of applied stress; in other words, a `steady state' of

deformation is deemed to occur during which there is no net change in key

microstructural features such as dislocations, grain boundaries, etc. Because

(7.78) is a ¯rst order di®erential equation, an initial condition of some kind

is required if it is to be integrated over time to examine deformation history.

For a general state of stress and deformation at a material point, how

are individual components of plastic strain rate related to stress components

in this framework? An answer is provided through the work of Rice (1970)

on the general structure of stress{strain relations for time-dependent plastic

deformation. In the present setting, it is most conveniently expressed in

terms of deviatoric stress components sij de¯ned in terms of stress ¾ij in
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(7.57). Rice (1970) has shown that the components of plastic strain rate _²pij
have the representation

_²pij = ¤sij ; (7.79)

where ¤ may depend on stress through the value of ¾M corresponding to

sij , on plastic strain history, and possibly on other parameters. For (7.79)

to be consistent with the rate equation (7.78), ¤ must have the value

¤ =

p
2

3

fre
³
¾M=

p
3; T

´
¾M

: (7.80)

Thus, given the state of stress and the temperature, the current rate of

plastic straining is speci¯ed through (7.79) and (7.80).

Some implications of these models of material behavior based on plas-

tic rate equations are considered in the following subsections. One of the

practical advantages in using plastic rate equations for this purpose is that

they are presumed to be in e®ect over all possible values of equivalent stress

and temperature. Whether or not the plastic strain corresponding to any

particular physical mechanism of plastic response actually contributes in a

signi¯cant way to the total plastic strain rate is determined by the instanta-

neous magnitudes of stress and temperature. This feature distinguishes the

present approach from the classical plasticity theories of structural mechan-

ics which are based on the existence of a well-de¯ned yield locus in stress

space bounding a region of stress states for which the response is strictly

elastic. Such a case was considered in Section 7.5. This distinction will

be illustrated in the representative calculations that follow. For example,

if rate equations admitting the possibility of response according to several

di®erent mechanisms are included in the expression for total plastic strain

rate, the particular mechanism dominating response may change over the

course of a process as the magnitudes of stress and/or temperature change.

7.6.1 Thermally activated dislocation glide past obstacles

Consider once again the speci¯c phenomenon treated in Section 7.5, namely,

a thin ¯lm bonded to a relatively thick substrate subject to a periodic °uc-

tuation in temperature that varies over time between some initial relative

temperature, T = T ¡To, where To is a reference temperature, and a higher

temperature T = Tmax. The material is again assumed to be isotropic and to

exhibit elastic{plastic behavior in this temperature range. The initial state

at the time t = 0 is characterized by an initial value of the biaxial stress

¾(t), and all components of plastic strain are assumed to be zero initially.
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The observation that the total strain in the ¯lm in any direction along

the interface does not change signi¯cantly during temperature cycling leads

immediately to an ordinary di®erential equation for the time history of equi-

biaxial stress ¾(t) in the ¯lm during temperature cycling. The fact that the

total strain remains unchanged implies that the total strain rate is zero. The

rate of change of in-plane elastic biaxial strain is _²e(t) = _¾(t)=Mf where any

temperature sensitivity of Mf is neglected. The stress-free biaxial thermal

strain in the ¯lm in any direction is ®fT (t) so that the rate of change of

thermal strain is _²T(t) = ®f _T (t) in terms of the prescribed temperature

history. This expression ignores thermal expansion of the substrate, an e®ect

that is easily taken into account simply by replacing ®f with the relative

coe±cient of thermal expansion (®f¡®s). Finally, the in-plane biaxial plastic

strain rate _²p(t) is expressed in terms of stress and temperature by means

of one or more plastic rate equations.

In the present discussion, it will be assumed that the plastic response

is dominated by the thermally activated glide of crystal dislocations past

discrete obstacles in the lattice. With reference to (7.78), the plastic rate

equation proposed by Frost and Ashby (1982) has the form

fre(¾s; T ) = _°0 exp

"
¡ ¢F

k(T0 + T (t))

µ
1¡ ¾s

¿

¶#
(7.81)

where _°0 is a strain rate material parameter with physical dimensions of

time−1, ¢F is a material parameter with physical dimensions of energy

representing the activation energy of the barrier to dislocation motion, ¿

is a material parameter with physical dimensions of stress representing the

applied stress level necessary to push dislocations past obstacles at very low

temperature, k is the Boltzmann constant, and T0 is the absolute reference

temperature. Note that T0 + T (t) is then the absolute temperature of the

material.

As noted in Section 7.6, the e®ective stress and equivalent biaxial

strain for equi-biaxial tension of an isotropic ¯lm are ¾M = j¾j and _²pM =

2j _²pj. The condition that the total rate of strain parallel to the interface is

zero implies that _²e(t) + _²p(t) + _²T(t) = 0 or

_¾(t)

Mf
+

sgn[¾(t)]

2
p
3

_°0 exp

"
¡ ¢F

k(T0 + T (t))

µ
1¡ j¾(t)jp

3 ¿

¶#
+ ®f _T (t) = 0: (7.82)

For a prescribed history T (t) of temperature for t > 0, relative to

an initial absolute reference temperature T0, and an initial value of stress

¾(0) = ¾0, (7.82) is an ordinary di®erential equation for stress history. The
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Fig. 7.20. The stress{temperature history for a thin ¯lm of elastic-plastic material
on a relatively thick substrate during a temperature excursion is shown. The de-
pendence of plastic strain rate on stress is prescribed by the plastic rate equation
(7.81) and is based on the assumption that resistance to plastic determination is
due to thermally activated motion of dislocations past obstacles. After one temper-
ature cycle, the response adopts a repeated cyclic behavior for ¯xed temperature
limits.

signum function sgn[¾] introduced in (7.82) has value ¡1, 0 or +1 according

to whether its argument ¾(t) is negative, zero or positive, respectively.

As an illustration, suppose that a periodic relative temperature history

T (t) = Tmax sin
2
µ
¼t

t0

¶
(7.83)

with time period t0 is imposed on a copper ¯lm bonded to a relatively

thick substrate. The values of Tmax = 400 ◦C and t0 = 1h are assumed

for the calculation. The thermoelastic properties of copper are Ef = 1:15£
1011N/m2, ºf = 0:31 and ®f = 17£10−6 ◦C−1. The values of the parameters

in the plastic rate equation as given by Frost and Ashby (1982) are _°0 =

106 s−1, ¢F = 3:5£ 10−19 J and ¿ = 2:4£ 108N/m2. Finally, it is assumed

that the reference temperature is approximately room temperature, or T0 =

300K.

The result of determining an approximate solution of the ordinary dif-

ferential equation (7.82) by numerical integration is shown in Figure 7.20,
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along with a plot of the temperature history versus time. The ¯gure is

a parametric plot of stress history versus temperature history over several

cycles of temperature, with the time t as the coordinating parameter be-

tween the histories. The stress{temperature loop shown remains essentially

unchanged after the ¯rst temperature cycle.

It may be surprising that the computed response shown in Figure 7.20

has essentially the same form as the schematic diagram of behavior for an

elastic{ideally plastic response in Figure 7.16, in view of the fact that the

former is based on a rate equation while the latter is a case of strictly rate-

independent behavior. However, that this might be a reasonable outcome

can be seen through a comparison of the terms in the di®erential equation

(7.82). Once plastic straining begins, the rate of elastic straining becomes

relatively small, that is, the second and third terms in the di®erential equa-

tion balance each other with only a modest contribution from the ¯rst term.

The magnitude of the thermal strain rate is essentially ®fTmax=2t0. There-

fore, stress necessarily varies with temperature in such a way that

¡ ¢F

k(T0 + T (t))

µ
1¡ j¾(t)jp

3¿

¶
= ln

®fTmax
p
3

t0 _°0
(7.84)

during plastic straining. This is the equation of a straight line in the plane

of ¾ versus T as re°ected in the computed behavior in Figure 7.20 and as is

shown for the case of ideally plastic response in Figure 7.16.

7.6.2 Influence of grain boundary diffusion

The graph of ¯lm stress versus temperature in Figure 7.20 is based on the a

priori assumption that all inelastic deformation in the ¯lm is due to obstacle-

controlled glide of dislocations. Whether or not this is actually the case in

any particular situation can be established only through appeal to exper-

imental data. Perhaps a more rational approach to associating response

characteristics with physical mechanisms is to include contributions to the

total plastic strain rate for all mechanisms that might be active, and then to

discard any of those contributions that do not in°uence the response for the

relevant ranges of stress and temperature. The purpose in this subsection

is less ambitious than incorporation of all possible rate equations. Here,

only two possible mechanisms will be included to illustrate how the net re-

sponse can be dominated by di®erent mechanisms over di®erent regions of

the stress-temperature plane. The issue will be pursued by adding the possi-

bility of inelastic straining due to mass transport along grain boundaries in
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the ¯lm microstructure as a result of gradients in grain boundary chemical

potential.

The phenomenon of inelastic straining at constant stress due to mass

transport along grain boundaries is known commonly as Coble creep (Frost

and Ashby 1982). The driving force for this thermally activated process is

a gradient in normal stress acting on the grain boundaries. In the case of a

thin ¯lm with columnar grain structure, the grain boundary surfaces are pre-

dominantly normal to the ¯lm{substrate interface. For an equi-biaxial state

of stress, there are no signi¯cant gradients of stress on the grain boundaries

in this case. However, if the surface of the ¯lm is free, mass can readily °ow

over the free surface at elevated temperatures to be drawn into or pushed

out of grain boundaries in response to di®erences between the surface and

grain boundary chemical potentials. This mass transport mechanism can

contribute to overall inelastic straining in response to applied stress.

The process of combined surface di®usion and grain boundary di®usion

was discussed in detail by Thouless (1993) who developed a plastic rate

equation to describe the process. In the present notation, this rate equation

has the form

_²pM =
6−¾m
kTdh2f

D0b exp

∙
¡Qb
kT

¸
(7.85)

where _²0 is a strain rate scaling parameter, − is the atomic volume of the

material, D0b is the pre-exponential factor of the di®usion coe±cient, Qb
is the activation energy for grain boundary di®usion, and d is the mean

grain size of the columnar structure as observed in a plane parallel to the

¯lm-substrate interface. Other parameters retain the de¯nitions established

earlier in this section. It follows that the di®erential equation governing the

time history of ¯lm stress ¾(t) is identical to that given in (7.82), but now

with the term

3_²0−¾(t)

dh2f k(T0 + T (t))
D0b exp

"
¡ Qb

k(T0 + T (t))

#
(7.86)

included on the left side. The values of the parameters appropriate for

copper are _²0 = 1 s−1, − = 1:18 £ 10−29m3, D0b = 5:0 £ 10−15m3/s and

Qb = 1:728£ 10−19 J.
For columnar grain structure, the value of d typically falls within the

range 0:1 ∙ d=hf ∙ 10. Approximate solutions of the di®erential equation

for stress history have been determined by numerical integration with initial

stress ¾0 = 2 £ 108N/m2, ¯lm thickness of hf = 1¹m and grain sizes of

d = 0:1¹m, 1¹m and 10¹m. The temperature history is again given by
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Fig. 7.21. The stress{temperature history for a thin ¯lm of copper on a relatively
thick substrate during a temperature excursion is shown. The dependence of plastic
strain rate on stress includes (7.81) to represent obstacle controlled glide of disloca-
tions and (7.86) to represent grain boundary di®usion. Results are shown for ¯lm
thickness of 1¹m and grain sizes of 0:1¹m, 1:0¹m and 10¹m. In each case, after
one temperature cycle, the response adopts a repeated cyclic behavior for ¯xed
temperature limits.

(7.83). The results are shown in Figure 7.21. The stress-temperature mate-

rial response for the largest of the three grain sizes represented by the results

in this ¯gure is dominated by dislocation glide, and the in°uence of grain

boundary di®usion on overall response is relatively minor. On the other

hand, for the smallest of the three grain sizes, the response is altered in a

dramatic way by the role of grain boundary di®usion on stress relaxation

at the higher temperatures in the temperature cycling range. Loading rate

and bulk parameters are identical in the two cases, and this di®erence in

response is solely a consequence of the di®erence in grain size of the ¯lm.

By combining continuum analysis of inelastic deformation, such as

that described in Section 7.4, with the mechanistic models of the foregoing

subsections, Shen and Suresh (1996) have identi¯ed the variation of equi-

biaxial ¯lm stress through the thickness of the ¯lm during steady-state creep

deformation. An appealing feature of such an approach is that the evolu-

tion of substrate curvature, spatial variation of residual stress and relative
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dominance of di®erent strain relaxation mechanisms can be identi¯ed for a

given ¯lm{substrate system subjected to a known thermal history. The re-

sults reveal that di®erent deformation mechanisms can become dominant at

di®erent through-thickness locations of a bilayer of arbitrary layer thickness

at any particular stage of thermal cycling. The principal drawback of this

approach, however, is that transient e®ects commonly associated with the

strain relaxation phenomena are not captured in the analysis.

7.7 Structure evolution during thermal excursion

Strain relaxation in thin ¯lms was examined in the preceding sections by

considering two extreme situations: epitaxial ¯lms with a very low den-

sity of dislocations where the interactions between dislocations can be used

to rationalize the overall strain relaxation process, and ¯lms with a very

high density of dislocations where phenomenological constitutive models are

used to relate experimental observations to continuum level analysis of time-

independent or time-dependent inelastic deformation. As stated earlier in

this chapter, the simplying assumptions invoked in each of these approaches

facilitate the derivation of analytical results that provide quantitative un-

derstanding of the overall response of thin ¯lms. It is commonly found,

however, that most thin ¯lm materials of technological interest exhibit mi-

crostructural evolution processes which can lead to observed behavior that

is markedly di®erent from those presumed in these models. Some examples

of these processes involving structural changes are examined in this section.

7.7.1 Experimental observation of grain structure evolution

To keep the discussion consistent with the analysis presented in Section 7.4,

attention is focused on the evolution of ¯lm microstructure in response to

mismatch strain generated by thermal excursion. Figure 7.22(a) shows an

example of a cross-sectional TEM view of a 0.63-¹m thick, unpassivated

Al ¯lm which was sputter-deposited onto a 620 ¹m thick, oxidized (100) Si

substrate; the ¯lm has an average grain size of approximately 0.39 ¹m in

the as-deposited condition. Note that the Al ¯lm surface is actually coated

with a layer of native oxide, approximately 5 nm in thickness. This initial

microstructure reveals grains and sub-grains or dislocation cells separated

by boundaries and dislocation networks of irregular shapes. Regions within

the interior of the grains are populated with randomly distributed disloca-

tions as well as piled-up dislocations. Two key features of this as-deposited

¯lm microstructure are that the average size of the grains and dislocation
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Fig. 7.22. Cross-sectional TEM images of the grain and dislocation structures in
(a) an unpassivated 0.63-¹m thick aluminum ¯lm after sputter deposition, (b) an
unpassivated 1-¹m thick aluminum ¯lm after three thermal cycles between 20 and
450 ±C, and (c) a 1-¹m thick aluminum ¯lm capped with a 1-¹m thick SiOx passiva-
tion layer after twenty thermal cycles between 20 and 450 ±C, all on a Si substrate.
Reproduced with permission from Legros et al. (2002).

cells is smaller than the ¯lm thickness, and that the grains are irregular

in shape, suggesting that the microstructure is not in a low energy state.

Figure 7.22(b) is a cross-sectional TEM image of a similarly produced un-

passivated Al ¯lm, 1-¹m thick, on a similar Si substrate; this image was

obtained after the ¯lm{substrate system was subjected to three thermal

cycles between 20 and 450 ◦C. The ¯rst heating cycle was found to result

in signi¯cant grain growth as well as alignment and straightening of grain

boundaries in directions essentially normal to the ¯lm{substrate interface.

The grain size of the ¯lm in Figure 7.22(b) is comparable to the ¯lm thick-

ness, and that thermal cycling has also resulted in grain interiors that are

essentially free of dislocations. This image, along with the in-situ TEM

studies by Legros et al. (2002) of structure evolution during temperature
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excursion, reveals that the ¯rst few thermal cycles result in grain growth,

disentanglement of low angle grain boundaries, and absorption of disloca-

tions into the metal{oxide and metal{substrate interfaces. Grain growth is

also accompanied by preferential texturing of the ¯lm which seeks to elimi-

nate crystallographic orientations in the grain with the largest strain mis¯t

with the substrate. Grain growth is complete when all the grain boundaries

have reoriented to become perpendicular to the interface resulting in large

prismatic grains. Once this saturation state is reached, no further changes

in the microstructure occur with continued thermal cycling.

When the aluminum ¯lm is passivated with an oxide capping layer,

the evolution of microstructure in response to temperature excursion shows

distinct di®erences from that seen for an unpassivated ¯lm, even though the

initial grain structure and dislocation structure are very similar for the two

cases. Figure 7.22(c) is a cross-sectional TEM image of the 1-¹m thick Al

¯lm on the Si substrate which was capped with a 1-¹m thick SiOx passi-

vation layer at 300 ◦C by means of low-pressure chemical vapor deposition

(LPCVD) and subsequently subjected to 20 thermal cycles between 20 and

450 ◦C. The presence of the capping layer prolongs the grain growth phase

of microstructural evolution well beyond the ¯rst thermal cycle, and it re-

sults in a noticeable anisotropy in the shape in the grains, with the extent

of grain growth in the ¯lm thickness direction being relatively smaller than

in the in-plane direction. For the particular thermal excursion imposed in

this case, several thermal cycles were necessary prior to cessation of grain

growth. These experimental observations are also consistent with the sub-

strate curvature measurements of Shen and Suresh (1995b) who found that

the presence of a passivation layer strongly in°uenced the number of thermal

cycles needed to reach a steady-state stress{temperature hysteresis loop for

the Al ¯lm on Si substrate. As seen from Figure 7.22(c), passivation also

leads to dislocation pile up at grain boundaries.

7.7.2 Experimental observation of threading dislocations

As discussed in Chapter 6 and in Sections 7.1 through 7.3 of this chapter,

the propensity for threading dislocations to advance or recede provides a

mechanistic basis for understanding elastic strain relaxation in thin ¯lms. If

the threading dislocation is isolated from other defects, the underlying issue

is the critical thickness condition. On the other hand, for circumstances well

beyond that of critical thickness for dislocation formation, the interaction

of the threading dislocation with its surroundings { other threading disloca-

tions, mis¯t dislocations in its path, grain boundaries and so on { underlies
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macroscopic relaxation of elastic strain. In-situ observation of the formation

and motion of threading dislocations in non-epitaxial metal ¯lms during the

development of mismatch strain is a challenging task owing to the di±culties

in the preparation of thin foil specimens of the layered structure for obser-

vation in a TEM; if the mismatch strain derives from lattice mismatch and

the constraint of epitaxy in a single crystal ¯lm then the task is simpli¯ed

considerably. Challenges arise in mounting the foil in a specimen holder

in which a controlled mismatch strain can be imposed and in imaging the

nucleation and motion of dislocations during such straining. In-situ TEM

studies on the motion of dislocations in metal ¯lms during the simultaneous

imposition of a mismatch strain have been reported by Kuan and Murakami

(1982), Venkatraman et al. (1990) and Jawarani et al. (1997); these deal

primarily with plan-view observation of the ¯lm{substrate system, the situ-

ation in which the motion of a threading dislocation extending through the

thickness of the thin ¯lm and the interaction of such a dislocation with the

¯lm{substrate interface or other defects cannot be documented during the

experiment. An advantage of plan view observations is that the state of

stress in the ¯lm may be the same as or similar to the state of stress in the

¯lm prior to preparation of the TEM sample.

In an attempt to view the through-the-thickness behavior of threading

dislocations in a thin metal sample, Keller-Flaig et al. (1999), Legros et al.

(2001) and Legros et al. (2002) introduced a wedge-shaped cross-sectional

TEM specimen resembling a passivated thin metal ¯lm on a Si substrate.

Mismatch strains were induced by subjecting the specimen to thermal ex-

cursion inside the TEM, and simultaneously performing in-situ observations

of threading dislocation motion. The material chosen for investigation was a

SiOx-passivated polycrystalline aluminum ¯lm on a (100)Si substrate. The

1-¹m thick aluminum layer was sputter-deposited on a (100)Si wafer, 620 ¹m

in thickness and 10 cm in diameter. Prior to ¯lm deposition, an 18-nm thick

amorphous oxide layer was formed on the Si wafer surface as a di®usion bar-

rier between Al and Si. The aluminum ¯lm was subsequently capped with

a 0.5-¹m thick SiOx passivation layer which was introduced by LPCVD at

a temperature of 300 ◦C.
Cross-sectional TEM foils were made by removing rectangular spec-

imens, approximately 0.5 mm £ 2.0 mm in size, from the passivated Al

¯lms. Then two wafer pieces were glued together and the resulting sample

was polished in a tripod sample holder to form a wedge shape with a mirror

¯nish and an electron transparent tip. Thermal mismatch strains could be

induced in a controlled manner by cycling the foil between 20 ◦C and 450 ◦C
at a heating or cooling rate of 10{40 ◦C/min in a high temperature specimen
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holder. The complex geometry of the layer structure as well as the state of

stress in the wedge-shaped specimen di®ers markedly from the equibiaxial

state of stress in a continuous thin ¯lm.

Fig. 7.23. The transgranular motion of threading dislocation in a 1 ¹m thick poly-
crystalline aluminum ¯lm which is passivated with a 0.5 ¹m thick silicon oxide
layer. The TEM images in Figures (a){(d) show the positions of two threading dis-
locations, marked 1 and 2, during the cooling phase of a thermal cycle. Dislocation
2 is immobile during this entire sequence, whereas dislocation 1 traverses through
the grain. The short, thick arrows in (b) denote two points at which a segment of
dislocation 1 is pinned before breaking away. The small curvature of the disloca-
tion about the pinning points indicates that they serve as only weak obstacles to
dislocation motion. Reproduced with permission from Legros et al. (2002).

Grain growth during the ¯rst two thermal cycles results in the for-

mation of a columnar grain structure with individual grains spanning the

thickness of the ¯lm; the grains themselves are relatively free of dislocations.

The dislocation density decreases with each successive thermal cycle and

the remaining grain boundaries migrate until they are oriented in the direc-

tion perpendicular to both the ¯lm{substrate and the ¯lm{oxide interfaces.

Figures 7.23(a){(d) show a sequence of images captured during the third

thermal cycle; the motion of threading dislocations induced by thermal mis-

match strain is evident in this sequence. Figure 7.24(a) schematically shows

the thermal cycle in which the points a, b, c and d correspond to the instants
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during the cooling sequence at which the images in Figures 7.23 identi¯ed

by the matching letter were captured. Figure 7.24(b) is a schematic illustra-

tion of the progression of dislocation 1 through the Al grain, and it serves

as an aid in interpreting the electron micrographs of Figures 7.23(a){(d).

Two threading dislocations marked 1 and 2 are visible in these ¯gures; both

are nearly perpendicular to the Al{Si interface. Dislocation 2 is immobile

during this sequence and can be used as a reference. Dislocation 1 traverses

a distance of several hundred nms within the Al grain without encountering

any obstacles. The two pinning points indicated by the thicker arrows in

Figure 7.23(b) are easily overcome, as is seen in Figure 7.23(c) as dislocation

1 continues to traverse the grain. The dislocation is ultimately arrested at

the grain boundary in Figure 7.23(d). The role of threading dislocations

in in°uencing the plastic yield properties of thin ¯lms will be considered in

later sections of this chapter.

(a) (b)

Fig. 7.24. (a) Schematic of the thermal cycle with indications of the instants, a,
b, c and d, at which the images in Figures 7.23(a){(d), respectively, captured.
(b) Schematic of the movement of threading dislocation 1 during this sequence of
imaging in Figures 7.23(a){(d), where the position corresponding to Figure (c) has
been omitted for clarity. The shaded region in (b) denotes the fringes along the
grain boundaries. Adapted from Legros et al. (2002).

7.7.3 Strain relaxation mechanisms during temperature cycling

It is evident from the discussion presented in Section 7.4 that observation of

substrate curvature, interpreted as mean stress in a ¯lm bonded to an elastic

substrate, during temperature cycling provide a convenient framework with

which the inelastic strain relaxation characteristics of thin ¯lm materials can

be inferred. Indeed, substrate curvature measurement made in the course

of temperature cycling is among the most common experimental methods
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employed to determine the elastoplastic response of thin ¯lms. In addition

to the scienti¯c interest, such observations also mimic excursions in temper-

ature experienced in processing steps such as ¯lm deposition, passivation

and material characterization, or in service functions.

The various curvature measurement methods described in Section 2.3

provide convenient tools with which the ¯lm stress can be assessed by us-

ing the approaches outlined in Chapters 2 and 3 and Section 7.4. However,

these approaches are often predicated on assumed microstructural condi-

tions which may di®er markedly from real behavior in some material sys-

tems. Microstructural evolution and competition between strain relaxation

mechanisms can in°uence the evolution of substrate curvature during ther-

mal excursions and the manner in which such e®ects are strongly a®ected by

the geometry and material properties of the particular thin ¯lm{substrate

system being considered. The following points are discussed in order in the

remainder of the section, primarily in the context of polycrystalline metal

¯lms:

¡ competing e®ects of plastic strain hardening and thermal softening,

¡ grain growth in the ¯lm during the ¯rst temperature cycles,

¡ hillock formation on the ¯lm surface,

¡ formation of voids or cracks during the tensile portion of cycles, and

¡ stabilization of cyclic response beyond the grain growth stage.

The thin ¯lm, modeled as an elastic{ideally plastic material, was dis-

cussed in Section 7.4, where it was shown that a closed loop of ¯lm stress

(or, equivalently, elastic substrate curvature) versus temperature was estab-

lished after the ¯rst thermal cycle. When the ¯lm{substrate system is ¯rst

heated from the reference state, initial elastic deformation leads to a linear

variation of curvature with temperature. Once the ¯lm begins to undergo

plastic °ow at TY, substrate curvature does not change with further in-

crease in temperature if the yield strength of the ideally plastic ¯lm does

not vary with temperature. If the ¯lm material exhibits strain hardening and

no appreciable change in yield strength with temperature, over the range of

temperature of interest, then the magnitude of substrate curvature increases

with further increase in temperature beyond the point of ¯lm yield, as il-

lustrated in Figure 7.17. Since the yield strength of the ¯lm decreases with

increasing temperature, as illustrated in Figures 7.16 and 7.17, the magni-
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tude of ¯lm stress and substrate curvature may increase, decrease or remain

the same with further increase in temperature depending on the relative

dominance of the increase in ¯lm °ow stress due to strain hardening and

the decrease in ¯lm °ow stress due to rising temperature. These di®erent

possibilities arise even in the complete absence of any change in the grain

structure or dislocation structure within the ¯lm.

As described in Section 7.7.1, metallic thin ¯lms may undergo grain

growth during the ¯rst heating cycle. The densi¯cation of the ¯lm resulting

from such grain growth and the ensuing net reduction in the grain boundary

area and dislocation density partially relieves the compressive stress in the

¯lm, thereby reducing the magnitude of change in substrate curvature mea-

sured with respect to that at the reference state. The early thermal cycles

also lead to reorientation of grain boundaries, as illustrated in Figure 7.22,

so as to create the least strain mismatch with the substrate. These changes

in both grain size and texture can also alter the yield strength, the strain

hardening response, the temperature-dependence of yield strength, and even

the elastic or plastic anisotropy of the ¯lm. Consequently, microstructural

changes induced by the ¯rst heating phase can in°uence the evolution of ¯lm

stress and substrate curvature in a manner that is not taken into account in

the methods presented in Section 7.4.

Si

Al

Fig. 7.25. Cross-sectional focused ion beam image of a hillock penetrating through
the surface of a 1 ¹m thick Al ¯lm on a relatively thick (100) Si substrate. Repro-
duced with permission from Kim et al. (2000).

The evolution of structural damage in the thin ¯lm during the ¯rst

heating cycle can introduce additional complications in the estimation of

¯lm stress. The equibiaxial compressive mismatch stress generated in a

metal ¯lm on a Si or SiO2, owing to its larger thermal expansion coe±cient,

causes the ¯lm material to extrude out of plane through the free surface. As a

result, the ¯lm material can `squeeze out' through any defects or cracks in its

protective oxide layer or passivation layer, producing a mound of extruded
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material known commonly as a hillock. Figure 7.25 shows a focused-ion-

beam (FIB) image of the cross-section of a hillock formed in a blanket thin

¯lm on a Si substrate following an annealing treatment at 450 ◦C. This ¯gure
also shows the elongated structure of the grains within the extruded region

of the hillock. Hillocks represent permanent damage to the ¯lm material

which is not relieved upon temperature reversal.

While short time exposure to elevated temperature usually results

in hillock formation, prolonged high temperature annealing can sometimes

result in the formation of whiskers. The whiskers may nucleate at grain

boundaries, and hillocks or inside individual grains. Figure 7.26 is a labo-

ratory simulation of whisker extrusion in a capped metal ¯lm. This SEM

image shows a whisker formed in an aluminum ¯lm on a silicon substrate,

where the ¯lm is covered with a TiN capping layer. The whisker extrudes

through the TiN layer, causing fracture in the capping layer.

)�µ�

Fig. 7.26. An SEM image of a whisker formed in an Al ¯lm extruding through
the surface of a TiN capping layer. Reproduced with permission from Blech et al.
(1975).

Upon cooling from a maximum temperature, the ¯lm undergoes elas-

tic unloading which is followed by plastic °ow in tension; see Figures 7.16.

Temperature dependence of yield stress, strain hardening behavior, and any

changes in the microstructure of the thin ¯lm in°uence the ¯lm stress and

substrate curvature during the ¯rst cooling phase of the thermal cycle. If

the ¯lm composition, processing and environmental conditions during ther-

mal cycling are such that weakly bonded grain boundaries, internal oxide

particles, or inclusions exist in the thin ¯lm, the tensile stresses generated
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Fig. 7.27. Film stress plotted as a function of temperature for a 1 ¹m thick, un-
passivated Al ¯lm on a relatively thick Si substrate, which was subjected to three
thermal cycles between 25 and 450 ±C at a constant heating and cooling rate of 10
±C. Adapted from Shen and Suresh (1995b).

upon cooling from the maximum temperature can lead to the formation and

growth of voids and cracks at internal interfaces; these irreversible damage

processes, in turn, reduce the ¯lm stress and the substrate curvature.

Changes in microstructure as a result of grain growth and hillock for-

mation usually stablize after the ¯rst complete thermal cycle, and the history

of ¯lm stress versus temperature attains a steady-state hysteresis loop which

does not vary signi¯cantly from cycle to cycle thereafter. Figure 7.27 shows

an example of the evolution of ¯lm stress as a function of temperature for an

unpassivated aluminum thin ¯lm on a relatively thick Si substrate which was

subjected to three thermal cycles between 25 and 450◦C. Shen and Suresh

(1995b) obtained the results in this ¯gure by converting the experimentally

determined substrate curvature values to ¯lm stress using the Stoney for-

mula (7.51). During the ¯rst heating phase, the metallic ¯lm yields at a

temperature of approximately 100◦C, following which a gradual reduction

in ¯lm stress is observed with increasing temperature in response to grain

growth and hillock formation. When cooling commences from the maxi-

mum temperature of 450 ◦C, elastic unloading is followed by a rapid rise
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in ¯lm stress with decreasing temperature due to the combined e®ects of

temperature-dependence of yield strength and strain hardening. Note that

the ¯lm stress versus temperature plot is essentially the same for the second

and third thermal cycles. These observations based on substrate curvature

measurements are consistent with the microstructural changes seen from the

TEM images, such as those presented in Figure 7.22(a) and (b).

For a metallic thin ¯lm, di®usive mechanistic processes generally be-

come more dominant compared to dislocation interactions as the tempera-

ture is raised. In unpassivated ¯lms, atoms are transported preferentially

along grain boundaries and along the free surface of the ¯lm. The attendant

shear on the interface can be equilibrated by interface slip which contributes

to strain relaxation; this behavior is illustrated in Figure 7.21. With a pas-

sivating layer present on the ¯lm, it is necessary that di®usion occurs along

the interface between the ¯lm and the substrate and between the ¯lm and

the passivation layer in order for an analogous strain relaxation process to

take place. However, even thin passivation layers curtail di®usion and/or

interfacial slip. In addition, thermal cycling produces continual changes in

microstructure over far greater numbers of thermal cycles in passivated ¯lms

than in unpassivated ¯lms, as indicated in Figure 7.22.

Whether continuum descriptions of elastoplastic deformation or di®usion-

dominated e®ects capture the stress versus temperature history or, equiva-

lently, the substrate curvature versus temperature history, during thermal

cycling strongly depends on the speci¯c materials involved and their con-

straint conditions. For example, the experimental results shown in Fig-

ures 7.19 and 7.27 for unpassivated Al ¯lms generally follow trends antici-

pated on the basis of continuum elastoplastic analyses, such as those pre-

sented in Section 7.4 because of the relative dominance of time-independent

plastic deformation over di®usion. However, over the same range of temper-

ature excursion, other metallic materials, such as unpassivated pure Ag, Au

or Cu ¯lms, on Si substrates may exhibit time-dependent strain relaxation

processes involving atomic di®usion along the grain interiors, grain bound-

aries, interfaces between the ¯lm and the substrate or oxide/passivation

layer, or along the free surface of the ¯lm (Thouless (1993), Vinci et al.

(1995), Keller et al. (1999), Gao et al. (1999), Weiss et al. (2001), Kobrin-

sky and Thompson (2000)). Such competing phenomena can be taken into

account in describing behavior by appeal to the rate equation approach de-

scribed in Section 7.6. These di®usive processes, which are functions of

temperature as well as the rate of thermal excursion and the waveform of

the thermal cycle, are also anticipated to be strongly in°uenced by the ¯lm

thickness itself. In addition, the presence of a passivation layer plays an im-
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Fig. 7.28. (a) Schematic illustration of the formation of crack-like grain boundary
wedges due to constrained di®usion and the emission of dislocations due to the
enhanced stress concentration at the edge of the wedge. Adapted from Gao et
al. (1999). (b) Plan-view, weak-beam TEM image of the dislocation structure
produced inside a single grain in a 200 nm thick polycrystalline Cu ¯lm which
was cooled from 500 ±C to 40 ±C. Reproduced with permission from Dehm et al.
(2002a).

portant role in in°uencing microstructural evolution and dislocation mobil-

ity; as indicated by the TEM images in Figure 7.22. Experimental studies by

Vinci et al. (1995), Shen and Suresh (1995b) and Kobrinsky and Thompson

(2000) of stress evolution in Al, Cu and Ag thin ¯lms undergoing temper-

ature excursions show that the presence of a capping layer in°uences both

time-independent and time-dependent strain relaxation processes through

mechanisms which are not yet well-understood.

The role of constrained grain boundary di®usion in promoting disloca-

tion plasticity in a polycrystalline metal ¯lm has been investigated by Gao

et al. (1999). They consider an initially uniformly strained thin ¯lm in which

the grain boundaries are oriented perpendicularly to the ¯lm{substrate in-

terface; the interface does not accommodate any sliding or di®usion. Atomic

di®usion is postulated to result in the relaxation of the normal traction along

the grain boundary which is equivalent to the insertion of a wedge of mater-
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ial at the boundary. The edge of the grain boundary wedge serves as a source

of stress concentration, analogous to the tip of a crack, thereby enhancing

dislocation plasticity in the ¯lm and facilitating nucleation of dislocations

near the tip of the wedge, as shown schematically in Figure 7.28(a). The

issue of grain boundary di®usion and its in°uence on stress relaxation in a

polycrystalline thin ¯lm on a substrate will be taken up for further discus-

sion in Section 9.5.1 where the competition between di®erent nonequilibrium

processes will also be addressed.

Some experimental evidence for the process of constrained grain bound-

ary di®usion has been obtained by Dehm et al. (2002b) who observed the nu-

cleation of parallel glide dislocations, such as those sketched in Figure 7.28(a),

by recourse to in-situ TEM studies of strain relaxation during thermal

cycling. The material chosen was a predominantly f111g textured poly-

crystalline Cu ¯lm, 200 nm in thickness, on a relatively thick Si substrate.

Substrate curvature measurements revealed an equi-biaxial compressive mis-

match stress of 260 MPa in the ¯lm at 500 ◦C, whereas a maximum tensile

stress of 640 MPa was estimated to develop when the ¯lm{substrate system

was cooled to 40 ◦C. Figure 7.28(b) is a plan view TEM image of a series

of ten dislocations nucleated within a single grain of the Cu ¯lm during

cooling from 500 ◦C to 40 ◦C. All the dislocations nucleate near the bottom

right triple junction of the grain, and the leading dislocation subsequently

traverses the entire length of the grain as the dislocations glide toward the

left of the grain. Several observations can be made about the dislocation

structure found in Figure 7.28(b). (i) Given the texture of the ¯lm and grain

dimensions, it is evident from the in-situ TEM observation that the dislo-

cations glide on a f111g plane of the FCC metal thin ¯lm which is oriented

parallel to the ¯lm surface. Such an observation runs counter to the general

expectation that crystallographic planes oriented parallel to the plane of the

¯lm would not operate as slip planes because the ¯lm is in a state of equi-

biaxial tension during the cooling stage. (ii) Such parallel glide appears to

have replaced the possible occurrence of threading dislocation motion within

the ¯lm. (iii) The ¯rst six dislocations on the left side of the grain exhibit

very little curvature indicating the absence of any signi¯cant shear stress in

this region of the grain. (iv) The four dislocations on the right of the grain

appear to avoid the top grain boundary and to curve instead, possibly as

a consequence of the rotation of the adjacent grain boundary there by as

much as 17◦. (v) The increasing spacing seen between successively gener-

ated dislocations is indicative of dislocation pile up and of the in°uence that

the newly generated dislocations exercise on the glide of the ones nucleated

earlier. Collectively, these observations point to the existence of a highly
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inhomogeneous state of stress within the grain, and suggest that di®usion

at the grain boundaries may be responsible for the dislocation structures

seen during thermal cycling.

7.8 Size-dependence of plastic yielding in thin films

The foregoing discussion of strain relaxation phenomena in thin ¯lms re-

veals that, unlike bulk metals and alloys, metal thin ¯lms exhibit plastic

deformation characteristics that are in°uenced by the physical dimensions

of the structure and its constraint conditions. In addition, characteristic

dimensions associated with microstructural features such as grains and dis-

location cell boundaries may also in°uence the plastic properties of the ¯lm.

Quantitative understanding of the dependence of yield strength in thin ¯lms

on various physical and microstructural length scales is not yet established.

The task of doing so is particularly challenging due to the complex interplay

among di®erent mechanisms of deformation. Additional challenges arises

as a consequence of the dependence of overall plastic response on material-

speci¯c e®ects such as those introduced by composition, crystallographic

texture, geometrical con¯guration, constraint conditions and processing his-

tory. Furthermore, it is a challenging experimental task to determine the

true material response in situ during the application of thermomechanical

loads to the ¯lm in a manner that circumvents the incorporation of ex-

perimental artifacts into the interpretation of instrinsic deformation mech-

anisms. The e®ects of ¯lm thickness and microstructural parameters on the

overall yield behavior of metal ¯lms are discussed in this section.

7.8.1 Observation of plastic response

The dependence of thin ¯lm yield stress on geometrical and microstructural

length scales has been investigated extensively. Values of °ow stress of poly-

crystalline thin ¯lms of di®erent pure metals and alloys as functions of ¯lm

thickness, grain size and texture are listed in Table 7.1. These data are

based on experiments conducted at a single ¯xed temperature using such

techniques as direct tension loading, microbeam bending, or x-ray di®rac-

tion. The data in Table 7.2 are based on experiments in which the stress

was imposed by temperature cycling of a thin ¯lm bonded to nominally

elastic substrate and was measured by means of simultaneous observation

of substrate curvature. The experimental techniques applied in obtaining

these data are discussed in Section 7.9.

Examples of some trends are illustrated in Figures 7.29 and 7.30.
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Table 7.1. Representative values of the flow stress of polycrystalline thin

films of metals and alloys as a function of film thickness (hf) and average

grain size (g.s.). Data obtained from micro-tensile tests, microbeam

deflection and x-ray diffraction measurements.

Materials and hf g.s. Flow stress
experimental conditionsa (µm) (µm) (MPa)

Cu film on 125-µm thick polyimide 1.0 0.18 481
substrate at ∼ 20 ◦C; plastic strain 0.6 320 - 355
∼ 0.5%; {111} texture film; 1.0 268 - 306

micro-tensile tests.(1) 1.2 268

same as above; but with 1.0 0.6 166 - 178

{100} texture film.(1) 1.0 137
1.2 76

Al—0.5 wt% Cu film on 0.2 0.14 529
13-µm thick polyimide 0.5 0.2 457
substrate at ∼ 20 ◦C; 0.9 - 1.1 0.3 450

plastic strain ∼ 0.2%.(2) 1.6 - 1.7 0.5 354 - 373

Pb film on 250-µm thick Si (100) 0.1 4.5 395 - 454
substrate coated with 60-nm thick 0.4 181
Si3N4 layer; x-ray and TEM at 0.6 70 - 79

−173 ◦C after cooling from ∼ 20 ◦C; 1.1 60

most grains with {111} along surface.(3)

Free standing thin film of 99.99% 5.8 5.8 ∼270
pure Ag with strong {111} texture;
microtensile test at ∼ 20 ◦C at
strain rate of 1.1×10−5 s−1;
0.2% offset yield strength.(4)

Free standing thin film of 99.99% 4.3 ∼4.3 ∼300
pure Cu with strong {111} texture;
same test conditions as above.(5)

Pure Ag films magnetron-sputtered 0.2 0.9 300±7
in ultra-high vacuum (6×10−7 Pa) at a 0.4 0.9 290±8
rate of 77 nm/s on micromachined SiO2 0.6 0.8 270±7

cantilever beams 2.83 µm thick; 0.8 0.9 250±5
microbeam deflection tests at ∼ 20 ◦C with 1.0 1.0 210±10

a nanoindenter tip; grain sizes with 1.5 1.0 76
standard deviation of 41—66 µm; film

residual stress in the range 26—43 MPa.(6)

a References to various data quoted in this table pertain to information taken from the following
sources where further details on experiments and materials can be found: (1) M. Hommel and
O. Kraft, Acta Mater., vol. 49, p. 3935 (2001). (2) F. Macionzyk and W. Brückner, J. Appl.
Phys., vol. 86, p. 4922 (1999). (3) T. S. Kuan and M. Murakami, Metall. Trans. A, vol. 13A,
p. 383 (1982). (4) H. Huang and F. Spaepen, Acta Mater., vol. 48, p. 3261 (2000). (5) R.-M.
Keller et al., J. Mater. Res., vol. 13, p. 1307 (1998). (6) R. Schwaiger and O. Kraft, Acta
Mater., vol. 50 (2002) in press.
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Table 7.2. Representative values of the flow stress of polycrystalline thin

films of metals and alloys as a function of film thickness (hf) and average

grain size (g.s.). Data obtained from substrate curvature measurements.

Materials and hf g.s. Flow stress
experimental conditionsa (µm) (µm) (MPa)

Magnetron-sputtered 99.999% pure 0.21 0.3 393 )
Al film on Si(100) substrate; data 0.26 - 344
obtained at room temperature after 0.42 - 323

cooling from 450 ◦C. 0.59 - 266
biaxial tensile yield strength.(1) 1.09 1.4 181

Pure Al film on Si(100) substrate; 0.48 > 10 170
successive etching of film to vary 0.65 124
hf ; data gathered at 60

◦C 1.04 79

after cooling from 460 ◦C.(2) 1.5 50

0.25 1.9 363
0.55 188
0.96 117

1.03 - 1.52 130 - 134

0.08 0.9 533
0.48 272
0.68 224
0.90 189 - 196

Magnetron-sputtered pure Cu film on 0.6 1.0 410±24
oxidized, 530 µ-thick Si substrate; 1.0 1.3 280±16
obtained at room temperature after

cooling from 600 ◦C.(3)
Same as above, but with Cu films 0.45 0.35 745±42

passivated with 50 nm-thick Si3N4.(3) 0.60 0.83 585±33
1.0 1.3 455±26

E-beam deposited pure Ag film on 0.21 267
290 µm-thick, oxidized Si(100); 0.47 - 0.49 308 - 317
data obtained at —50 ◦C after 0.72 277
cooling from 500 ◦C.(4) 0.97 197

1.21 163

Same as above, but with Ag films 0.21 572
passivated with 50—70 nm-thick 0.35 477

SiOx layer.(4) 0.47 369
1.21 216

a References to various data quoted in this table pertain to information taken from the following
sources where further details on experiments and materials can be found: (1) M. F. Doerner
et al., J. Mater. Res., vol. 1, p. 845 (1986).(2) R. Venkatraman and J. C. Bravman, J. Mater.
Res., vol. 7, p. 2040 (1992). (3) R.-M. Keller et al., J. Mater. Res., vol. 13, p. 1307 (1998).
(4) M. J. Kobrinsky and C. V. Thompson, J. Appl. Phys., vol. 73, p. 2429 (1998).

Venkatraman and Bravman (1992) estimated the yield strength of pure Al

and Al-0.5% Cu thin ¯lms on Si substrates by performing substrate curva-

ture measurements during the repeated application of a thermal cycle. A
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Fig. 7.29. Experimentally determined variation of the e®ect of ¯lm thickness on
the tensile yield stress of polycrystalline Al thin ¯lms on Si substrates at 60 ±C.
The data are shown for three di®erent grain sizes. Adapted from Venkatraman and
Bravman (1992).

particularly appealing feature of their experiments is that the ¯lm thickness

was systematically altered, without changing the grain size. This was ac-

complished by the repeated growth and dissolution of a barrier anodic oxide

which was grown uniformly on the ¯lm. Substrate curvature measurements

leading to estimates of ¯lm stress versus temperature were obtained after

successively removing 0.1 ¹m of Al ¯lm, thereby facilitating the separation

of the contributions to °ow strength of the material from ¯lm thickess and

grain size. The results reveal that the °ow stress of the ¯lm varies inversely

with ¯lm thickness at a ¯xed grain size, as shown in Figure 7.29.

The results presented in Tables 7.1 and 7.2, and Figure 7.29 also reveal

that the °ow strength of a polycrystalline thin ¯lm is several times larger

than that exhibited by a bulk material of the same composition and grain

size. For example, a 1-¹m thick continuous ¯lm of pure Al on a relatively

thick Si substrate, with a grain size comparable to ¯lm thickness, has a

tensile °ow stress of approximately 200 MPa at room temperature, whereas
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Fig. 7.30. Experimentally determined variation of the e®ect of ¯lm thickness and
temperature on the tensile yield stress of polycrystalline Al thin ¯lms on Si sub-
strates. The data are shown for a grain size of 0.9 ¹m. Adapted from Venkatraman
and Bravman (1992).

the tensile °ow stress of a bulk specimen of Al of the same purity and grain

size is approximately 70 MPa.

Figure 7.30 is a plot of the tensile yield stress as a function of the

¯lm thickness at several di®erent temperatures between 60 and 300 ◦C for

the pure Al ¯lm from the same set of curvature experiments conducted by

Venkatraman and Bravman (1992). The initial ¯lm thickness and grain

size in these experiments were 1.0 ¹m and 0.9 ¹m, respectively, and the

¯lm thickness was progressively reduced, after each set of experiments at a

¯xed temperature, to explore the e®ect of ¯lm thickness at an essentially

constant grain size on the plastic response of the ¯lm. The results clearly

indicate that tensile yield stress varies inversely with ¯lm thickness at a

given temperature, and with temperature at a given ¯lm thickness. Similar

results were also obtained by Venkatraman and Bravman (1992) for the

compressive yield behavior of the Al thin ¯lm. At elevated temperatures,
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noticeable di®erences were observed between the °ow characteristics of the

¯lm in tension and compression.

The experimental results shown in Tables 7.1 and 7.2, as well as in

Figures 7.29 and 7.30, indicate that the yield stress of metallic thin ¯lms

varies inversely with ¯lm thickness hf . Such observations cannot be ratio-

nalized by recourse to conventional continuum plasticity theories which are

devoid of intrinsic length scales. Trends in modeling the plastic response of

thin ¯lms are discussed brie°y in the next section.

7.8.2 Models for size-dependent plastic flow

E®orts to develop models of plastic deformation of thin ¯lms and other

small structures have typically followed one of two main approaches, both

starting from well-established models of material behavior. In one approach,

the point of departure is the behavior of a single threading dislocation in

a strained crystalline layer, as described in detail in Section 6.3. In this

approach, critical conditions are established by a balance between the energy

needed to alter a dislocation con¯guration in a certain way and the external

work that can be provided by the system in e®ecting that alteration. The

conceptual approach can be extended to include arrays of dislocations as in

Sections 7.1 and 7.2, con¯gurations with multiple interfaces as in Section 6.4

and glide kinetics as in Section 7.3 to consider time-dependent phenomena.

On this basis, ? concluded that residual inelastic strain, and therefore the

current value of yield stress, in a crystalline metal ¯lm varied with the

¯lm thickness as h−1f . The early literature on this approach is reviewed by

Murakami et al. (1982), Nix (1989) and Arzt (1998). The general approach

was further extended by Nix (1998) in a discussion of plastic yield and strain

hardening in a periodic multilayer ¯lm incorporating alternating layers of

ductile material and elastic material. This study considered intersecting

dislocations as discussed in Section 7.2, and a fairly high strain hardening

rate was deduced. In virtually all examples of this type, the value of yield

stress at any state of relaxation depends on the geometrical dimensions of

the material system in some way.

For even a relatively small number of interacting dislocations which

have independent degrees of freedom in a thin ¯lm system, the behavior

becomes very complex. In order to deal with this complexity, Nicola et al.

(2003) reformulated the problem of dislocation formation and interaction in

a strained single crystal thin ¯lm to allow for determination of its features

by numerical methods. A single crystal thin ¯lm on an elastic substrate

was considered to deform under plane strain conditions. Edge dislocations
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could exist on predetermined slip systems, and ¯lm stress was introduced

as a consequence of thermal mismatch between the ¯lm and the substrate

during temperature change. Dislocations were generated in the initially

dislocation-free ¯lm through a random distribution of sources which, in the

context of the two-dimensional analysis, produced edge dislocation dipoles

whenever the Peach-Koehler force at the source site exceeded a critical value.

The elastic ¯elds of the dislocations were determined by using the analytical

stress ¯elds for a dislocation in unbounded elastic solid, and then relying

on the ¯nite element method to determine an additional nonsingular stress

¯eld in order to satisfy boundary conditions; this superposition approach is

outlined in Section 6.6.2.

Figure 7.31 shows the numerically predicted variation of the average

value of extensional strain in the ¯lm in the direction parallel to the interface

due to thermal mismatch with respect to the substrate as a function of

temperature change from the initial stress free temperature. The unrelaxed

mismatch strain, which is a measure of the average ¯lm stress, is markedly

higher for the thinnest ¯lm than for thicker ¯lms, indicating a size e®ect on

the plastic strain hardening response. Nicola et al. (2003) showed that the

e®ect of ¯lm thickness on ¯lm yield behavior is chie°y a consequence of the

development of a hard boundary layer due to the pile-up of dislocations at

the ¯lm{substrate interface. The width of the boundary layer varies with the

orientiation of the slip system and is independent of the ¯lm thickness. When

the ¯lm thickess is below a certain critical value, the back stress induced by

the dislocations piled-up at the interface causes a reduction in dislocation

nucleation, thereby contributing further to the hardening process. In very

thin ¯lms, this role of back stress in suppressing nucleation occurs earlier in

the relaxation process.

The origin of such a size e®ect in plastic response can be understood

in the following way. First, recall that constitutive behavior as represented

by classical plasticity theory is based on the presumption of simple material

behavior, that is, mechanical behavior is fully characterized by response un-

der states of homogeneous deformation. Against that background, consider

deformation of a single crystal, large in size compared to atomic dimensions,

due to dislocation motion on a single slip system. Plastic strain measured

from an arbitrary initial con¯guration is a measure of the number of dislo-

cations that have passed entirely through the crystal, either from one side

to the other or from an interior source outward through the boundary. This

number, along with the length of the Burgers vector and the geometry of

the slip system, de¯ne a homogeneous simple shear strain as a starting point

for a continuum description of the process. In arriving at this description,
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Fig. 7.31. Numerical prediction of the average lattice mismatch strain as a function
of the change in temperature from a stress-free temperature for three di®erent
thicknesses of an aluminum ¯lm on an elastic substrate. Adapted from Nicola et
al. (2002).

there is no reference to dislocations remaining in the sample but only to

those having passed completely through it. If the sample includes a random

distribution of dislocations at the outset that does not change statistically

during plastic straining then the argument is una®ected and a homogeneous

deformation can still be identi¯ed. On the other hand, if a Burgers circuit

with dimensions on the scale of the sample size leads to a net o®set that

changes in the course of plastic deformation, then the interpretation as a

homogeneous deformation becomes ambiguous.

The need to depart from the foregoing ideas underlies the development

of strain gradient plasticity theories. The reasoning is as follows. There

are some cases of plastic deformation in which a certain density of disloca-

tions must be present for reasons of geometric compatibility; these are the

so-called geometrically necessary dislocations introduced by Cottrell (1964)

and discussed by Ashby (1970). If some net density of dislocations is geo-

metrically necessary in a particular plastically deforming crystal, then the

deformation of a small sample of that material cannot be represented as

being locally homogeneous. Instead, the deformation of a small sample also

depends on the density of geometrically necessary dislocations which is re-
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°ected macroscopically through a plastic strain gradient. These ideas, which

are discussed only loosely here, have been given a mathematical structure

by Fleck et al. (1994) and Fleck and Hutchinson (1997). The structure of

the theory will not be discussed further here.

The results presented in Tables 7.1 and 7.2, and Figure 7.29 indicate

that, in addition to the ¯lm thickness, the grain size of thin ¯lms has a

strong in°uence on yield stress. As an example, consider Figure 7.29 which

reveals that the yield stress of aluminum thin ¯lms varies inversely with

grain size, at a ¯xed ¯lm thickness. In order to provide a mechanistic basis

for the e®ect of grain size on ¯lm yield stress, Thompson (1993) suggested

that the deposition of segments of a surface-nucleated dislocation loop (such

as that described in Section 6.8.1) at grain boundaries leads to a contribu-

tion to ¯lm yield stress which scales with the inverse of the grain size. Such

a variation, however, is not generally observed in polycrystalline thin ¯lms.

For example, Keller et al. (1999) found that the °ow stress of polycrystalline

Cu ¯lms scales with the inverse square-root of the grain size, as envisioned

in the classical Hall{Petch type models for strengthening from grain re¯ne-

ment. Choi and Suresh (2002) invoked the assumption that relaxation of

mismatch strain in the thin ¯lm is accommodated by the introduction of dis-

location loops whose population, dimensions and interaction are determined

by the ¯lm thickness and grain structure. By accounting for the interactions

among such an assumed population of dislocation loops constrained by the

grains in the thin ¯lm, they rationalized the experimentally documented

combined e®ects of ¯lm thickness and grain size on the yield properties of

polycrystalline thin ¯lms. A drawback of all of these mechanistic models of

polycrystalline ¯lms is that the dislocation con¯gurations postulated to be

generated during plastic deformation have not been experimentally veri¯ed.

Consequently, no satisfactory quantitative model is currently available for

predicting the plastic deformation response of a polycrystalline thin ¯lm in

terms of its structure.

7.8.3 Influence of a weak film-substrate interface

As has been noted, plastic deformation of a metal ¯lm consists largely of

driving dislocations through the ¯lm toward the ¯lm{substrate interface.

TEM observations of the interfaces of plastically deformed ¯lms show that

interface dislocations are present in some cases but not in others. It was also

reported that interface dislocations disappear during TEM imaging (MÄullner

and Arzt 1998). In virtually all cases, the substrate material is not de-
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formed plastically, so the di®erence between these observations must be a

consequence of variations in interface quality.

An interface that is fully or partially coherent will likely preserve the

structure of nearby dislocations. In particular, the lattice distortion near

the dislocation line that results in the contrast seen in TEM images will

be preserved. If the interface is incoherent, on the other hand, its intrinsic

resistance against slip can be much smaller than the °ow strength of the

¯lm. Macroscopically, no traction is transmitted across the interface for

a uniform ¯lm, and therefore the background ¯lm stress does not test the

strength of the interface. In the case of a weak interface, the stress ¯eld of a

dislocation near the interface, or perhaps of a group of similar dislocations,

will result in a traction on the interface with the potential for inducing slip.

The slip, in turn, softens the response detected by the dislocations, com-

pared to the response for a perfectly bonded interface; in other words, the

interface begins to take on the character of a free surface. This reduction in

sti®ness of response, in turn, leads to an attractive force on the dislocations.

Consequently, a dislocation is spontaneously drawn toward a weak inter-

face, which increases the shear stress induced on the interface, which then

results in additional slip, and so on. These circumstances imply that the

equilibrium con¯guration is unstable. The distance from the interface over

which the e®ect is dominant is roughly ¹b=2¼¿0 where ¿0 is the shear stress

required to induce slipping on the interface. For ¹ = 100GPa, b = 0:3 nm

and ¿0 = 100MPa, this distance is about 50 nm.

The interaction between a dislocation and a weak interface is inher-

ently nonlinear because the slipping zone at ¯rst expands as a dislocation is

attracted to the interface. As the dislocation moves closer, the slipping zone

necessarily contracts, leaving behind a slipped but no longer slipping por-

tion. This nonlinear interaction has been described within the framework

of elastic dislocation theory by Hurtado and Freund (1999). The main con-

sequence of the interaction is that the dislocations near weak interfaces are

essentially drawn into the interface as slipping progresses. As a result, the

large lattice distortions associated with dislocation cores give way to small

lattice distortions over a relatively large part of the interface; the strain

contrast of the core region is no longer seen in TEM observations, giving

the impression that the dislocations have vanished. This is a possible ex-

planation for the fact that interface mis¯t dislocations are not seen in some

systems. Complete absorption of a dislocation by an interface requires minor

atomic rearrangement at the interface, but this is quite possible, especially

at elevated temperature.
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7.9 Methods to determine plastic response of films

Experimental techniques most commonly used to probe the plastic prop-

erties of thin ¯lm materials involve direct tensile loading of either a free-

standing ¯lm or a ¯lm deposited onto a deformable substrate material, mi-

crobeam bending of ¯lms on substrates, substrate curvature measurement

or instrumented depth-sensing nanoindentation. Salient features of these

methods, as well as speci¯c examples of the adaptation of these methods for

the study of mechanical properties in thin ¯lms, are brie°y addressed in the

following subsections.

7.9.1 Tensile testing of thin films

The determination of stress{strain response of thin ¯lms, typically a mi-

crometer or so in thickness, is a challenging experimental task in view of

the di±culties associated with gripping the specimen and with imposing

and monitoring in situ the mechanical load and the specimen strain, while

ensuring that measurements are not often skewed by e®ects such as out-

of-plane bending or twisting of the specimen or by the deformation of the

loading frame itself. In addition, producing a wrinle-free, free-standing ¯lm

of uniform thickness with su±ciently large in-plane dimensions to facilitate

direct load application and in-situ strain measurement is a di±cult task in

itself. In the application of conventional tensile testing methods developed

for bulk materials, such as those adopted by Sharpe (1982), Baral et al.

(1985) and Ruud et al. (1993), or the bulge test described in Chapter 5), it

is di±cult to measure the strain in the ¯lm accurately and reliably during

the application of a mechanical stress. To overcome these limitations, a va-

riety of in-situ strain measurement methods had been adapted for use with

mechanical tests; among these are the interferometric strain gauge method

(Sharpe 1982), di®raction techniques (Schadler and Noyan (1995), Hommel

et al. (1999) and Huang and Spaepen (2000)) and speckle interferometry

(Read 1998). Two examples of such approaches are presented here.

Huang and Spaepen (2000) conducted uniaxial tensile tests on free-

standing polycrystalline thin ¯lms of pure Ag, Cu and Al and multilayer

¯lms of Ag{Cu. In each case, the ¯lm was deposited by electron-beam

evaporation on a glass substrate which was appropriately masked to produce

a dog-bone shaped specimen with a guage length of 10 mm, gauge width

of 3.1 mm and a thickness in the sub-micrometer to several micrometers

range. Micro-lithographic methods were then used to deposit a thin two-

dimensional polymeric grid on the surface of the ¯lm, whereby an unstrained

pattern of photoresist material was created in the form of a square array of
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islands with 0.6 ¹m side width and 10 ¹m spacing. The polymeric layer has

a much lower elastic modulus than the ¯lm material and forms unconnected

islands; consequently, its in°uence on the interpretation of measured applied

force in terms of stress in the ¯lm material is negligible; this was ascertained

by varying the thickness of the photoresist grids which was found to have no

e®ect on the measured ¯lm response. The ¯lms were carefully peeled from

the glass substrate for uniaxial loading in a microtensile testing machine.

The grips of this device were equipped with a mechanism to monitor the

imposed force through a load cell. A focused He{Ne laser beam, directed

onto the ¯lm surface, was di®racted by the grid pattern in the photoresist;

the in-plane longitudinal and transverse strains in the ¯lm are proportional

to the displacement of the scattered laser spots in the respective directions.

This strain measurement, with a resolution of 0.002%, in conjunction with

the force measurement in the microtensile tester which translates into a

stress resolution capability of 0.1 MPa, provide plots of the stress{strain

curves for the thin ¯lms.

Macionczyk and BrÄuckner (1999) and Hommel and Kraft (2001), on

the other hand, studied the tensile stress{strain response of polycrystalline

thin ¯lms deposited on compliant substrates. In the latter study on Cu

¯lms, x-ray di®raction during the tensile test facilitated examination of the

mechanical response as well as the evolution of dislocation density and the

crystallographic texture of the grains. A 125-¹m thick polyimide foil, capa-

ble of undergoing tensile strains as large as 0.03, was used as the deformable

substrate. Copper thin ¯lms, with thickness in the range from 0.4 to 3.2 ¹m,

were sputter-deposited onto the substrate through a mask over the gauge

section of the dog-bone-shaped specimens. The ¯lms were subsequently an-

nealed in vacuum at a base pressure of 3£10−4 Pa for 60 min at 200 ◦C. The
specimens, with gauge section dimensions of 20 mm by 6 mm, were loaded

in uniaxial tension in a specially built electro-mechanical testing machine

which was housed inside an x-ray goniometer. The specimen was incremen-

tally strained in steps of 10 ¹m displacement; at each step, the stress in

the ¯lm was estimated by performing x-ray di®raction measurements for a

duration of approximately 30 min. While x-ray di®raction provided the ¯lm

stress, the overall strain in the specimen was measured with the use of a non-

contact laser extensometer that recorded the instantaneous spacing between

two reference points on the specimen. Hommel and Kraft (2001) used f331g
planes in the f111g-oriented grains and f420g planes in the f100g-oriented
grains to monitor the position of the Bragg peak in order to estimate the

¯lm stress. The interplanar spacings of the f331g and f420g planes were

then calculated and the in-plane stress components along and across the
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tensile direction were calculated for the appropriate elastic constants of Cu

using the methods described in Section 3.6. In addition to providing esti-

mates of the microstress in the ¯lm, the x-ray analysis provides a measure

of the dislocation density which is related to the width of the measured x-

ray intensity peaks. Experimental results obtained by Huang and Spaepen

(2000) and Hommel and Kraft (2001) on the tensile stress{strain response

of several di®erent thin ¯lm materials were examined in Section 7.8.1.

The challenges inherent in the measurement of stress{strain response

of thin ¯lm materials by means of direct tensile testing are commonly more

than o®set by the distinct advantage that properties characterizing defor-

mation resistance of the material in the plastic range can be determined

under isothermal conditions for a relatively simple state of stress on the

specimen. However, these techniques are not readily amenable to modi¯-

cations that can accommodate uniaxial compression, simple shear stress,

equi-biaxial stress or states stress on the specimen. As a result, it is di±cult

to draw conclusions concerning the dependence of plastic response on stress

path history. It is noted that results for some cyclic tension{compression

experiments were reported by Hommel et al. (1999).

Si
SiO2  substrate

thin film Indenter tip

Load

Fig. 7.32. Schematic of the microbeam de°ection experimental set up. Adapted
from Schwaiger and Kraft (2003).

7.9.2 Microbeam deflection method

Isothermal mechanical tests can also be performed on thin ¯lms and layered

materials using microbeam de°ection methods introduced by Weihs et al.

(1988) and Baker and Nix (1994). In this approach, precise micromachining

techniques, such as those described in Chapter 1, are employed to fabricate

small cantilever beam structures. A transverse de°ection is then imposed

on these beams by mechanical means over distances on the order of ¹ms.

Figure 7.32 shows an example of such a system studied by Schwaiger and

Kraft (2003) who used an anisotropically etched, oxidized Si substrate to

produce a silicon oxide cantilever beam, approximately 100 ¹m long, tens of



7.9 Methods to determine plastic response of films 587

¹m wide, and several ¹m thick. Thin ¯lms of Ag, 200 nm to approximately

1 ¹m in thickness, were then magnetron-sputtered on the cantilever beam

under ultra-high vacuum. The cantilever beam specimen was placed inside

a nanoindentation system so that the wedge-shaped tip of the diamond

indenter could be used to de°ect the beam a distance on the order of a

¹m at the load point, a location approximately 30 ¹m from the free end of

the beam. Components of stress and strain induced in the ¯lm due to this

imposed de°ection were analyzed by means of ¯nite-element simulations,

and the appropriate stress{strain characteristics of the ¯lm were extracted

from these results; examples of such results on the yield properties of Ag

thin ¯lms were provided in Section 7.8.1.

(a) (b)

(c)

Fig. 7.33. (a) E®ect of cyclic stress on the sti®ness of Ag{SiO2 bilayer cantilever
beams for Ag ¯lm thickness of 0.6 ¹m and 1.5 ¹m. (b) Fatigue damage map
showing the tensile stress amplitude necessary to induce a change in the sti®ness
of the bilayer cantilever beam within 3.8£106 fatigue cycles as a function of the
thickness of the Ag ¯lms. (c) FIB image, shown at a 45 deg. tilt, of the cross-section
of the Ag ¯lm on the SiO2 substrate showing the evolution of cyclic damage in the
form of voids and surface extrusions. Reproduced with permission from Schwaiger
and Kraft (2003).
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A particularly appealing feature of the test system shown in Fig-

ure 7.32 is that it makes it possible to perform cyclic deformation exper-

iments on thin ¯lms on substrates in order to explore systematically the

e®ects of cyclic frequency, waveform, mean stress and ¯lm thickness on the

evolution of damage and failure. For example, Schwaiger and Kraft (2003)

have superimposed a sinusoidal force oscillation at 45 Hz on a static force

signal to investigate the fatigue response of Ag silver ¯lms over millions of

imposed stress cycles. Progression of fatigue damage is quantitatively as-

sessed by recording the change in beam sti®ness with increasing numbers of

fatigue cycles; this measurement is made using the lock-in ampli¯er in the

nanoindentation set up which provides a continuous measure of the dynamic

sti®ness. Figure 7.33(a) shows the variation of the bilayer beam sti®ness as

a function of the number of fatigue cycles at room temperature for 0.6 and

1.5 ¹m thick Ag ¯lms on the silicon oxide substrate. The imposed tensile

stress amplitudes for the two cases were 50 and 54 MPa, respectively, and

the corresponding tensile mean stress values were 255 MPa and 350 MPa,

respectively.

Microscopic examination of the fatigued ¯lms revealed that the change

in the bilayer sti®ness correlated well with the onset of damage in the ¯lm

in the form of voids, surface extrusions and microcracks. The onset of dis-

tributed fatigue damage in the thicker ¯lm led to a precipitous drop in the

bilayer sti®ness at approximately 8£105 stress cycles;the thinner Ag ¯lm

was capable of sustaining cyclic stresses without any apparent damage. Fig-

ure 7.33(b) is a plot of the stress amplitude necessary to generate a notice-

able decrease in beam sti®ness within 3.8£106 fatigue cycles as a function of

the thickness of the Ag ¯lms. These stress amplitudes represent maximum

values acting along the beam axis at the surface of the ¯lm near the ¯xed

end of the cantilever beam. The solid line in Figure 7.33(b) represents a

demarkation line between conditions that led to this reduction in sti®ness

(open symbols) and conditions for which no sti®ness change was detected.

This ¯gure shows that a 200 nm thick Ag ¯lm required twice the amplitude

of stress to undergo the same amount of sti®ness change as a 1000 nm thick

¯lm. An increase in mean stress at a ¯xed stress amplitude leads to a re-

duction in the number of cycles needed for a sti®ness loss to occur; however,

the critical stress amplitude for damage evolution is una®ected by the mean

stress. Figure 7.33(c) is a micrograph of a cross-section of the Ag ¯lm on

the silicon oxide substrate which was produced by focused ion beam (FIB)

milling and imaged at a tilt angle of 45 deg. The evolution of surface extru-

sion and voids in response to cyclic stressing are evident in this micrograph.

Although the mechanisms by which fatigue damage evolution in thin ¯lms
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di®ers from that in bulk metals and alloys (Suresh 1998) are not fully under-

stood at this time, the microbeam de°ection method provides a convenient

experimental tool with which the cyclic deformation and failure characteris-

tics of thin ¯lms can be studied. Similar fatigue experiments have also been

reported for Cu thin ¯lms on polyimide substrates where cyclic tensile tests

were conducted in an electromechanical testing machine using the methods

described in Section 7.9.1.

7.9.3 Example: Thin film undergoing plane strain extension

For the case of thin ¯lms being deformed plastically under the action of equi-biaxial
states of stress, the stress history follows a straight line path in stress space. In
some of the experimental methods for study of thin ¯lm plasticity that have been
described in this section, the in-plane stress components are not equal, in general,
and the trajectory in stress space during deformation is not a straight line. Consider
a ¯lm material being deformed under plane strain extension in the x¡direction;the
plane strain constraint is enforced in the z¡direction. The elastic modulus is Ef

and the Poisson ratio is ºf = 0:3. The initial yield locus for the material in terms
of tensile yield stress stress ¾Yf

is the Mises condition ¾M = ¾Yf
. The material

undergoes isotropic linear hardening beyond yield, with d²pM=d¾p
M = 10=Ef in a

tension test which provides the value for H . Determine the trajectory in stress
space for an elastic-plastic ¯lm constrained to deformed in plane strain extension.

Solution:

Initially, the response is within the elastic range of behavior. In this range,
the plane strain constraint ²zz = 0 is su±cient to determine the stress trajectory.
From Hooke's law,

²zz =
1

Ef
(¾zz ¡ ºf¾xx) (7.87)

which implies that the stress state moves out along the line ¾zz = ºf¾xx in stress
space from the origin until the line intersects the yield locus. The portion of the
stress trajectory within the elastic range is shown by the line with slope ºf in
Figure 7.34.

Once plastic °ow begins, the total strain rate is the sum of the elastic and
plastic strain rates. The plastic strain rate is given in terms of stress by (7.60), and
the expressions for total strain rate are

_²xx =
1

Ef
( _¾xx ¡ ºf _¾zz) +

10

Ef

_¾M

¾M

¡
¾xx ¡ 1

2
¾zz

¢
(7.88)

_²zz =
1

Ef
( _¾zz ¡ ºf _¾xx) +

10

Ef

_¾M

¾M

¡
¾zz ¡ 1

2¾xx

¢
: (7.89)

The plane strain constraint still requires that _²zz = 0 and the imposed extensional
strain requires that _²xx = 5¾Yf

=Ef . Therefore, the left-hand sides of both equations
are known. The equations (7.88) and (7.89) then provide a pair of ¯rst-order
ordinary di®erential equations to be integrated for ¾xx and ¾zz as functions of
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time. The initial values are determined from the intersection of the straight line
trajectory in the elastic range with the yield locus. Note that Ef is a common factor
in each term of the di®erential equations, so the stress trajectory does not depend
on elastic modulus. Furthermore, if both stress components are normalized with
respect to the yield stress ¾Yf

, then it also drops out of the formulation.

0.5

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0
initial yield locus

σxx / σYf

σ zz
 / 

σ Y
f

νf

Fig. 7.34. The trajectory in stress space resulting from plane strain extension of
an elastic-plastic ¯lm. The ¯lm material is assumed to undergo isotropic linear
hardening, as described in the text.

Integration of the di®erential equations from ¯rst yield for an elapsed time of
t = 1 yields the result shown in Figure 7.34. The dash curve is the initial yield locus.
Note that the stress trajectory deviates sharply from linearity once yielding begins,
even though the state of deformation is always uniaxial plane strain extension.

As the magnitude of plastic strain becomes large in the material compared

to the elastic strain, the stress trajectory approaches the dot{dash line with slope

0.5. This is precisely the trajectory that would be predicted if elastic strains would

be neglected entirely from the outset. For comparison, the corresponding results

for kinematic hardening the shown in the graph as the dotted curve, barely visible

under the solid curve.

7.9.4 Substrate curvature method

The ease with which the ¯lm mismatch stress can be estimated from the

change in curvature of a relatively thick substrate subjected to thermal

excursion has led to the widespread use of the substrate curvature method

for the study of mechanical properties. As reviewed in Section 2.3, substrate
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curvature can be continuously monitored with high precision using a variety

of commercially available instruments.

Advantages in the use of substrate curvature method for the extraction

of ¯lm properties can be summarized as follows.

¡ The ¯lm stress can be determined from the Stoney formula and the

measured substrate curvature without knowledge of the thermal and

mechanical properties of the ¯lm material, as indicated by (2.7). If

both the ¯lm and substrate deform elastically during thermal excur-

sion, the slope of the stress versus temperature plot, such as that

shown in Figure 7.16, has a magnitude of Mf®f . If either of these

material properties is known through other means, the other can be

determined from this slope. Since the stress-free strain in the ¯lm

is induced by thermal expansion mismatch with respect to the sub-

strate, the curvature method obviates the need for mechanically load-

ing the specimen, thereby circumventing the complexities associated

with the design, fabrication and gripping of the specimen.

¡ The onset of plastic deformation in the thin ¯lm causes a distinct

change in the slope of stress versus temperature curve during both

heating and cooling. This transition point is commonly used to assess

the magnitude of the biaxial yield strength of metallic thin ¯lms in

both tension and compression in di®erent temperature regimes.

¡ It was shown in Section 7.7.3 that the curvature versus temperature

or the stress versus temperature hysteresis loops for an unpassivated

thin ¯lm generally attain a saturated state after the ¯rst thermal

cycle. Since the subsequent thermal cycles are not a®ected by the

prior thermal loading history (in the absence of any transient damage

processes such as void growth or crack advance or interfacial delam-

ination), the method o®ers considerable experimental °exibility in

exploring a wide variety of mechanical responses (such as curvature

evolution with di®erent heating and cooling rates, or with di®erent

hold periods at a ¯xed temperature, tension{compression asymmetry

of plastic °ow at di®erent temperatures, etc.), and loading histories

(such as thermal cycling between di®erent temperature limits as, for

example, shown in Figure 7.19) using a single specimen.

¡ Since substrate curvature can be accurately measured, even in the

presence of rigid body motion or vibration, by use of the multi-beam

optical stress sensor or the coherent gradient sensor techniques de-
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scribed in Chapter 2, the method is readily amenable for in-situ stress

measurement during ¯lm deposition and passivation, or for use as a

quality control tool to monitor ¯lm stress and properties.

¡ By comparing experimentally determined stress versus temperature

hysteresis loops with simple constitutive models of plastic deforma-

tion, approximate estimates of plastic properties such as the ¯lm yield

strength in tension or compression, extent of strain hardening, and

the temperature-dependence of °ow stress can be inferred for some

thin ¯lm materials (see, for example, Figures 7.16 and 7.19).

Several examples were presented in Section 7.4 on the use of substrate cur-

vature method for the determination of plastic properties of thin ¯lms.

The curvature method also has some inherent limitations. Since the

method entails determination of plastic response through the imposition of

a temperature change or phase transformation, which is known to alter the

plastic properties of metals, care should be exercised in the interpretation of

strain relaxation phenomena from curvature measurements. There are also

no clear means of isolating the individual contributions to overall curvature

evolution seen experimentally from such factors as plastic yielding, strain

hardening, di®usional creep, or microstructural changes, without recourse

to other independent experimental and observational tools.

7.9.5 Instrumented nanoindentation

Nanoindentation experiments entail use of a mechanical probe in the form of

a three-sided or four-sided pyramid, commonly referred to as the Berkovich

or Vickers indenter, respectively. The indenter penetrates a specimen sur-

face at a speci¯ed load or displacement rate, and the corresponding dis-

placement during both the loading and unloading stages is continuously

recorded. Figure 7.35 shows schematic illustrations of two di®erent types of

instrumented nanoindenters. In Figure 7.35(a), the depicted con¯guration

facilitates the application of sub-¹N level indentation loads on a surface by

appropriately modulating the current in the coil which is surrounded by a

magnet; the indenter tip is located at the end of a load train which originates

at the coil. This arrangement is connected to the frame through suspension

springs, with the entire assembly being capable of vertical translation by a

controlled amount. The capacitance displacement gage shown in this ¯gure

provides a record of the depth of penetration of the indenter tip into the

surface, to a resolution on the order of a tenth of a nm. A small oscillation

in the applied force, produced by the superposition of an alternating current
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Fig. 7.35. Schematic illustrations of two di®erent designs for an instrumented
nanoindenter. Figure (a) is adapted from Materials Test Systems Corporation,
Eden Prairie, Minnesota, and (b) from Hysitron Corporation, Minneapolis, Min-
nesota.

which provides a frequency of load oscillation of 10 to 100 Hz, is also used in

this arrangement so that the resulting oscillations in displacements provide

a continuous measurement of contact sti®ness during the entire indenta-

tion experiment. This capability also allows sensitive assessment of surface

contact between the indenter and the material being probed, and it may

prove convenient to study materials whose mechanical properties are time-

dependent. The phase angle between the dynamic load and displacement is

continuoulsy and directly measured with the aid of a lock-in ampli¯er.

Figure 7.35(b) shows another design of a nanoindenter in which a

three-plate capacitance con¯guration is utilized for the simultaneous mea-

sure of indentation load and displacement, to a resolution of approximately

100 pN and 0.1 nm, respectively. A dc voltage applied between the center

and bottom plates causes the indentation load to be imposed on the spec-

imen, whereas an ac voltage between the top and bottom plates enables

continuous record of the normal displacement of the indenter tip into the

specimen; the indenter is attached rigidly to the center plate. An appeal-

ing feature of this design is that pre-indentation pro¯le of the surface and

residual impression of the indenter on the surface following indentation can

both be imaged. Similar to an atomic force microscope operating in a con-
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tact mode, the indenter tip of this apparatus is mounted on a cantilever

displacement sensing system. A piezoelectric scanner moves the substrate

surface in three dimensions relative to the indenter tip while maintaining a

contact force, as small as 1 ¹N, with the aid of a feedback control loop be-

tween the cantilever beam and the piezoelectric actuator. Once the imaging

process is completed, the scanning operation is terminated and the indenta-

tion loads are imposed on the surface. In both systems shown in Figure 7.35,

the specimen is housed on a motorized stage with which it can be translated

in plane by a displacement as small as 1 ¹m.

WeWp

dP
dh

hm

h r

Pm

hm

P

h

Fig. 7.36. Schematic showing the indentation load P versus penetration depth h
during the loading and unloading stages.

Figure 7.36 is a schematic of a typical indentation load P versus depth

h curve for a metal. As the indenter is ¯rst pressed against the surface, the

material deforms plastically, following an initial elastic deformation regime,

and permanent deformation occurs whereby a hardness impression approx-

imately conforming to the shape of the indenter is formed on the surface

being probed. As the indenter is released from a maximum load Pm, only

the elastic portion of the displacement is recovered from a maximum value

of hm. The cross-hatched region in Figure 7.36 shows the recovered elastic

work We whereas the shaded region represents the work Wp which is dissi-

pated as plastic deformation; the sum of these two work terms constitutes

the total work which is the area under the indentation loading curve up to

the maximum loading point fPm; hmg. The residual depth hr is the perma-

nent displacement left by the plastic impression upon complete removal of

the indenter from the surface.

Nanoindentation is commonly used to measure two properties of a
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bulk or thin ¯lm material or a surface coating: the elastic modulus and the

hardness. The slope of the initial portion of the elastic unloading curve is

related to the elastic modulus of the indented material as

dP

dh
at P = Pm =

2®∗E∗A1/2cp
¼

; E∗ =
(
1¡ º2s
Es

+
1¡ º2in
Ein

)−1
; (7.90)

where E∗ is the reduced elastic modulus of the indenter{material system,

E and º represent, as before, the elastic modulus and Poisson ratio, respec-

tively, with the subscripts `s' and `in' denoting the specimen and the inden-

ter, respectively, Ac is the projected contact area of the impression produced

on the indented surface at the maximum load Pm, and the non-dimensional

constant ®∗, which is on the order of unity, represents a correction factor

which accounts for the shape of the indenter tip (King 1987); (Doerner and

Nix 1988); (Oliver and Pharr 1992); (Dao et al. 2001). Thus the elastic mod-

ulus of the indented material is obtained from the experimentally determined

P{h curve in conjunction with (7.90) where the projected area is either esti-

mated from post-indentation observation of the indenter impression or from

detailed computational simulations of the elastoplastic deformation induced

during indentation (e.g., Dao et al. (2001)); elastic properties of the com-

monly used diamond indenter (typically, Ein = 1140 GPa and ºin = 0.07)

and the Poisson ratio of the indented material (typically, º = 0.3 for most

metallic materials) are taken from literautre values.

The indentation hardness signi¯es the mean pressure that can be sus-

tained under the indentation load and is de¯ned as

H =
Pm
Ac

: (7.91)

The indentation hardness is commonly used as a convenient material para-

meter with which di®erent materials can be ranked in terms of their strength

values.

Depth-sensing instrumented indentation o®ers many possibilities for

the mechanical probing of thin ¯lms and surfaces at sub-microscopic length

scales, from which a number of issues related to thin ¯lm mechanical re-

sponse can be pursued quantitatively. For example, nanoindentation ex-

periments were used in Section 6.8.2 to investigate the critical conditions

governing the onset of homogeneous nucleation of dislocations in an initially

defect-free metallic crystal with an accuracy and °exibility for measurement

during the application of a mechanical load, that are di±cult to achieve

using other experimental techniques. It was also shown in Figure 6.40 of

that section that the rising portions of the P versus h plot were indicative



596 Dislocation interactions and strain relaxation

of the elastic response of a single crystal thin ¯lm of pure aluminum where

the volume of the material sampled was as small as a few hundred nm3.

Nanoindentation experiments also provide a means to investigate quanti-

tatively many fundamental aspects of asperity-level contact at surfaces of

¯lms and coatings, such as those used to impart protection against tribo-

logical damage. Furthermore, the response captured by the P{h curve in

Figure 7.36 is known to be strongly in°uenced by such factors as the inelas-

tic properties of the material (Oliver and Pharr (1992); Dao et al. (2001)),

equi-biaxial residual stress in the ¯lm (Tsui et al. (1996); Suresh and Gi-

annakopoulos (1998)), and substrate constraint (Laursen and Simo (1992);

Tsui et al. (1999)). Consequently, the indentation method provides a con-

venient experimental tool with which such issues as the plastic properties,

internal stress ¯elds, as well as the size-dependence of plastic response can

be systematically investigated in bulk and thin ¯lm materials over multiple

length scales. Computational simulations based on continuum elastoplastic

analysis suggest that as a general rule of thumb, depth-sensing nanoindenta-

tion results, such as those schematically shown in Figure 7.36, for thin ¯lms

can be extracted without the e®ect of the substrate when the maximum

depth of penetration hm of the indenter into the ¯lm surface is typically

smaller than about 10% of the ¯lm thickness hf (Laursen and Simo (1992);

Bhattacharya and Nix (1988)).

The use of depth-sensing instrumented indentation to study the inelas-

tic deformation response of thin metal ¯lms on substrates remains a work

in progress. A key underlying challenge here is to estimate the connection

between the projected contact area Ac and the indenter depth of penetra-

tion h for particular geometrical con¯gurations, constraint conditions and

material parameters by properly accounting for the manner in which the

material °ows around the indenter. References to relevant literature on this

topic can be found in Section 6.8.2 as well as in reports by Oliver and Pharr

(1992), Nix (1997) and Dao et al. (2001).

7.10 Exercises

1. The critical temperature change from a stress-free reference state, ¹TY, at
which plastic yielding begins during thermal excursion in a ¯lm{susbtrate
bilayer of arbitrary layer thickness was given in (7.41). Assuming that the
conditions which underlie the derivation of this equation hold, show that the
plastic zone spreads monotonically from the ¯lm{substrate interface to the
free surface of the metal ¯lm if the following conditions are satis¯ed:

´2m ∙ 1; (7.92)
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and that

3´m
£
3¡ 5´2

¤
+ 3´2m2

£¡9 + 9´ + 60´2 + 45´3 + ´4
¤

+´4m3 (4´ + 3)
£¡27¡ 27´ + 45´2 + 51´3 + 4´4

¤ ¸ 2; (7.93)

where ´ = hf=hs and m = Mf=Ms.

2. A bilayer is made by di®usion-bonding a metallic layer of thickness hf to
a ceramic layer of thickness hs at a stress-free reference temperature T0.
The properties of the metallic layer are: Ef = 210 GPa, ºf = 0.3, ®f =
15£10¡6 (±C)¡1, and Mf=¾Yf

= 3800, where the symbols denote the vari-
ous material parameters de¯ned earlier in this chapter. The corresponding
properties of the ceramic layer are: Es = 380 GPa, ºs = 0.25, and ®s =
5£10¡6 (±C)¡1. The metallic layer can be assumed to be an elastic{ideally
plastic material with equal values of tensile and compressive yield strengths.
For the purposes of this exercise problem, the properties of both layers can
be assumed to be independent of temperature. hf=hs = 1.

(a) Determine the decrease in temperature from the reference state which
is necessary to initiate plastic yielding in the metallic layer at the
metal{ceramic interface.

(b) Determine the decrease in temperature from the reference state which
is necessary to initiate plastic yielding of the entire metallic layer.

(c) If hs = 1 mm, determine the magnitude and sign of substrate curva-
ture when the condition in (b) is reached.

3. A trilayer is formed by depositing an Al ¯lm on a (100) Si substrate and
then passivating the ¯lm with a silicon oxide capping layer. The evolution
of substrate curvature upon cooling from a stress-free reference temperature
can be easily determined by extending the analysis for the bilayer given
in Section 7.4.1 to a three layer system. Such calculations by Shen and
Suresh (1995a) show that for speci¯c combinations of thicknesses of the three
layers, the sign of the curvature can reverse during a monotonic reduction in
temperature from the stress-free reference state. Such reversal of curvature
was predicted for the following combination of layer thicknesses (in arbitrary
units) for the substrate, ¯lm and passivation layer: hs = 5, hf = 1 and hp =
1, respectively. Provide a rationale for the possible occurrence of curvature
reversal in such a system during cooling. The elastic and thermal properties
of the three layers can be found listed in the property tables in Chapters 2
and 3. The plastic yield strength of the aluminum ¯lm, which can be assumed
to be elastic{ideally plastic for the purpose of this exercise, is 100 MPa.

4. The variation of indentation load as a function of penetration depth for a
sphere of radius R indenting the °at surface of an elastic solid is given by
the Hertzian theory of elastic contact as

P =
4

3
E¤R

1
2h

3
2 ; (7.94)

where P , E¤ and h were de¯ned in Section 7.9.5. From the geometry of
elastic contact, it is found that the projected contact area Ac ¼ ¼Rh. For
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elastic spherical indentation, show that the initial unloading slope dP=dh is
of the form given by (7.90) with ®¤ = 1.

5. Hardness tests are commonly used in industry to assess, on a relative basis,
the strength of engineering materials and coatings. Conduct a literature
search to ¯nd (a) at least four di®erent de¯nitions of hardness which are
widely used in practice, (b) the relationship, if any, between these di®erent
hardness measures, and (c) the advantages and limitations of each hardness
test. Useful background information can be found in the following references.
(1) D. Tabor, The hardness of metals, Clarendon Press, Oxford, UK, 1951,
and (2) Metals handbook, Second Edition, edited by J. R. Davis, American
Society for Materials International, Metals Park, Ohio, 1998.
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Equilibrium and stability of surfaces

The role of mechanical stress in establishing the equilibrium and stability

of material surfaces is the focus in this chapter. The concepts developed

provide the basis for consideration of stress-driven transient evolution of

surfaces, which will be taken up in the following chapter. Examples of ma-

terial surfaces which are of interest include the free surface of a crystal, which

may be adjacent to a vacuum or in contact with a vapor, and the interface

between two crystals. In all these situations, it is assumed that each solid

phase is a homogeneous elastic medium. A characterizing feature of such a

solid is that there is always a well-de¯ned reference configuration to which

it returns when all external loads are removed from it. While this con¯gu-

ration is commonly viewed as being immutable, the focus in this chapter is

on situations in which this reference con¯guration can change shape or size

over time. Physical processes by which this can occur involve the addition,

rearrangement and removal of mass which and proceed, for example, by

means of condensation/evaporation, surface di®usion, grain boundary di®u-

sion, or grain boundary migration. These processes are typically very slow,

and they are not usually taken into account in applications other than ma-

terial processing, a case in which stress usually plays a minor role. However,

in systems with very small size scale and high temperature, stress of large

magnitude can have a signi¯cant in°uence on the evolution of surfaces and

interfaces. All three features { small size, high temperature and large stress

{ are characteristic of thin ¯lm systems, where the phenomenon of stress

driven surface evolution is of considerable scienti¯c and practical interest.

The actual ranges of stress, temperature and size for which this is the case

will emerge in the course of discussion.

This chapter begins with a brief summary of the basic approach and

terminology used in describing the equilibrium of surfaces. The concept of

chemical potential is then introduced as a means to generalize the e®ects of

599
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stress and mass transport in conjunction with several physical phenomena

such as free surface evolution in a stressed solid, grain boundary di®usion or

migration, and the advance or healing of a crack. Attention is then shifted

to the issue of stability of an initially °at surface of a stressed solid under

small amplitude perturbations. The mechanics of contact between imping-

ing islands during deposition of ¯lm material is examined next. How do

internal stresses develop in the evolving thin ¯lm as a consequence of such

interactions between contacting islands? This is followed by consideration

of a rich variety of phenomena dealing with the connections between free

energy and surface evolution. How does the presence of mis¯t dislocations

in°uence waviness and pattern formation on a surface? What is the chem-

ical potential of the free surface of an elastic solid whose surface energy

is anisotropic? How is island formation on a strained surface in°uenced

by equilibrium thermodynamics and mechanical factors? The energetics of

arrays of nanocrystalline islands predictable size and shape are of critical

importance for quantum electronics applications. Some of these topics are

further pursued in Chapter 9 in the context of surface evolution which is

in°uenced by mass transport.

8.1 A thermodynamic framework

The material systems to be considered in this chapter are deformed due

to stress, in general, and are assumed to be always in mechanical equilib-

rium. Typically, any transients in con¯guration occur too slowly for material

inertia e®ects to come into play. The systems are not necessarily in thermo-

dynamic equilibrium, however. The thermodynamic state is understood to

be represented by a deformation ¯eld de¯ned over the bulk phase, by the po-

sition and shape of the surface, and by the temperature ¯eld de¯ned over the

bulk phase. For the time being, the system will be assumed to be in thermal

equilibrium (relatively rapid thermal conduction) and at a ¯xed temperature

(available heat reservoir). The appropriate thermodynamic state function

is the Helmholtz free energy function (at ¯xed temperature), say F . The

free energy is the sum of the total elastic energy of deformation in the bulk

phase and the total surface energy of the system. The elastic strain energy

per unit volume of the bulk phase, say U , and the energy per unit area

of the surface, say US, incorporate whatever constitutive models are to be

used to describe material behavior. Usually, there are other contributions

to the total free energy of a system. However, only those contributions that

actually change in value as the surface evolves are relevant to the discussion

of underlying physical processes.
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Most of the discussion of this chapter is concerned with in¯nitesimally

small deformation of the bulk phase of the material from its reference con¯g-

uration. However, some implications of ¯nite deformation will be considered

in Section 8.8 where it will be necessary to distinguish between energy den-

sities in the reference and deformed con¯gurations. A second point concerns

the terms surface energy and surface tension. These terms are often used in-

terchangeably to describe a certain physical characteristic of a °uid. Surface

energy refers to the energy of cohesion of an undeformed material surface,

as discussed in Chapter 1. The physical e®ect which does work as a mate-

rial surface is deformed, over and above the work of stress within the bulk

phase, will be called surface stress; it is the thermodynamic force that is

work conjugate to surface strain with respect to free energy. As was noted

in Chapter 1, surface stress arises naturally when surface energy depends

on surface strain. The term surface tension will not be used to describe

any particular physical characteristic of the system in the course of this

discussion.

Changes in magnitude of the free energy corresponding to physically

realizable perturbations in deformation and/or surface shape from the cur-

rent state represent the tendency for a system to depart from its current

state. If the variations in free energy for all possible perturbations in shape

are zero to ¯rst order in the perturbations then the current state is a ther-

modynamic equilibrium state. If the free energy is a local minimum for

perturbations from that state, then the equilibrium con¯guration is sta-

ble; otherwise, the equilibrium con¯guration is not stable, and it may be

unstable. This statement of equilibrium is a corollary to Gibbs' original

equilibrium condition, which is expressed in terms of internal energy as the

fundamental state function and which requires that entropy must be sta-

tionary under variations in state for equilibrium. Likewise, the de¯nition

of stability adopted here is a corollary to Gibbs' requirement that entropy

must be maximum for an equilibrium state to be stable.

If the variation in free energy for some possible perturbation in state

is negative to ¯rst order, the system is not in thermodynamic equilibrium.

Furthermore, it can lower its free energy by actually executing a change in

state without an external stimulus; such a process is said to be spontaneous.

A description of the way in which the system actually executes a change in

state requires the introduction of additional constitutive hypotheses which

relate the rates of change of deformation and/or surface con¯guration to

the associated free energy variations; these constitutive relations are the

kinetic relations of irreversible thermodynamics which relate the rates of

change of state (here, surface shape and deformation) to thermodynamic
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driving forces (chemical potential and stress) in non-equilibrium con¯gura-

tions. A ¯nal point is that the restriction to isothermal conditions reduces

the theoretical framework from that of irreversible thermodynamics to that

of mechanics of dissipative systems; the framework must be consistent with

thermodynamics, of course, but it does not include its full range of behavior.

In the present context, the restriction of the material of the bulk phase

to be an inherently stable elastic material and the requirement that the elas-

tic stress ¯eld is an equilibrium ¯eld imply that variations of free energy due

to perturbation in deformation ¯eld at ¯xed shape will vanish. This is

equivalent to the above requirement that the system is always in mechan-

ical equilibrium. The novel feature of the system, from the perspective of

mechanical behavior, is that the free energy also changes due to changes in

surface shape. The surface ¯eld which represents the tendency for the system

to change the shape of its reference con¯guration is the chemical potential

field (Gibbs (1878); Herring (1953)). This surface ¯eld is de¯ned quanti-

tatively in the next section, where several generalizations of the concept

are also considered for surfaces which de¯ne interfaces between materials.

The general concept of chemical potential is also applied in Chapter 9 in

situations where bulk material transport occurs.

8.2 Chemical potential of a material surface

The concept of chemical potential was introduced by Gibbs (1878) in order

to describe the tendency for materials to combine with each other chemically.

Suppose that there is a homogeneous mass of material, say AB, which is a

compound of materials A and B. This mass has the possibility for chemical

interaction with a second homogeneous mass composed of material B. The

removal of a unit of mass from B and its addition to AB is accompanied

by a change in the free energy of the system. Gibbs termed this change in

free energy per unit mass the potential for the mass transfer process. The

process tends to occur spontaneously if this potential is negative, whereas it

does not tend to occur if the associated change in potential is positive. As

stated by Gibbs, a necessary and su±cient condition for the system to be in

chemical equilibrium is that the total free energy cannot be reduced further

by any possible mass transfer process.

The concept of chemical potential as an indicator of the tendency for

mass transfer to occur in a system has been generalized to a range of physical

phenomena. The issue is not so much the transfer itself, but is rather the

energetics of forming or breaking chemical bonds, and the local state of the

material as bonds are established or severed. In this section, several such
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generalizations are described in which stress e®ects are incorporated. These

include evolution of a free surface of a stressed solid, mass di®usion along a

grain boundary driven by a stress gradient, grain boundary migration, and

crack growth or healing.

8.2.1 An evolving free surface
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Fig. 8.1. A schematic diagram of a periodic material structure undergoing surface
evolution. Such con¯gurations are conveniently studied by focusing on a sub-region
bounded by a segment S0 of the evolving surface and by material surfaces S00 across
which traction acts but through which net energy °ux is zero. A particularly
convenient choice for S00 for subject con¯guration are symmetry surfaces.

Consider an elastic solid that occupies a region R of space in its ref-

erence con¯guration. The boundary S of the solid consists of two parts, a

part SI that can change over the course of time and a part SII that is ¯xed
with respect to material points instantaneously on it. The portion SI of the
surface is free of externally applied traction. The material is stressed by

imposing some conditions on SII, but this is done in such a way that there is

no exchange of energy between the material in R and its surroundings as SI

changes in shape; this is not an essential requirement but is, rather, a feature

assumed to make this development as transparent as possible. An example

of a situation where this restriction is relevant is a system for which both

the geometrical con¯guration and the deformation ¯eld are periodic and in

which SII encloses only a single period of this con¯guration, as illustrated

in Figure 8.1. In this case, the net energy °ux through SII is exactly zero

as a result of periodicity, even though the local °ux is not necessarily zero

pointwise over SII; the simplest choice would be to form SII from among

symmetry surfaces of the periodic system. A second example arises when

surface shape °uctuations are localized in space, and SII is su±ciently re-

mote so that the e®ect of the °uctuations in shape of SI on values of ¯eld

quantities at points on SII are negligibly small.

The elastic strain energy density U(²ij) is determined locally by the

elastic strain ¯eld ²ij, and the energy density function incorporates consti-
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tutive assumptions about mechanical behavior. The strain energy density

U does not depend explicitly on position in the material, implying that the

material is homogeneous; again, this feature is assumed for simplicity but is

not essential to the development. The surface energy density US is assumed

to be constant over the entire surface S for the time being. The neglect

of dependence of US on deformation implies that surface stress e®ects are

ignored, and the neglect of dependence of US on local surface orientation

implies that surface anisotropy e®ects are ignored. Implications of including

both of these e®ects are examined in Section 8.8.

With these constitutive assumptions, the free energy of the system is

the sum of elastic energy and surface energy,

F(t) =

Z
R
U(²ij) dR+

Z
SI
US dS : (8.1)

As noted in Section 8.1, these are the contributions to free energy that

change as shape changes. The surface integral extends only over SI because
this is the only part of the surface S that can change its shape with respect

to the material as a function of time; it is only free energy changes that are

signi¯cant. The time dependence of F is indicated explicitly on the left side

of (8.1). The time dependence on the right side arises from several e®ects:

the region R changes in time, the strain ¯eld ²ij changes with time at each

material point, and the location of the free surface SI with respect to the

material changes in time.

The change of shape of SI can be expressed in terms of the normal

velocity of the surface vn, viewed as a function of position over SI for the

time range of interest. This is the normal speed of the surface with respect

to the material particles instantaneously on the surface, as determined in

the reference con¯guration of the material. Then

_F(t) =

Z
R

@U

@²ij
_²ij dR+

Z
SI
vnU dS ¡

Z
SI
vn∙US dS; (8.2)

where ∙ is twice the mean curvature of the surface SI, or the sum of the

curvatures in any two orthogonal directions, at any point on the surface; a

superposed dot denotes time derivative. The sign convention is such that

the curvature is positive if the center of curvature at a point on the surface

lies in the direction from the surface of the outward unit normal vector ni.

The interpretation of the three terms in (8.2) is straightforward. As the

shape of SI changes, the strain at each interior material point changes; the

resulting net change in free energy due to this e®ect is given by the ¯rst

term on the right side of (8.2). As material is added (vn > 0) or removed

(vn < 0) at any point on SI, it must be strained to be compatible with the
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surface to which it is being added or from which it is being removed; the net

strain energy change is given by the second term on the right side of (8.2).

Lastly, the amount of surface area increases or decreases locally, depending

on the sign of the mean curvature and the direction of surface propagation;

the net change in free energy due to change in surface area is given by the

third term on the right side of (8.2).
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Fig. 8.2. A two-dimensional sketch of a curved surface advancing through a material
that provides a simple basis for interpreting the second and third terms on the right
side of (8.2).

The expression in (8.2) can be obtained by direct application of the

fundamental de¯nition of a derivative. However, an intuitive basis for the

second and third terms on the right side of (8.2) can be found in an examina-

tion of the sketch in Figure 8.2 for a two-dimensional situation. The sketch

shows a small portion of the volume R and its free surface SI at time t. It

also shows the position of SI at a slightly later time t+¢t after movement

by its normal speed vn. Suppose that the system depicted has unit extent in

the direction normal to the plane shown, and focus attention on an element

of surface area dS. At time t, the curvature of that cylindrical element in

the plane is ∙, or the radius of curvature is 1=∙. Once the surface has moved

to the dashed position at time t+¢t due to its local normal speed, its radius

of curvature has been reduced to 1=∙¡ vn¢t. Thus, the area of the surface

element dS at t becomes

dS +¢(dS) = ∙ dS(∙−1 ¡ vn¢t) = dS ¡ vn∙ dS¢t (8.3)

at time t + ¢t. The local change in area per unit time is ¢(dS)=¢t =

¡vn∙ dS which, upon integration over SI, provides the third term on the

right side of (8.2). The origin of the second term on the right side of (8.2) is
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seen to be a consequence of the fact that the surface element dS in Figure 8.2

sweeps out a volume vn¢t dS during elapsed time ¢t; the material added

in this volume as the surface advances must have the local strain energy

density U . Thus, the local strain energy addition per unit time is Uvn dS

which, upon integration over SI, provides the second term on the right side

of (8.2).

The quantity @U=@²ij is the stress ¾ij which is necessary to enforce

the elastic strain ²ij . The stress ¯eld is an equilibrium ¯eld which, in the

absence of body forces, requires that ¾ij;j = 0. The identity

¾ij _²ij = ¾ij _ui;j = (¾ij _ui)j (8.4)

follows immediately, where ui is the material particle displacement ¯eld.

Then, the result (8.4) is substituted into the ¯rst term on the right side of

(8.2), and the divergence theorem is applied to the resulting integral. Recall

that the surface SI is free of applied traction, so that

¾ijnj = 0 ; (8.5)

pointwise on SI. Furthermore, if there is to be no exchange of work between

the material and its surroundings, as assumed, thenZ
SII

¾ijnj _ui dS = 0 : (8.6)

In light of (8.5) and (8.6), the rate of change of free energy (8.2)

becomes

_F(t) =

Z
SI
[U ¡ ∙US] vn dS : (8.7)

This expression leads naturally to a de¯nition of chemical potential as a ¯eld

over the evolving surface SI. Note that vndS represents a local rate of ma-

terial volume addition (vn > 0) or removal (vn < 0). If it is understood that

all quantities are represented in the reference con¯guration of the material,

then there is an unambiguous equivalence between volume of material added

and mass of material added. The free energy per unit volume of material

being added locally is then

Â = U ¡ ∙US ; (8.8)

so Â is identi¯ed as the surface chemical potential field over SI. Nozieres

(1992) has pointed out that the chemical potential as de¯ned for a solid{

vacuum surface, as in (8.8), does not have the same physical meaning as

does the concept originally introduced by Gibbs. Its value at a point on
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the surface does not have an intrinsic physical interpretation. Instead, its

signi¯cance arises through the comparison of values at neighboring points

as represented by a gradient along the surface. Following Herring (1953),

Mullins (1957) and others, the designation as a chemical potential is retained

in the present discussion due to the result (8.7), which makes clear the

role of Â as a con¯gurational force that tends to drive changes in surface

position.the right to

The chemical potential for surface evolution is often expressed as the

free energy per atom or molecule added to the surface. With that de¯nition,

the chemical potential is Â−, where − is the atomic or molecular volume of

the material being deposited. The chemical potential is also sometimes

expressed as the free energy change per mole of material added. Again, the

di®erence introduced in this way is only a constant multiple factor of the

expression in (8.8), provided that Â is de¯ned with respect to the reference

con¯guration of the material.

The local form of chemical potential in (8.8) is due to Herring (1953),

and the inclusion of elastic stress e®ects in this local form is due to Asaro

and Tiller (1972) and Rice and Chuang (1981). Its principal role in this form

is to describe the changing shape of the reference con¯guration of an elastic

solid subject to a spatially nonuniform stress distribution. If Â varies from

point to point on the surface of the solid, then the system free energy can be

lowered by moving material from portions of SI with relatively high values of

Â to portions with relatively low values. This di®usive mass transfer results

in motion of SI with respect to the material particles instantaneously on it.

Several examples of this kind are discussed in detail in Sections 8.3 and 8.4.

The system can lower its free energy by mass rearrangement if Â varies with

position over SI; it follows that Â = constant over SI is a necessary condition

for a con¯guration to be in thermodynamic equilibrium.

In those cases in which the surface SI is an interface between two

materials, rather than being the free boundary of a single material, the

surface can advance by means of the transformation of material ahead of

the interface into material behind it, rather than by surface di®usion. This

process results in normal motion of the surface without mass transport.

The concept of chemical potential is considered from this point of view in

Section 8.2.3.

8.2.2 Mass transport along a bimaterial interface

A mass transport process that can operate to change the system free energy

is mass °ow along a surface that is interior to the material. A grain boundary
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in a polycrystalline material and a phase boundary in a multiphase material

are representative examples. The basic idea is that traction associated with

a state of internal stress can be transmitted across such a boundary, but that

the material surfaces which together constitute the interface can change over

time as mass rearrangement occurs along the interface. For the time being,

it is assumed that no net mass °ow occurs into or out of the bulk materials

on either side of the interface.
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Fig. 8.3. A schematic diagram showing the surface S0 (solid line) separating a
volume of material into two parts R+ and R¡ at a certain instant. Subsequently,
mass °ow along the interface causes the material surfaces initially joined at S0 to
separate where material is added or to interpenetrate where it is removed. The
quantity ±n represents the volume of material added per unit area on the original
surface S0.

Consider the schematic diagram in Figure 8.3 which shows a volume

of material occupying a region R of space in its reference con¯guration. The

outer boundary of R is again a material surface denoted by SII. The material

volume is divided into two parts R+ and R− by an internal surface SI. At

a certain instant of time, the material boundaries of R+ and R− which

coincide with SI are identi¯ed as reference material surfaces SI+ and SI−; the
displacements of material points on these surfaces SI+ and SI− coincide at

that instant of time so that u+i = u−i . At a later time, the material surfaces

SI+ and SI− no longer coincide with SI, in general, because mass °owing

along SI may cause them to separate (mass addition) or interpenetrate (mass

depletion). Compatibility requires that the net volume of material added

per unit area to the interface, say ±n at a point, is necessarily related to the

separation by

±n = ¡
³
u+i n

+
i + u−i n

−
i

´
: (8.9)
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This separation ±n is a time-dependent ¯eld over SI, and its history repre-

sents shape evolution associated with mass transport along the surface. It

could be anticipated at this point that the corresponding work-conjugate

force is the normal stress acting on the surface. This is borne out by the

following calculation which establishes a chemical potential for this mass

transport process.

To derive an expression for the chemical potential, suppose that the

loading conditions imposed on SII are such that there is no exchange of

energy between the material in R and its surroundings outside SII. Fur-

thermore, to avoid dissipative shear deformations across SI which are not

involved in mass transport, it is assumed either that the tangential dis-

placement is continuous across SI, which requires that u+i ¡ u+j n
+
j n

+
i =

u−i ¡ u−j n
−
j n
−
i , or that the shear traction vanishes on SI from either side,

which requires that ¾±ijn
±
j ¡ ¾±kjn

±
j n

±
k n

±
i = 0.

The free energy is simply

F(t) =

Z
R++R−

U(²ij) dR (8.10)

in this case. No surface or interface energy term is included because the areas

of surfaces and interfaces do not change under the conditions assumed. It is

tacitly assumed that the chemical structure of the interface is unaltered by

the transport process. Thus, even if a term representing structure would be

included in F(t), its rate of change would be zero under these conditions.

Because strain may be discontinuous across SI, the rates of change of the

free energies in the regions R+ and R− are calculated separately. Following

the development in Section 8.2.1 for calculation of _F(t), it is found that

_F(t) =

Z
SI

³
¾+ijn

+
j _u+i + ¾−ijn

−
j _u−i ¡ 1

2(U
+ + U−)( _u+n + _u−n )

´
dS; (8.11)

where it has been assumed that material is added to or removed from the

bulk materials joined at the interface at equal rates.

If the tangential displacement across SI is continuous, then there are

scalar functions u+n and u−n such that u±i = u±nn
±
i with ±n = ¡(u+n + u−n ).

Then, continuity of normal traction implies that n+i ¾
+
ijn

+
j = ¾n = n−i ¾

−
ijn
−
j .

Continuity of traction and of tangential displacement also imply that U+ =

U− = U on the interface. The expression for free energy change in (8.11)

then reduces to

_F(t) = ¡
Z
SI
(¾n + U) _±n dS : (8.12)

In most cases of practical interest, and particularly for mass di®usion along
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a grain boundary, the magnitude of U is roughly equal to the magnitude

of elastic strain times the magnitude of ¾n, and the second term in the

integrand of (8.12) is therefore negligible compared to the ¯rst term. Con-

sequently,

_F(t) = ¡
Z
SI
¾n _±n dS (8.13)

for most practical purposes.

Alternatively, if the shear tractions are zero on SI, then there is a

surface ¯eld ¾n such that ¾±ijn
±
j = ¾nn

±
i . In light of (8.9), the expression for

the rate of change of free energy (8.11) again reduces to (8.12). Following

the reasoning outlined above, _±n dS is the rate at which material volume is

being added locally on the surface SI; equivalently, _±n is the rate of addition

of material volume per unit area on SI. The chemical potential ¯eld over SI

for this mass transport process is then

Â = ¡¾n (8.14)

as the generalized force that is work-conjugate to material volume added

locally. The form (8.14) of chemical potential is applied in Section 9.5.1.

Although a number of simplifying assumptions were introduced to

facilitate the derivation of (8.14), it is important to note that the result

for chemical potential (8.14) is independent of these assumptions. In other

words, (8.14) provides a chemical potential for interface mass transport for

any such system for which behavior is described by the same constitutive

assumptions as were invoked above. This is so in cases where the system

does exchange energy with its environment or in which there is dissipation

due to interfacial shearing, for example.

8.2.3 Migration of a material interface

Another surface evolution process that arises during microstructure evolu-

tion is the transverse migration of an interface which is a boundary shared

between two materials. The two materials might be grains of the same ma-

terial which di®er only in their crystallographic orientation, they might be

di®erent phases of the same material, or they might be a solid solution and

a solid precipitate of that solution. The phenomenon of migration of the

interface between two materials does not necessarily involve mass transport;

instead, motion of the boundary is a consequence of the continuous trans-

formation of one material to the other, a process which, in e®ect, moves the
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interface with respect to the material instantaneously on it, as was noted in

Section 8.2.1.

An example of such interface migration arises in the fabrication of epi-

taxial SiGe thin ¯lms on Si substrates by the process of solid phase epitaxy

(Paine et al. 1991). In this process, Ge ions are implanted at high energy

and relatively low temperature into a Si crystal near a planar surface. The

incoming Ge ions distort the Si lattice in a layer near the surface to the

point where the SiGe material is essentially amorphous or disordered to a

depth determined by the energy of the implant, usually a few hundred nm

or so, resulting in an interface between the undisturbed Si crystal and the

amorphous overlayer. Then, upon subsequent heating, the layer crystallizes

by propagation of the interface between the crystalline Si substrate and the

amorphous SiGe layer toward the free surface. The result is a SiGe epi-

taxial strained layer on a Si a substrate, with the Ge concentration pro¯le

established by the implantation process.
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Fig. 8.4. A schematic diagram showing two materials occupying the regions R+

and R¡ with a shared interface S0. The interface propagates with normal speed vn
with respect to the material on either side as one material is transformed into the
other.

A schematic diagram of the system is shown in Figure 8.4, where the

notation established earlier in this section is retained. An interior surface

SI separates the two materials which occupy the regions R+ and R− in the

reference con¯guration. The interface migrates with normal speed vn into

the material in R+. As it does so, it leaves behind a mismatch strain ¯eld

²mij in the material R−. This mismatch strain ¯eld may be inhomogeneous

and incompatible; only the total strain { elastic minus mismatch { must

be compatible. It could also be assumed that there is a mismatch strain

¯eld in R+ but this added complexity is not included here. In either case,

there is a discontinuity in mismatch strain across SI as it propagates. Again,
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for convenience, it is assumed that the outer non-migrating boundary SII is
workless during interface migration.

The total free energy of the system in this case is

F(t) =

Z
R+

U(²ij) dR+

Z
R−

U(²ij + ²mij) dR+

Z
SI
US dS; (8.15)

where US is now an energy per unit area associated with the interface and

²ij is the total strain in the material, that is, elastic strain minus mismatch

strain. The interface energy US is a positive scalar quantity, typically less

in magnitude than the sum of the free surface energies of the two materials

separately. For the time being, surface stress e®ects are ignored and US is

assumed to be independent of orientation with respect to either material.

Following steps similar to those used to obtain (8.2) and (8.11), the time

rate of change of free energy is

_F(t) =

Z
SI

h
¾+ijn

+
j _u+i + ¾−ijn

−
j _u−i ¡ U+vn + U−vn ¡ ∙vnUS

i
dS; (8.16)

where the equilibrium condition ¾ij;j = 0 on stress has been enforced in

both R+ and R−. The displacement ¯eld appearing in (8.16) represents the

total displacement of a material point due to both elastic deformation and

stress-free mis¯t deformation. Equilibrium at the interface requires that the

traction must be continuous, that is,

¾+ijn
+
j + ¾−ijn

−
j = 0 on SI : (8.17)

Thus, if the traction exerted by the material in R+ on the material in

R− is denoted by Ti = ¾−ijn
−
j , then

_F(t) =

Z
SI
[Ti[[ _ui]] + vn[[U ]]¡ ∙vnUS] dS; (8.18)

where the double square brackets are used to indicate a discontinuity in

limiting values of a ¯eld quantity across the surface. For example,

[[ _ui]] = _u−i ¡ _u+i ; (8.19)

where _u±i is the limiting value of particle velocity component at a certain

instant of time as the observation point approaches the surface SI in a normal

direction from within R±. The kinematic jump condition for discontinuous

¯elds at moving surfaces requires that

[[ _ui]] = ¡vn[[ui;j ]]n
−
j ; (8.20)

which is a direct consequence of the continuity of ui across S
I, or [[ui]] = 0.

Again, it is noted that ui;j is the displacement gradient due to the elastic
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deformation and mis¯t deformation together. In light of (8.20), the rate of

change of free energy becomes

_F(t) =

Z
SI

h
[[U ]]¡ Ti[[ui;j ]]n

−
j ¡ ∙US

i
vn dS : (8.21)

It follows immediately that the chemical potential for migration of the in-

terface is

Â = [[U ]]¡ Ti[[ui;j ]]n
−
j ¡ ∙US , (8.22)

a result ¯rst established by Eshelby (1970). Suppose that one of the ma-

terials, say that in R+, is absent but that Ti is an applied traction on the

surface SI of the remaining material. Then U+ = 0, U− = U on SI, US is

the surface energy density of the free surface, and the result in (8.22) is a

generalization of (8.2) to the case of motion of a boundary subjected to an

external load. If Ti = 0, then the result reduces to (8.8).

If there is no internal or chemical energy change associated with the

motion of the interface, it then tends to advance locally in the n−j direction

if Â < 0, thereby reducing system free energy; the interface, however, tends

to move in the opposite direction if Â > 0. It follows that Â = 0 is a local

equilibrium condition for the surface. Stable equilibrium is expected if Â

increases from zero with a perturbation in position in the n−j direction or if

Â decreases from zero with a perturbation in position in the ¡n−j direction.

The equilibrium condition relates the local mean curvature ∙ of the surface

to energy densities according to

∙ =
[[U ]]¡ Ti[[ui;j ]]n

−
j

US
. (8.23)

Many conditions of this general type, relating surface curvature to energy

densities, are commonly identi¯ed as a Gibbs—Thomson relationship.

As an illustration of expression (8.22) for the chemical potential of

a migrating interface, consider the spherically symmetric con¯guration in

which a material undergoes a stress-free isotropic volumetric strain 3²m > 0

at a material point as the interface SI passes that point. As a result, the

mismatch strain behind the interface is ²mij = ¡²m±ij relative to the material

in front of the interface. The system is depicted in cross-sectional view in

Figure 8.5. The elastic material within 0 < r < R is subject to the mismatch

strain ²mij , but the elastic strain is partially relaxed from this level due to the

compliance of the surrounding material. The material within R < r < 1
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Fig. 8.5. A cross-sectional view of spherically symmetric elastic solid undergoing
a stress-free isotropic expansion behind an advancing transformation front S0 at
r = R. The material is subject to a remote tension ¾1.

is under stress due to the tendency of the transformed material to expand.

Suppose that a remote isotropic tensile stress ¾∞ > 0 is also imposed on the

material. Finally, it is assumed for convenience that the elastic constants

of both the transformed and untransformed phases of the material are the

same and are given by modulus E and Poisson ratio º.

The spherically symmetric elasticity problem is readily analyzed to

determine the elastic ¯elds throughout the materials involved (Timoshenko

and Goodier 1987); the details are left as an exercise. The value of ∙ on the

spherical interface is ¡2=R. Substitution of the limiting values of the elastic

¯elds on the interface into (8.22) yields

Â =
E

1¡ º
²2m ¡ 3²m¾∞ +

2

R
US : (8.24)

When R is very small, the third term on the right side of (8.24) is domi-

nant and Â is positive. Consequently, spontaneous formation of transformed

spherical particles is ruled out unless the interface energy US is very small.

As R becomes larger, the other contributions on the right side of (8.24)

assume increasing importance. If ¾∞ > E²2m=3(1¡ º), then the equilibrium

condition Â = 0 is achieved for some value of R, say Req. This equilibrium

con¯guration is unstable, and spontaneous growth of the transformed region

can proceed once particle size increases beyond Req to larger values of R.

The free energy increase of the system as R increases from zero to Req is

normally called the activation energy for formation of a transformed particle;
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it is readily calculated in terms of system parameters to be

Feq =
Z Req

0
4¼R2 ÂdR =

4(1¡ º)2U3S
3²2m[²mE ¡ 3(1¡ º)¾∞]2

: (8.25)

8.2.4 Growth or healing of crack surfaces

The process of crack growth in a material can be considered in the present

context, provided that the mechanism of material separation is that of over-

coming material cohesion without dissipative deformation processes operat-

ing in the bulk of the material. Suppose that a material occupies the region

of space R in its reference con¯guration. The outer boundary of R is SII.
The fracture surface SI is any smooth surface in R; the space curve C that

bounds SI may be interior to R or it may lie in part on SII. The part of C

interior to R is denoted by C I and the part on SII, if any, is denoted by C II.
In either case, C = C I + C II. Crack growth is equivalent to expansion (or

possibly contraction) of SI through the motion of C I in its normal direction.

The vector that de¯nes the direction of propagation of C I is denoted by pi;

at each point on C I, it is a unit vector normal to C I that lies in the tangent

plane to SI at that point and that is directed toward the exterior of SI. The
normal speed of the crack edge in the direction of pi is vp. The region near

the edge of SI is shown in Figure 8.6.

For convenience, the applied loading on SII is assumed to be workless

during growth of the crack. The process of crack growth results in a change

in the system elastic energy and the system surface energy. The free energy

in this case is

F(t) =

Z
R
U(²ij) dR+ 2

Z
SI
US dS : (8.26)

The factor 2 in front of the second integral accounts for the fact that two

surfaces, each with surface energy US, are created from the surface SI in the

reference con¯guration. Continuum stress and deformation ¯elds near a geo-

metrical discontinuity such as a crack edge are potentially singular. In such

a case, the di®erentiability requirements on these ¯elds for interpretation of

the continuum equilibrium equation or the divergence theorem may not be

satis¯ed; consequently, a special interpretation is required (Freund 1990).

This interpretation amounts to isolation of the singular line C I from
the region R by putting a tubular surface of small cross-sectional radius

around it, and properly accounting for energy °ux through the surface as

the crack edge advances. In the end, the limiting behavior as the tubular

surface is shrunk onto C I is considered. In the present situation, the tubular

surface S6 is formed by putting one and the same circular contour ¡ of radius
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Fig. 8.6. A schematic diagram of the region near the edge of a crack in an elastic
solid. The surface S0 represents both faces of the crack in the reference con¯guration
of the material. The bounding curve C of the surface S0 is the crack edge. The unit
vector pj is normal to the crack edge and locally lies in the tangent plane of S0.
The circular tube centered on the crack edge allows calculation of energy variations
of the material outside of the tube for arbitrarily small values of the tube radius.

² around the crack edge in each normal plane to C I. The radius ² is assumed

to be small compared to all physical lengths in the problem. Points on S6 are

then located by giving the corresponding arclength along C I measured from

some arbitrary reference point and the arclength along ¡ measured from

some arbitrary reference point on that contour. The unit normal to S6, say

n6i , is oriented as shown in Figure 8.6. The region R is then understood

in (8.26) to include all material enclosed within SII but outside S6. The

outward normal vector to the boundary of R is nj, so that n6j = ¡nj on S6.

The time rate of change of free energy is then

_F(t) =

Z
S6

h
¡vppkn

6
kU ¡ ¾ijn

6
j _ui

i
+

Z
CI

2USvp dC : (8.27)

The local ¯eld near the crack edge has an autonomous dependence on

local coordinates (Irwin 1957), a feature that has many consequences. An

important consequence for present purposes is that the particle velocity _ui
which appears in (8.27) can be replaced by a spatial gradient in a direction

normal to the crack edge C I according to

_ui = ¡vpui;k pk : (8.28)
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Then (8.27) becomes

_F(t) =

Z
CI

∙
pk

Z
Γ

h
¡Un6k + ¾ijn

6
jui;k

i
d¡ + 2US

¸
vp dC : (8.29)

The path-integral along ¡ is a line integral in the plane perpendicular to the

curve C I at each of its points. This integral is the negative of the vector-

valued two-dimensional J-integral of fracture mechanics (Eshelby (1951),

Rice (1968a))

Jk =

Z
Γ

h
Un6k ¡ ¾ijn

6
jui;k

i
d¡ (8.30)

so that the free energy rate becomes

_F(t) =

Z
CI

[2US ¡ Jkpk] vp dC : (8.31)

Thus, a con¯gurational force per unit length along the crack edge that is

work-conjugate to crack edge motion with respect to free energy is

Â = 2US ¡ Jkpk : (8.32)

This quantity is perhaps not appropriately called a chemical potential, but

it has the character of chemical potential as being developed here, where

the corresponding \material volume" is the amount of crack surface area.

The equilibrium condition Â = 0 corresponds to the Gri±th crack growth

criterion introduced in Section 4.2.1. These ideas are applied in a discussion

of cohesive contact in Section 8.6.

8.3 Elliptic hole in a biaxially stressed material

In the preceding section, the chemical potential was introduced as the surface

¯eld that is work-conjugate to a geometrical or kinematic surface property

(for example, shape, thickness, position, etc.) of the surface of an elastic

material. In this and subsequent sections, some speci¯c con¯gurations of

elastic materials subjected to stress are considered. Expressions for chemi-

cal potential in terms of service shape and loading parameters are obtained

for these con¯gurations. In some cases, the rates of change of free energy

with respect to variations in shape are computed as illustrations. As noted

in the Introduction, an examination of the rate of change of free energy

for some class of kinematic variations of surface features leads to an under-

standing of the con¯gurational stability of the system under that class of

kinematic variations. Constitutive assumptions governing shape evolution

are discussed in Chapter 9.
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Fig. 8.7. A cylindrical hole with an elliptical cross-section in an elastic solid sub-
jected to equi-biaxial tension under plane strain conditions.

Consider an isotropic elastic solid that contains a long cylindrical hole

with an elliptical cross-section. A right-handed rectangular coordinate sys-

tem is introduced with the z¡axis coincident with the axis of the cylinder

and with the x and y¡axes coincident with this principal axes of the elliptic

cross-section. The extent of the hole in the x¡direction is 2a and in the

y¡direction is 2b. The material is subjected to an equi-biaxial tensile stress

of magnitude ¾∞ applied far from the hole. In terms of stress components

referred to rectangular coordinates, the remote state of stress is ¾xx ! ¾∞,

¾xy ! 0, ¾yy ! ¾∞ at distances far from the hole compared to the larger

of a and b. The surface of the hole is free of traction, and the state of

deformation is assumed to be plane strain. The two-dimensional system is

depicted in Figure 8.7. The main features of shape evolution for the system

have been described by Suo and Wang (1994).

With reference to the discussion in Section 8.2, the surface SI in the

present case is the cylindrical surface of the hole. The equation of this

surface in the plane of deformation is

f(x; y; t) ´ x2=a2 + y2=b2 ¡ 1 = 0 ; (8.33)

that is, the coordinates xS; yS of any material point on the surface of the

hole in the reference con¯guration must satisfy this equation. Points on

the surface of the hole are conveniently located in terms of a single elliptic

coordinate ´ according to xS = a cos ´, yS = b sin ´ where 0 ∙ ´ < 2¼. The
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normalized in-plane curvature of the boundary of the hole is

a∙ ´ ∙̂(´) =
a2b

(a2 sin2 ´ + b2 cos2 ´)3/2
(8.34)

as a function of position ´. Note that this curvature is everywhere positive

according to the convention adopted in Section 8.2. The curvature of the

surface in the out-of-plane direction is everywhere zero, so the parameter ∙

given in (8.34) is twice the mean curvature of the surface.

8.3.1 Chemical potential

Stress analysis of this con¯guration reveals that the in-plane tensile stress

at a point on the boundary of the hole, acting in the direction tangent to

the surface of the hole, is (Timoshenko and Goodier 1987)

¾ηη
¾∞

´ ¾̂ηη(´) =
2ab

a2 sin2 ´ + b2 cos2 ´
: (8.35)

The in-plane tensile stress in the direction normal to the hole and the in-

plane shear stress on the surface of the hole are zero because of the condition

of zero applied traction. The strain energy density as a function of position

along the surface of the hole is U(´) = ¾2ηη=2
¹E where ¹E = E=(1¡ º2) is the

plane strain elastic modulus. The chemical potential ¯eld over the surface

of the hole is then

Â(´) = U∞
∙
¾̂ηη(´)

2 ¡ ³

a
∙̂(´)

¸
(8.36)

where

³ =
US
U∞

with U∞ =
¾2∞
2 ¹E

; (8.37)

is a characteristic length for the physical system. It is essentially the ratio

of the surface energy density to a measure of the bulk elastic strain energy

density. The actual physical size of the system, represented in this exam-

ple by the length a, is compared to this characteristic length to assess the

importance of surface e®ects relative to bulk deformation e®ects. Note that

both ¾̂ηη and ∙̂ depend on a and b only through the ratio b=a.

Representative graphs of normalized chemical potential 2 ¹EÂ(´)=¾2∞
versus fractional arclength sη=s2π along the surface of the hole for 0 ∙ ´ ∙
¼=2 with b=a = 2=3 are shown in Figure 8.8. Arclength sη is measured

clockwise from the point where ´ = 0 on the cross section of the hole, and

Figure 8.8 is established as a parametric plot with parameter ´. Both the

strain energy density U and the curvature ∙ are largest near the ends of
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Fig. 8.8. Dependence of normalized chemical potential on position around the
boundary of the elliptic hole depicted in Figure 8.7 for the aspect ratio b=a = 2=3.
The natural length parameter ³ is de¯ned in (8.37).

the major principal axis of the ellipse (x = §a, y = 0 in this case) and are

smallest near the ends of the minor principal axis (x = 0, y = §b in this

case), but these curvature and strain e®ects enter the chemical potential

with opposite algebraic sign so as to compete with each other. Thus, if

the system is large in size compared to its characteristic length ³, say for

³=a = 0:5, strain e®ects are dominant and chemical potential is largest at

´ = 0; ¼ and is smallest at ´ = ¼=2; 3¼=2. On the other hand, if the system

is small compared to its characteristic length, say for ³=a = 2, then the

opposite is true. Understanding this competition between strain e®ects and

curvature e®ects is central to understanding certain fundamental issues in

the evolution of small material structures.

8.3.2 Shape stability

It is evident from (8.7) and (8.8) that it is necessary to consider a motion of

the free surface as represented by vn in order to calculate a rate of change of

free energy _F(t). In the case of the elliptic hole in a biaxially stressed solid,
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the rate of change of free energy is given by

_F(t) =

Z 2π

0
Â(´)vn(´)

dsη
d´

d´ (8.38)

in terms of the elliptic coordinate ´. As will be discussed in Chapter 9,

the evolution of the surface depends on the chemical potential ¯eld in a

way prescribed by an appropriate kinetic relationship. For the time being,

however, free energy rates are considered only for some hypothetical velocity

distributions vn without regard for their physical origin or connection to Â

through kinetic relations describing mass transport.

For purposes of illustration, suppose that the only the velocity ¯elds

vn considered are those corresponding to the cross-sectional shape of the

cavity remaining elliptical, but with changing aspect ratio. This can be

accomplished by adopting the equation f(x; y; t) = 0 as the equation of the

ellipse, as in (8.33), with the additional feature that a and b are now viewed

as functions of time t. The equation in (8.33) is then satis¯ed identically in

time. For any time dependent plane curve described by such a function f ,

the normal velocity is given in terms of partial derivatives of that function

with respect to its arguments as

vn = ¡ f;tq
f;2x+f;2y

: (8.39)

If the resulting expression is written in terms of the elliptic coordinate ´,

then

vn(´) = ¡ _a(b=a) cos2 ´ + _b sin2 ´

[sin2 ´ + (b=a)2 cos2 ´]1/2
: (8.40)

Similarly, the increment of arclength sη per unit increment in ´ is given by

dsη
d´

= a[sin2 ´ + (b=a)2 cos2 ´]1/2 : (8.41)

The chemical potential is already available as a function of ´ in (8.36).

To simplify the calculation further, suppose that vn is also restricted

by the condition that the volume of the cavity remains unchanged. This is

assured if the area ¼ab of the elliptic hole is held ¯xed or, equivalently, if

_ab+ a_b = 0 is satis¯ed identically in time.

With this additional constraint, the integral in (8.38) takes the form

_F = ¡¾2∞
¹E

_aaR(b=a; ³=a); (8.42)

where R is a dimensionless quantity that depends on the two ratios b=a
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and ³=a. The integral form of R can be represented in terms of complete

elliptic integrals; while this result is useful for establishing certain asymptotic

properties, it is not su±ciently transparent to reveal any general aspects

of system behavior. Rather, the behavior of the function R is illustrated

graphically in Figure 8.9, where each curve shows the variation of R as

a function of b=a for a ¯xed value of ³=a. Only the aspect ratio range

0 ∙ b=a ∙ 1 is considered; the results for b=a > 1 follow from symmetry of

the system.
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Fig. 8.9. 1 Plots of the quantity R(b=a; ³=a) introduced in (8.42) versus aspect
ratio of the elliptical hole for several values of the ratio ³=a. The results show that
the circular shape, which is always an equilibrium shape, is stable for values of
³=a > 16=3 but is unstable for ³=a < 16=3.

The plots in Figure 8.9 reveal signi¯cant information about the be-

havior of this system. As is evident from a (8.42), the algebraic sign of _F
is determined by the sign of the product _aR. For example, consider the

stability of the con¯guration with a circular hole a = b for various values of

³=a. For the shape to evolve into an ellipse, it is necessary that _a > 0 so

that b=a tends to decrease from its initial value of b=a = 1. From Figure 8.9,

it is seen that the value of R increases from zero if ³=a > 16=3 but that it

decreases from zero if ³=a < 16=3. Thus, the con¯guration with a circular

hole is a stable equilibrium con¯guration for ³=a > 16=3, a range in which
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surface e®ects dominate, but it is an unstable equilibrium con¯guration for

³=a < 16=3, a range in which bulk deformation e®ects dominate.

Other aspects of system behavior can be deduced from Figure 8.9.

For example, suppose the system is in the con¯guration with b=a = 0:5 and

that ³=a = 7. Then the system can lower its free energy by evolving so that

_a < 0, and it tends toward the stable circular con¯guration a = b. Indeed,

the slope of the curve in Figure 8.9 at the current state is a measure of the

con¯gurational force tending to drive such evolution, an idea which will be

developed further later in this chapter.

Yet another interesting observation based on Figure 8.9 concerns the

case when ³=a = ¼. Any con¯guration with 0 < b=a ∙ 1 is unstable for

this value of ³=a. However, _F = 0 for small variations in con¯guration as

b=a ! 0, because the function R(b=a; ¼) has zero slope at b=a = 0. In other

words, the state satis¯es neither the condition for stability nor the condition

for instability. Furthermore, the condition ³=a = ¼ implies that

¼a
¾2∞
¹E

= 2US: (8.43)

This is precisely the condition for crack growth established by Gri±th (1920)

on the basis of an energy balance argument for a crack of length 2a in a

uniformly stressed solid under two-dimensional plane strain conditions; see

Section 4.2.1. Such a crack is a degenerate ellipse. In his original work,

Gri±th considered only a uniaxial remote stress of magnitude ¾∞, acting

in a direction normal to the line of the crack, as opposed to an equi-biaxial

stress as in the present case. However, the stress component acting in the

direction parallel to the crack line is known to have no in°uence on the ener-

getics of crack advance within the small deformation framework. Thus, the

result represented by (8.42) is completely equivalent to the Gri±th fracture

condition; it is a particular case of (8.32) with Â = 0.

The formation of macroscopic cracks in a stressed single crystal at

elevated temperature has been discussed by Sun et al. (1994). They observed

that small voids produced in the crystal during fabrication can change shape

and volume as atoms migrate under various circumstances. As shown above,

the smallest voids tend to remain rounded in shape due to the dominant

in°uence of surface energy over elastic energy. However, larger voids can

become elongated and eventually develop into fractures. This is more likely

to occur under uniaxial stress than under the conditions of equi-biaxial stress

that were assumed for purposes of illustration here.
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Fig. 8.10. The shape of a material surface in its reference con¯guration is described
by means of its normal distance h(x; t) from a reference plane at place x and time
t. The unit vectors sj and nj speci¯ed directions locally tangent and normal to the
surface.

8.4 Periodic perturbation of a flat surface

Suppose that, in its reference con¯guration, an elastic material has a nomi-

nally °at surface that is free of applied traction. If the solid is then stressed,

is the °at surface shape stable under perturbations in shape? These pertur-

bations are changes in the reference con¯guration both the material that are

achieved by rearrangement of mass, and are not a consequence of deforma-

tion of the material. The question is addressed in this section for the case

of periodic perturbation of surface shape. Perturbations of very small am-

plitude are considered ¯rst, and this discussion is followed by consideration

of higher order e®ects and substrate sti®ness. Cases of nonperiodic surface

perturbations are considered in the following section.

8.4.1 Small amplitude sinusoidal fluctuation

An isotropic elastic solid with a nominally °at, traction-free surface is sub-

jected to an initial equilibrium stress ¯eld. Suppose that the shape of the

free surface SI in the undeformed reference con¯guration of the material is

not actually a plane, but that it is slightly wavy. The nominally °at surface

coincides with the plane y = 0 and the position of the actual surface varies

with respect to y = 0 in the x¡direction. At time t, the position of the

surface at coordinate x is given by y = h(x; t). For the discussion in this

section, it is assumed that the slope of the surface is small everywhere, that

is, jh;xj ¿ 1 at all points on the surface. The boundary condition which

must be enforced on the wavy surface is that the traction is zero.

If ¾ij is the stress ¯eld evaluated at a point on the surface and nj is

the outward unit normal vector there then ¾ijnj = 0 at that point. This

condition must be enforced pointwise on the wavy surface, and this will be

done for the case of small amplitude surface slope. A sketch of a small por-
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Fig. 8.11. Schematic diagram of the nominally °at material surface which deviates
sinusoidal a from the mean surface position. Surface deviation is described by
(8.47), and the amplitude-to-wavelength ratio a=¸ is assumed to be small.

tion of the surface is shown in Figure 8.10. To lowest order in surface slope,

the vector ni has components nx ¼ ¡h;x, ny ¼ 1. The tangential direc-

tion on the surface is then given by the unit vector si which has components

sx = ny and sy = ¡nx. The normal traction on the surface with unit normal

vector ni corresponding to boundary values of stress de¯ned by its tensor

components ¾ij in rectangular coordinates is ¾n = ni¾ijnj. Similarly, the

shear traction is ¾s = si¾ijnj. Both ¾n and ¾s must vanish on y = h(x; t) if

the surface is to be free of applied traction. When expanded to ¯rst-order

in the magnitude of the surface slope, these conditions become

¾yy(x; h)¡ 2h;x ¾xy(x; h) = 0 ;

h;x ¾xx(x; h)¡ h;x ¾yy(x; h)¡ ¾xy(x; h) = 0 : (8.44)

Prior to perturbation of surface shape, an equilibrium state of stress

¾
(0)
ij (x; y) exists in the material with the surface y = 0 being traction-free.

The total stress ¯eld for the perturbed shape of the surface is of the form

¾ij(x; y) = ¾
(0)
ij (x; y) + ¾

(h)
ij (x; y) : (8.45)

Then (8.44) indicates that the boundary conditions on the additional stress

¯eld ¾
(h)
ij (x; y) due to perturbation of the shape of the free surface to y =

h(x; t) will be

¾(h)yy (x; h)¡ 2h;x ¾
(0)
xy (x; 0) = 0 ; h;x ¾

(0)
xx (x; 0)¡ ¾(h)xy (x; h) = 0 : (8.46)

Nonetheless, the analysis is pursued on the basis of the boundary conditions

in the form (8.44).

To make the discussion more concrete, suppose that the surface shape

is sinusoidal in the x¡direction with wavelength ¸ > 0 and amplitude a > 0,

so that

h(x; t) = a cos
2¼x

¸
(8.47)
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as indicated in Figure 8.11. The shape is uniform in the z¡direction. The

restriction to surface shapes with small slope implies that a=¸ ¿ 1. The goal

is to ¯nd the perturbation of the initial equilibrium stress ¯eld ¾
(0)
ij (x; y),

denoted by ¾
(h)
ij (x; y) above, that is required to enforce the boundary con-

ditions (8.44). For the time being, suppose that the initial stress state is

spatially uniform and that it results from a remotely applied equi-biaxial

tensile stress of magnitude ¾m acting in the direction parallel to the surface.

In this case,

¾(0)xx (x; y) = ¾m and ¾(0)xy (x; y) = ¾(0)yy (x; y) = 0 (8.48)

throughout the material.

For a sinusoidal perturbation of shape as given by (8.47) and for a

uniform initial stress ¯eld, the additional elastic stress is also expected to

be sinusoidal in x for ¯xed y. The stress ¯eld has the appropriate symmetry

if it is derived from an Airy stress function of the form

A(x; y) = f(y) cos
2¼x

¸
; (8.49)

where f(y) is a function of y which is to be determined. The stress function

A must satisfy the biharmonic equation, which ensures both that the stress

¯eld is an equilibrium ¯eld and that the associated strain ¯eld is compat-

ible (Timoshenko and Goodier 1987). Furthermore, all stress components

must vanish as y ! ¡1, which implies that

f(y) =

µ
c0 + c1

y

¸

¶
e2πy/λ (8.50)

where c0 and c1 are constants to be determined by enforcing of the boundary

conditions. If the components of stress ¾
(h)
ij (x; y) are derived from (8.49)

according to (6.3), and if the boundary conditions (8.44) are enforced for

y = h = a cos(2¼x=¸), then it is found that

c0 = 0 ; c1 = ¡a¸¾m (8.51)

to ¯rst-order in a=¸. The corresponding stress components along the surface

are

¾(h)xx = ¡4¼a

¸
¾m cos

2¼x

¸
; ¾(h)yy = 0 ; ¾(h)xy = 0 : (8.52)

It can be seen immediately from (8.52) that, as a increases from zero,

the stress at the peaks (x = 0; §¸; : : :) decreases in magnitude from the

initial value ¾m and that the stress at the valleys in the surface pro¯le

(x = §¸=2; §3¸=2; : : :) increases in magnitude from the initial value ¾m.
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The strain energy density along the surface, accurate to ¯rst order in

the small parameter a=¸, is then

U(x) = Um

∙
1¡ 4¼(1 + º)

a

¸
cos

2¼x

¸

¸
; (8.53)

where

Um =
¾2m
M

(8.54)

is the uniform strain energy density of the remote ¯eld; M = E=(1 ¡ º) is

the biaxial elastic modulus, in terms of the elastic modulus E and Poisson

ratio º.

The local increase in area of the surface due to the perturbation in

shape is approximately

1
2h;x (x; t)

2 = 2¼2
a2

¸2
sin2

2¼x

¸
; (8.55)

which is of second-order in a=¸, and the local curvature is approximately

∙ = h;xx (x; t) = ¡4¼2
a

¸2
cos

2¼x

¸
: (8.56)

The chemical potential (8.8) then varies along the surface according

to

Â = Um + 4¼
a

¸

∙
¼

¸
US ¡ (1 + º)Um

¸
cos

2¼x

¸
: (8.57)

Thus, the surface chemical potential varies in phase (out of phase) with the

perturbation in shape when ¼US=¸¡(1+º)Um > 0 (< 0). This is the condi-

tion that discriminates between stable and unstable surface perturbations.

To see this, let a be time-dependent and note that

vn = _a cos
2¼x

¸
(8.58)

for small a=¸. Then the rate of change of free energy per period is approxi-

mately

_F(t) =

Z λ

0
Âvn dx = 2¼a _a

∙
¼

¸
US ¡ (1 + º)Um

¸
; (8.59)

where the natural length parameter

³ =
US
Um

(8.60)

again emerges. Therefore, for any small amount of waviness represented by

a > 0, the system can lower its free energy by moving toward a con¯guration
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with a °at surface ( _a < 0) if ¼US=¸ > (1 + º)Um. On the other hand, if

¼US=¸ < (1+ º)Um, it can lower its free energy by increasing the amplitude

of its waviness ( _a > 0). A nominally °at surface is said to be stable under

perturbations in surface shape in the former case and to be unstable in the

latter case.

For a given set of system parameters US, E, º and ¾m, the discrimi-

nating wavelength or critical wavelength is

¸cr =
¼US

(1 + º)Um
=

¼US ¹E

¾2m
. (8.61)

A surface with sinusoidal pertubartion of its nearly °at surface with wave-

length that is less (greater) than ¸cr is stable (unstable) against spontane-

sous growth of the perturbation amplitude. For a surface energy density of

US = 1J/m2, a plane strain modulus of ¹E = 1011N/m2 and an applied stress

of ¾m = 109N/m2, this critical wavelength ¸cr is approximately 300 nm.

Note that the critical wavelength in (8.61) depends on stress ¾m only

through ¾2m. As a result, the system behavior depends on the magnitude of

stress but not on its algebraic sign, that is, the behavior under tension and

compression are indistinguishable according to (8.61). This is at variance

with observed behavior, where materials with ¾m < 0 behave in the way

described here but systems with ¾m > 0 do not consistently do so (Xie et

al. 1994). This question is re-examined in Section 8.8.3 on the basis of a

surface energy density that depends on surface orientation in a way dictated

by the fundamental nature of crystals.

The stability of a nominally °at bounding surface of a stressed solid

was investigated independently by Asaro and Tiller (1972), Grinfeld (1986)

and Srolovitz (1989). The instability was ¯rst observed and described qual-

itatively in solid 4He by Bodensohn et al. (1986). Subsequently, Torii and

Balibar (1992) developed an experiment that made it possible to induce

the instability in solid 4He under controlled conditions, and to interpret the

observations quantitatively. They determined equilibrium shapes, showing

surface waviness, of the interface between a pure helium crystal and a he-

lium vapor at very low temperature. This was done by imposing a variable

applied stress on the crystal by means of piezoelectric end walls of its cen-

timeter scale container. The surface shape was monitored by directing light

onto the crystal and correlating patterns obtained due to interference of

light re°ected from both the top surface of the crystal and the mirrored

bottom surface of its container with surface shape. In the growth of epitax-

ial semiconductor ¯lms that have a lattice mismatch with respect to their
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substrates, stresses su±ciently large to induce surface instability are readily

achieved through the constraint of epitaxy. A particular case is described

in the next example.

8.4.2 Example: Stability of a strained epitaxial film

A Si0:81Ge0:19 alloy ¯lm is grown epitaxially on a (001) surface of the Si substrate.
Estimate the critical wavelength ¸cr as de¯ned in (8.61) for the nominally °at
growth surface of the ¯lm. Base the calculation on the values of elastic constants
given in Table 3.1 and the surface energy value of US = 1:2 J/m2 for the alloy.

Solution:

The mismatch strain between the ¯lm and substrate is approximated as
described in (1.15) for a Ge concentration of x = 0:19, with the result that

²m = ¡0:04£ 0:19 = ¡0:0076 : (8.62)

The elastic constants to use with the isotropic model are estimated in terms of
the constants for single crystal Si and Ge given in Table 3.1 by assuming that the
waviness is aligned with a h100i direction. In this case, the elastic modulus and
Poisson ratio values of both Si and Ge are determined according to

E = 1=s11 and º = ¡s12=s11 : (8.63)

Then, applying the linear rule of mixtures for the alloy, it follows that ESiGe =
125GPa and ºSiGe = 0:276. The mismatch stress is then

¾m =
ESiGe

1¡ ºSiGe
²m = ¡1:31GPa : (8.64)

The value of critical wavelength is estimated from (8.61) to be

¸cr =
¼ £ 1:2£ 1:25£ 109

(1¡ 0:2762)£ 1:312 £ 1018
= 296 nm : (8.65)

A cross-sectional transmission electron microscopy image of a Si0:81Ge0:19

alloy ¯lm that was grown on the (001) surface of the Si substrate is shown in

Figure 8.12. The growth temperature was 750 ±C and mean ¯lm thickness is ap-

proximately 50 nm. The ripples on the surface are aligned with a h100i direction of

the material. The wavelength of the more or less periodic surface pro¯le is approx-

imately 315 nm. Evidently, the amplitude-to-wavelength ratio of the surface pro¯le

is not small compared to unity, but the wavelength agrees reasonably well with the

value estimated in this example. The surface pro¯le is also not a simple sinusoid

but, instead, it is sharpened in the valleys, °attened at the peaks and nearly linear

between the valleys and peaks. The in°uence of higher order e®ects on perturbed

shape will be considered in Section 8.4.4, and aspects of the pro¯le arising from

other e®ects will be discussed later in this chapter and in the next chapter.
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Fig. 8.12. Transmission electron microscopy cross-sectional image of a Si0:81Ge0:19
alloy ¯lm grown epitaxially on a Si substrate (top). The ridges are aligned with a
h100i crystallographic direction. While the upper image appears to represent a fully
two-dimensional con¯guration, the planview images of the ¯lm surface in the lower
portion of the ¯gure shows that the regular ordering has a relatively short range.
The normal distance between parallel lines in the lower images is the peak-to-peak
distance in the upper image, or about 300 nm. Reproduced with permission from
Cullis et al. (1992).

8.4.3 Influence of substrate stiffness on surface stability

In the foregoing discussion of stability of the °at surface of a stressed solid, it

was assumed that the elastic material is homogeneous. It was also assumed

that, prior to formation of °uctuations in surface shape, the material was

homogeneously stressed, that is, the equi-biaxial stress ¾m acted throughout

the material. This assumption on stress is not essential. It will be shown in

Section 8.9 that the results are una®ected if the initial mismatch stress acts

only to some ¯nite depth, provided only that this depth extends beyond the

roots of the valleys in surface °uctuation. Otherwise, a discontinuity in the

initial stress across some plane y = constant is immaterial. Discontinuities

in elastic properties, however, do have an in°uence on stability.

Suppose that a ¯lm of thickness h is epitaxially bonded to a substrate
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Fig. 8.13. Schematic diagram of the boundary value problem analyzed to determine
the in°uence of substrate sti®ness on the stability of a °at surface of a stressed thin
¯lm.

with relatively large thickness. Both materials are assumed to be homoge-

neous and isotropic elastic materials, but with di®erent elastic moduli, so

that Es 6= Ef . For simplicity, the two materials are assumed to have the

same Poisson ratio, that is, ºf = ºs = º. The ¯lm is subjected to a homoge-

neous equi-biaxial stress ¾m when the free surface is °at and the substrate is

initially stress-free. The central question again concerns the stability of the

°at surface under sinusoidal perturbations of its shape resulting from mass

rearrangement.

Qualitatively, the role of substrate sti®ness is evident. The ¯lm mater-

ial at the initial stress level is characterized by the natural length parameter

³ de¯ned in (8.60). If h is large compared to this parameter then the surface

material is unaware of the substrate and the substrate sti®ness is expected

to have only a minor in°uence on the critical wavelength ¸cr in (8.61). On

the other hand, if h is very small compared to ³, then the ¯lm material is

inconsequential and the critical wavelength should be given by (8.61) but

with ¹Es replacing ¹Ef , where the latter modulus is represented by ¹E in that

equation. It follows that a relatively sti® substrate enhances stability of the

surface if the ¯lm is thin compared to the natural length parameter, whereas

a relatively compliant substrate tends to destabilize the surface. The point

of the analysis to follow is to provide the transition between these extremes

in behavior.

The boundary value problem to be formulated is depicted in Fig-

ure 8.13. The formulation follows that in the preceding subsection, except

that two stress functions must be determined, one in the region occupied

by ¯lm material and the other in the region occupied by substrate material.

The surface shape is again assumed to be given by (8.47) with amplitude

a > 0, and the boundary conditions to be enforced on the wavy surface are

given in (8.45) in terms of the stress ¯eld perturbations ¾
(h)
ij . In addition
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to these boundary conditions, the particle displacement and traction asso-

ciated with perturbations in surface shape must be continuous across the

interface at y = ¡h, and stress components in the substrate must vanish in

the limit as y ! ¡1.

The result of solving this boundary value problem is that the pertur-

bation stress along the wavy surface is again given by (8.52), except that

the expression for the component ¾
(h)
xx includes an additional factor in the

form

¾(h)xx = ¡4¼a

¸
¾m¤(m;hk; º) cos

2¼x

¸
(8.66)

where m = Es=Ef , k = 2¼=¸ and

¤(m; hk; º) =
d1 + d2hk e

−2hk + d3 e
−4hk

d1 + (d2 + d4h2k2) e−2hk + d3 e−4hk
: (8.67)

The coe±cients in this expression are

d1 = 3 + 2º(m¡ 1)2 ¡ º2(m¡ 1)2 + 10m+ 3m2

d2 = 4(1 + º)(m¡ 1)(3 +m+ º(m¡ 1))

d3 = (m¡ 1)2(¡3¡ 2º + º2)

d4 = 2(m¡ 1)(3¡ 2º(m¡ 1) + º2(m¡ 1) + 5m) : (8.68)

Following the reasoning that led to (8.61), it is found that the critical

wavelength ¸ for ¯nite h, say ¸
(h)
cr , must satisfy

¸
(h)
cr

¸cr
¤(m; 2¼h=¸(h)cr ; º) = 1 ; (8.69)

where ¸cr is given in (8.61).

The qualitative behavior anticipated above can readily be con¯rmed.

For any ¯xed value of ¸
(h)
cr =¸cr, it is evident that

lim
h/λcr→∞

¤(m; 2¼h=¸(h)cr ; º) = 1 : (8.70)

Consequently, the stability condition reduces to ¸
(h)
cr = ¸cr, that is, it is

una®ected by the presence of the substrate. On the other hand, for any

¯xed value of ¸
(h)
cr =¸cr,

lim
h/λcr→0

¤(m; 2¼h=¸(h)cr ; º) = m−1 (8.71)

so that the stability condition reduces to

¸(h)cr =
¼US ¹Es
¾2m

: (8.72)
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Fig. 8.14. Level curves of the wavelength ¸
(h)
cr =¸cr that discriminates between stable

and unstable surface perturbations in the plane of sti®ness ratio of substrate and

¯lm represented by (1¡m)=(1 +m) and normalized ¯lm thickness h=¸
(h)
cr .

Thus, the condition is the same as that for homogeneous material with

modulus ¹E except that the elastic part of the response is controlled by

modulus ¹Es instead, as was anticipated.

The transition in behavior between these extremes is illustrated in

Figure 8.14. This ¯gure shows level curves representing the wavelength ¸
(h)
cr

that discriminates between those for which surface °uctuations are unstable

(larger) from those for which surface °uctuations are stable (smaller); these

curves are shown in the plane of system parameter (1 ¡ m)=(1 + m), rep-

resenting the modulus ratio between the ¯lm and the substrate, and h=¸cr,

the thickness of the ¯lm relative to the natural length scale for the system.

In this case, the natural length scale is represented by ¸cr which, as is seen

in (8.61), di®ers from ³ only by a numerical factor of order unity. The case

of doubly periodic sinusoidal surface perturbations was ¯rst analyzed by

Spencer et al. (1991), and the stability condition for this system was also

obtained by Freund and Jonsdottir (1993) by means of ¯nite element simula-

tion. It will be shown in Section 8.5 that the stability condition for a doubly

periodic perturbation is the same as for the case of a surface perturbation

which generates only two dimensional deformation ¯elds, provided that the

wave number of the perturbation in the latter case is replaced by the square

root of the sum of the squares of the two wave numbers in the former case.
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8.4.4 Second order surface perturbation

The energy change resulting from a sinusoidal perturbation of the initially

°at surface of a stressed solid was considered in Section 8.4.1. The analysis

was restricted to the case when the amplitude-to-wavelength ratio a=¸ of

the perturbation was small enough so that the stress change due to the

perturbation was linear in a=¸. The material response is linear no matter

how large the perturbation in surface shape might be, and the potential for

nonlinear behavior arises only through the boundary conditions. In writing

the approximate boundary conditions in (8.49), only those terms that are

linear in the small surface slope h;x (x; t) were retained. In this section,

the boundary conditions are extended to higher order in the surface slope in

order to examine how the system departs from linearity in the course of stress

relaxation. In particular, the energetics of the perturbation of the evolving

sinusoidal shape can be studied for behavior into the nonlinear range. If

phenomenally °at surface of a stress solid is unstable then, according to the

linear theory, the amplitude of any perturbation in surface shape will grow to

you and de¯nitely large magnitude as time goes on. However, if the process

is pursued into the nonlinear range, then such an unstable surface may have

a nearby stable con¯guration, as will be demonstrated in this section.

For a surface perturbation represented by the height function h(x; t),

as in Section 8.4.1, the components of the unit vector normal to the surface

are now

nx = ¡h;x ; ny = 1¡ 1
2h;

2
x ; (8.73)

accurate to second order in the local slope. The components of the unit

vector tangent to the surface are again given by sx = ny and sy = ¡nx.

The total stress ¯eld for the perturbed surface is taken to be of the form

(8.45) with an initial stress state speci¯ed by ¾
(0)
xx = ¾

(0)
zz = ¾m. The per-

turbed stress ¯eld ¾
(h)
ij is of order h;x so the boundary conditions of vanishing

traction on y = h(x; t), accurate to second order in the small slope, are

¾
(h)
yy (x; h)¡ 2¾

(h)
xy (x; h)h;x+¾mh;

2
x= 0 ;

¾
(h)
xy (x; h)¡ ¾mh;x¡

³
¾
(h)
xx (x; h)¡ ¾

(h)
yy (x; h)

´
h;x= 0 : (8.74)

These boundary conditions are identical to the conditions given in (8.49) to

¯rst order in h;x.

When a linear perturbation in surface shape is taken into account, it

is su±cient to consider only a single mode in surface shape as speci¯ed by

(8.47). Once the second order terms are included in the boundary conditions,

however, the ¯rst harmonic mode of the fundamental mode is brought into
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play. Thus, it becomes necessary to consider a perturbation of the form

h(x; t) = a1(t) cos
2¼x

¸
+ a2(t) cos

4¼x

¸
(8.75)

so that there are contributions in the boundary condition to balance the

higher harmonic term. The stress ¯eld ¾
(h)
ij is then expected to be composed

of terms that are linear in a1=¸ plus terms that are proportional to a21=¸
2

and a2=¸. The equilibrium stress ¯eld ¾
(h)
ij in the solid is then derived from

an Airy stress function of the form

A(x; y) =

µ
c0 + c1

y

¸

¶
e2πy/λ cos

2¼x

¸
+

µ
c2 + c3

y

¸

¶
e4πy/λ cos

4¼x

¸
: (8.76)

The boundary conditions (8.74) imply that

c0 = 0; c1 = ¡¾ma1¸; c2 =
1
4¾ma

2
1; c3 = ¾m(¡a2¸+ ¼a21) : (8.77)

With the stress ¯eld completely determined to the desired order, the

change in elastic energy which results from the perturbation in surface shape

can be calculated. The result is

E(a1; a2) =

Z λ

0

Z h

−∞
[U(x; y; t)¡ Um] dy dx

= ¼
¾2m
¹E
¸2

"
¡a21
¸2

+ 3¼2
a41
¸4

+ 4¼
a21a2
¸3

#
; (8.78)

where U(x; y; t) is the strain energy density throughout the material and Um
is de¯ned in (8.54). The quantity E is the elastic energy change per period

of the material per unit distance in the direction perpendicular to the plane

of deformation. The corresponding change in surface energy is

S(a1; a2) = US

Z λ

0

q
1 + h;2x dx = ¼2US¸

"
a21
¸2

¡ 3¼2

4

a41
¸4

+ 4
a22
¸2

#
: (8.79)

The quantity S is the surface energy change per period of the material per

unit distance perpendicular to the plane of deformation.

For this system, which has two degrees of freedom, the rate of change

of free energy is

_F = _E + _S = ¡Qk _ak (8.80)

where Qk = ¡@(E+S)=@ak is the generalized force that is work conjugate to

ak. Explicit expressions for the generalized forces are extracted from (8.78)

and (8.79) as

Q1(a1; a2) = ¼2US

"
2
a1
¸

µ
¸

¸cr
¡ 1

¶
+ 3¼2

a31
¸3

µ
1¡ 4

¸

¸cr

¶
¡ 8¼

a1a2
¸2

¸

¸cr

#
;
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Q2(a1; a2) = ¡¼2US

"
4¼

a21
¸2

¸

¸cr
+ 8

a2
¸

#
; (8.81)

where ¸cr is de¯ned in (8.61). The actual path followed over the course of

time in the plane of a1 and a2 is determined by the kinetics of the relaxation

process, and it will be studied in the next chapter. Some features can be

anticipated, however, by examining the nature of the generalized forces in

(8.81). As a basis for doing so, assume that ¸ > ¸cr so that the °at surface

is indeed unstable for a sinusoidal perturbation of wavelength ¸ according to

the criterion considered in Section 8.4. It can also be assumed that a1=¸ > 0,

without loss of generality, which implies that Q1 > 0 if free energy is to be

reduced by increasing a1. The stability condition established in Section 8.4

is also evident from the present development by observing that Q1(a1; 0) > 0

for small a1=¸ only if ¸ > ¸cr.

For the particular case when a2=¸ = 0, note that Q1 is positive for

very small values of a1=¸. As the amplitude of a1=¸ increases, the value of

Q1 decreases, and it becomes zero whenµ
a1
¸

¶2
=

2(¸=¸cr ¡ 1)

3¼2(4¸=¸cr ¡ 1)
: (8.82)

This observation implies that a sinusoidal perturbation in surface shape is

stabilized as its amplitude increases, a fact that could not be anticipated by

the linear stability analysis but that is consistent with numerical simula-

tions (Chiu and Gao 1994). For ¸ = 4
3¸cr, the amplitude implied by (8.82)

is about a1=¸ = 0:07.

The locus of points for which Q1 = 0 in the plane of a1 and a2 is shown

in Figure 8.15 for ¸ = 4
3¸cr. The only portion of this plane that corresponds

initially to energy reduction is the region for which both Q1 > 0 and a1 > 0.

The locus of points for which Q2 = 0 is also shown in Figure 8.15. There is

no region in the plane for which both Q2 and a2 are positive, which suggests

that a2 must decrease from its initial value of zero. Thus, the part of the

plane of interest is that where both Q2 < 0 and a2 < 0. This expectation

is reinforced by the observation that Q1 is increased if a2 takes on negative

values. There is indeed a thin crescent shaped region of the plane of a1 and

a2 within which all the expected circumstances arise, bounded by the line

a2 = 0, the curve Q1 = 0 and the curve Q2 = 0, and within which a2=¸ is

indeed small in magnitude compared to a1=¸. Therefore, it is expected that

the actual path of evolution of shape lies within that region.

Finally, the anticipated behavior corresponding to a1=¸ increasing

from a small positive value and a2=¸ decreasing from zero as time goes on
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Fig. 8.15. The two curves show the locus of points in the plane of amplitudes a1 and
a2 for which the generalized forces Q1 and Q2 vanish for the case when ¸ = 4

3¸cr.

implies a particular trend in surface shape as represented by (8.75). With

increasing time, these observations suggest that the valleys in surface shape

become sharper, with curvature of increasing magnitude, and the hills be-

come a °atter, with curvature of decreasing magnitude. The equilibrium

shape de¯ned by the intersection of the curves Q1 = 0 and Q2 = 0 in

Figure 8.15 is shown in Figure 8.16. Note that the valleys have become

sharpened by the appearance of the second mode, while the peaks in the

pro¯le have become °attened, as has been observed in numerical simulation

studies (Chiu and Gao (1994), Chiu and Gao (1995)). Similar observations

have been reported by Nozieres (1993) on the basis of a higher order analysis.

For the case of a strained thin ¯lm of mean thickness h on a relatively

thick unstrained substrate, the depth of the valleys in this equilibrium con-

¯guration determine whether the material separates into distinct islands or

it reaches equilibrium before doing so. The valley depth in this two degree of

freedom idealization is a distance ja1j+ ja2j below the mean ¯lm thickness.

Therefore, the material will separate into islands if h < ja1j+ ja2j and it will

not do so otherwise. For the case of ¸ = 4
3¸cr, this depth is approximately

0:135¸ = 0:18¸cr. This observation implies that a strained ¯lm will divide

up into islands only if the mean thickness is less than about 18% of the

system speci¯c critical wavelength. The particular model is too idealized
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Fig. 8.16. Equilibrium shape of a surface according to (8.75) for the equilibrium
con¯guration represented by the intersection of the curves Q1 = 0 and Q2 = 0 in
Figure 8.15.

to expect that the numerical estimates will be accurate, but the underlying

idea is general.

8.4.5 Example: Validity of the small slope approximation

Examination of the result (8.59) indicates that, for a sinusoidal perturbation in
surface shape represented by amplitude a and wavelength ¸, the free energy will
continue to decrease inde¯nitely as a increases as long as ¸ > ¸cr. This inference
is based on the assumption of small surface slope, however, so its validity beyond
the range for which a=¸ ¿ 1 is uncertain. Consider variations of elastic energy
and surface energy with amplitude a for ¯xed wavelength ¸, assuming the two-
dimensional sinusoidal surface pro¯le given by (8.47) but without a restriction on
the magnitude of a=¸; otherwise, the assumptions invoked in the case of a slightly
wavy surface are retained. Estimate the range of a=¸ for which the small slope
approximation leads to a valid estimate of energy change.

Solution:

The surface energy per period (per unit depth perpendicular to the plane
of the ¯gure represented in Figure 8.11) is ¸US when a=¸ = 0. Thus, a change in
surface energy in the interval 0 ∙ x < ¸ for a > 0 is

S(a) = ¸US

Z 1

0

s
1 +

µ
2¼a

¸

¶2

sin2
2¼»

¸
d» ¡ ¸US : (8.83)

The integral in (8.83) can be written in terms of elliptic functions or it can be
evaluated numerically for any range of values of a=¸ to obtain a result shown
graphically in Figure 8.17 in the form of S=¸US versus a=¸. Thus, the surface
energy increases with increasing a, but at a rate smaller than that implied by the
small amplitude approximation.
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Fig. 8.17. The dependence of change in surface energy and elastic energy of a solid
due to sinusoidal perturbation of surface shape versus the amplitude-to-wavelength
ratio of that perturbation. The results show that the small slope approximation
is reliable for values of a=¸ up to 0.1, and is a fair approximation for signi¯cantly
larger values.

The elastic energy in the material decreases as a=¸ increases from zero value.

There is no analytical procedure for solution of the elasticity boundary value prob-

lem when a=¸ is not restricted to be very small compared to unity. However, the

accurate estimation of this energy reduction by means of the numerical ¯nite ele-

ment method is routine. The elastic energy reduction within the interval 0 ∙ x < ¸

from the con¯guration with a=¸ = 0 is denoted by E , and this quantity is normal-

ized by ¸2U1. A plot of E=¸2U1 versus a=¸ is also shown in Figure 8.17. The

results indicate that the small slope approximation is reliable for values of a=¸ up

to 0.1, and it is a fair approximation for signi¯cantly larger values.

8.5 General perturbation of a flat surface

The boundary conditions (8.45) expressed in terms of perturbation ¯elds

suggest a direct approach to determining the additional stress ¯eld ¾
(h)
ij that

results from perturbation of the °at surface of a stressed solid. This proce-

dure is outlined here, ¯rst for the case of plane strain deformation in order

to generalize the results of the preceding subsection and to demonstrate

consistency with those results. Once this is accomplished, the case of a
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general small amplitude perturbation which varies in both directions on the

surface is considered; this perturbation results in a three-dimensional state

of deformation in the material. The stress ¯eld for the unperturbed surface

y = 0 is again given by ¾
(0)
xx (x; y; z) = ¾

(0)
zz (x; y; z) = ¾m, with all other stress

compoments being zero prior to perturbation of the surface.

8.5.1 Two-dimensional configurations

For pertubations of surface shape that vary only in the x¡direction, assume

that the y¡coordinate of the free surface becomes y = h(x; t) at place x

and time t. The slope is everywhere small, so that jh;xj ¿ 1. The result-

ing change in deformation associated with the change in surface shape is

essentially plane strain.

If a surface traction Ti with components

Tx = ¡¾mh;x ; Ty = 0 (8.84)

is applied to all points of the perturbed surface, then the stress in the mate-

rial would be the initial uniform stress everywhere. It follows that the stress

¯eld ¾
(h)
ij is the result of negating the surface traction (8.84). This is precisely

the implication of (8.45). The stress ¯eld to be determined is the result of a

distributed shear traction h;x ¾m applied to the surface of a half space; the

normal surface traction is zero to ¯rst-order in the small slope. The stress

component ¾
(h)
xx (x; 0) due to a concentrated force of magnitude P acting at

x = » is known to be ¡2P=¼(x¡ ») (Timoshenko and Goodier 1987). If P

is identi¯ed with the force ¾m h;ξ d» negated due to traction acting between

x = » and x = » + d», and if the results are superimposed by integration

over the full range of », then it follows that

¾(h)xx (x; h) =
2

¼
¾m

Z ∞
−∞

h;ξ (»; t)

» ¡ x
d» : (8.85)

The integrand is strongly singular and the integral does not converge in

the usual sense. However, the integral has an unambiguous interpretation

in the sense all of the Cauchy principal value of such a singular integral.

If h(x; t) = a(t) cos(2¼x=¸), the expression (8.85) reduces to (8.52). The

expression can be used to determine the surface chemical potential for small

amplitude perturbations of the surface of arbitrary shape.

On the basis of the boundary conditions (8.45), the same procedure

can be followed even when the stress distribution in the material with the

unperturbed °at surface is spatially nonuniform. For example, if the nonzero

stress component at the surface prior to perturbation in shape is ¾
(0)
xx (x; 0)
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then the additional stress along the surface due to a general perturbation is

¾(h)xx (x; h) =
2

¼

Z ∞
−∞

¾
(0)
xx (»; 0)h;ξ (»; t)

» ¡ x
d» ; (8.86)

which reduces to (8.85) when the stress is uniform. The more general form

was applied by Jonsdottir and Freund (1995), for example, in the study

of surface waviness induced by subsurface dislocations in the material. The

stress ¯eld of the dislocations provides ¾
(0)
xx (x; 0) in this case; see Section 8.7.

8.5.2 Three-dimensional configurations

The approach introduced in this section to study the change of an elastic

¯eld in a homogeneously stressed solid due to surface shape perturbation

under plane strain conditions can be generalized to the case of perturba-

tion of a nominally °at surface under three-dimensional conditions (Gao

(1991), Freund (1995a), Freund (1995b)). Suppose that the surface takes

on a slightly altered shape, with no change in remote loading, so that the

y¡coordinate of the surface becomes

y = h(x; z) ;
q
h;2x+h;2z ¿ 1 : (8.87)

Although the perturbation may be time-dependent, the variable t is not

included explicitly as an argument in the various ¯elds that arise here, simply

as a matter of convenience.

Guided by the development for the two-dimensional case above, it is

observed that if a surface traction Ti with components

Tx = ¡¾mh;x ; Ty = 0 ; Tz = ¡¾mh;z (8.88)

is applied to all points of the perturbed surface, then the stress in the mate-

rial would be the initial uniform stress everywhere. It again follows that the

stress ¯eld ¾
(h)
ij (x; y; z) is the result of negating the surface traction (8.88).

The stress ¯eld to be determined is the result of an applied distributed shear

traction opposite to that in (8.88) acting on the surface of a half space; the

normal surface traction is zero to ¯rst-order in the small slope.

A solution can be constructed by using the Cerruti analysis of the elas-

tic ¯eld induced in an isotropic half-space by a concentrated force acting at a

point on the surface and in a direction tangential to the surface (Timoshenko

and Goodier 1987). Only the surface ¯eld is needed to determine the surface

chemical potential. For a tangential force acting at the point x = 0, z = 0

along the surface y = 0 of an elastic half-space y < 0, the components of
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particle displacement in the surface are

u(h)α (x; z) =
1 + º

2¼E
Gαβ(x; z)Pβ ; ®; ¯ = x or z ; (8.89)

where Pβ represents the concentrated force with components Px and Pz
acting in the associated surface coordinate directions, and Gαβ(x; z) is a

symmetric 2£ 2 matrix ¯eld with components

Gxx =
2(1¡ º)

(x2 + z2)1/2
+

2ºx2

(x2 + z2)3/2
;

Gxz =
2ºxy

(x2 + z2)3/2
; (8.90)

Gzz =
2(1¡ º)

(x2 + z2)1/2
+

2ºz2

(x2 + z2)3/2
:

By superposition, the full surface displacement ¯eld due to the perturbation

is

u(h)α (x; z) =
(1 + º)¾m

2¼E

Z ∞
−∞

Z ∞
−∞

h
Gαx(x¡ »; z ¡ ´)h;ξ (»; ´)

+Gαz(x¡ »; z ¡ ´)h;η (»; ´)
i
d» d´ (8.91)

for ® = x or z. The out-of-plane stress components at the surface are known

from the boundary conditions and the in-plane components can be calculated

from the displacement ¯eld in (8.91). With these stress components in hand,

it is possible to determine the surface strain energy density distribution

U(x; z) = Um + U (h)(x; z) to ¯rst-order in gradients of surface shape. The

change in surface strain energy density as a function of position on the

surface is found to be

U (h) = Um
1 + º

¼

Z ∞
−∞

Z ∞
−∞

(» ¡ x)h;ξ (»; ´) + (´ ¡ z)h;η (»; ´)

[(» ¡ x)2 + (´ ¡ z)2]3/2
d» d´ : (8.92)

This is the elastic ¯eld which is necessary to specify the chemical potential

on the perturbed surface (Freund 1995b).

8.5.3 Example: Doubly periodic surface perturbation

The deformation ¯elds arising from any small amplitude surface perturbation can be
constructed from ¯elds corresponding to doubly periodic perturbations by Fourier
methods. Examine the particular case of a doubly periodic perturbation described
by

h(x; z) = a cos
2¼x

¸x
cos

2¼z

¸z
(8.93)
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on the basis of the development in Section 8.5.2. As usual, the positive parameters
a, ¸x and ¸z are limited to ranges for which

a

s
1

¸2
x

+
1

¸2
z

¿ 1 : (8.94)

Determine the necessary condition on the wavelengths for the surface to be stable
for the perturbation (8.93).

Solution:

Substitution of (8.93) into (8.91) and evaluation of the integrals yields

ux = ¡ 2¾ma¸z

¹E
p
¸2
x + ¸2

z

sin
2¼x

¸x
cos

2¼z

¸z
;

uz = ¡ 2¾ma¸x

¹E
p

¸2
x + ¸2

z

cos
2¼x

¸x
sin

2¼z

¸z
: (8.95)

The change in elastic energy of the system per period due to formation of the
perturbed shape is given by the surface integral representing the work done in
creating these displacements,

E(h) =

Z ¸z

0

Z ¸x

0

1
2

³
u(h)
x ¾(h)

xy + u(h)
z ¾(h)

yz

´
dx dz = ¡¼¾2

ma
2

2 ¹E

p
¸2
x + ¸2

z : (8.96)

Similarly, the change in surface energy due to formation of the perturbed shape is

S(h) = US

Z ¸z

0

Z ¸x

0

1
2

¡
h;2x +h;2z

¢
dx dz =

¼2USa
2

2

¸2
x + ¸2

z

¸x¸z
: (8.97)

Several observations can be made on the basis of these simple three-dimensional
results.

First, the stability of the °at surface shape in the presence of biaxial stress
under doubly periodic perturbations of surface shape can be examined. The sum
E(h)+S(h) is the change in free energy corresponding to the change in shape. Thus,
if this change is positive (negative) then the °at surface is stable (unstable) against
such changes in shape. This line of reasoning leads to the conclusion that the
condition discriminating between stability and instability is when the sum is zero,
that is, when s

1

¸2
x

+
1

¸2
z

=
¾2
m

¼ ¹EUS
=

1

¸cr
: (8.98)

The stability limit obviously agrees with the result (8.61) obtained for a sinusoidal
perturbation when ¸z=¸x ! 1. Furthermore, the result (8.98) shows that the
stability condition depends on the wavelengths in coordinate directions in (8.93)
only through the magnitude of the spatial wave number of the perturbation.

A second observations follows from consideration of the relative magnitudes
of E(h) and S(h). Of particular interest is the way in which the ratio of these two
energy changes depends on the wavelengths. From (8.96) and (8.97), it follows that¯̄̄̄E(h)

S(h)

¯̄̄̄
=

¸cr

¸x

s
1 +

¸2
x

¸2
z

: (8.99)
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The smallest value of ¸x for which the ratio has the value unity is ¸x = ¸cr with

¸z=¸cr ! 1. This may explain the experimental observation that when thin ¯lms

with °at but unstable surfaces are annealed, the evolving surface shape appears at

¯rst to assume a predominantly one-dimensional structure (Gao and Nix 1999). It

is only after surface features become well de¯ned and some time elapses that the

surface °uctuations become two-dimensional, with the associated three-dimensional

stress ¯elds.

8.6 Contact of material surfaces with cohesion

If two solids are brought into contact with each other, the materials inter-

act through the traction that is exerted by each solid on the other. The

understanding of the contact of elastic bodies with smooth surfaces is quite

complete. In the classical elastic theory, the materials come into contact

over certain parts of their surfaces, and these parts conform perfectly to

each other. The equal but opposite tractions acting on the material surfaces

are compressive (or possibly zero) in the direction normal to the contact sur-

face; in the classical theory, tensile traction cannot be supported across the

contact area. There may or may not be shear traction transmitted across

the contact surface, depending on con¯guration and friction characteristics

of the material surfaces involved.

8.6.1 Force—deflection relationship for spherical surfaces

A theory of normal contact of isotropic elastic spheres without frictional

interaction was developed by Hertz; a thorough description of this theory

and its implications is provided by Johnson (1985). The main assumption

of the Hertz contact theory is that the size of the contact area, usually

understood to be the longest great circle arclength included within the zone

of contact in the undeformed con¯guration, is much smaller than the initial

or undeformed radius of either sphere. This assumption is exploited in the

Hertz theory in the following way. As elastic spheres are pressed together,

the radius of curvature of the surface of each sphere changes from the radius

of the undeformed sphere to some other radius (which is typically larger

in magnitude). Hertz reasoned that the mechanics of this process could

be modeled by starting with a large elastic solid with a flat surface in its

undeformed con¯guration, that is, the relatively simple con¯guration of an

elastic half-space with a traction free surface. Then, by applying pressure

over a part of the surface of this half-space, a curvature could be induced
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�

1

Fig. 8.18. Identical elastic spheres of radius R are brought into contact over a
circular contact zone of radius a. The parameter ± characterizes the separation
distance between the centers of the spheres with ± = 0 when the separation distance
is 2R. The parameter P is the resultant force due to contact stress within the
contact zone. The z¡axis lies along the line of centers of the spheres, and z = 0 is
at the contact the plane.

that would be the same as the change in curvature in the original contact

problem. Hertz assumed that the pressure distribution and contact area

size predicted in this way would provide good approximations to the actual

pressure and contact area size, an expectation that has been borne out by

subsequent experience.

For spheres of the same isotropic elastic material with plane strain

modulus ¹E and the same undeformed radius R, the deformed contact area

is °at and its boundary is circular due to the symmetry of the con¯gura-

tion. According to the Hertz point of view, the normal stress distribution

predicted for the contact area z = 0, 0 ∙ r ∙ a is

¾Hzz(r) = ¡2a ¹E

¼R

Ã
1¡ r2

a2

!1/2
(8.100)

and the radius of the contact area is

a =

µ
3RjP j
4 ¹E

¶1/3
(8.101)

in terms of the magnitude of the force P acting on the spheres together;

see Figure 8.18. The relative displacement of the centers of the spheres for

P ∙ 0 is approximately

±H = ¡2a2

R
: (8.102)
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This displacement estimate must also be obtained from the elasticity solution

for the half space problem; it is exactly twice the normal displacement of the

surface at the center of the contact area relative to the normal displacement

at a remote point on the half space surface in the limit as r=a ! 1.

Elastic contact theory can be extended to cases where the contacting

surfaces of spheres not only interact through the compressive traction which

each exerts on the other, but also through a tensile attraction due to in-

°uences at a sub-continuum level. Such an e®ect might arise, for example,

from van der Waals interaction or, for clean surfaces of aligned crystals,

from epitaxial bonding. In either case, the e®ect can be represented in a

model by assuming that, prior to contact, the surface of each sphere has an

energy per unit area US which is \recovered" over the contact area when

the spheres are brought into contact (Johnson et al. 1971); Hertz contact

theory modi¯ed in this way is known as the Johnson-Kendall-Roberts or

JKR theory. As spheres are pushed together or pulled apart under such

circumstances, the perimeter of the contact area is essentially a healing or

growing crack, respectively, and the results of Section 8.2.4 can be applied

to study the energy variations.

It is well established in the theory of elasticity that a pressure distri-

bution (1¡ r2=a2)−1/2 applied to the surface of the elastic half-space z ¸ 0

over the circular area 0 ∙ r ∙ a results in a uniform normal displacement of

magnitude ¼a= ¹E over 0 ∙ r ∙ a. Thus, to represent the e®ect of cohesion

without altering the symmetry of the contact of identical spheres, a total

normal stress in the contact area 0 ∙ r ∙ a is assumed as

¾zz(r) = ¾Hzz(r) +
Bp

1¡ r2=a2
; (8.103)

where ¾Hzz is given in (8.100) and B is a non-negative parameter with physical

dimensions of stress; the value of this parameter is determined on the basis

of physical features of the system. The total force acting on the contact area

is then

P = 2¼

Z a

0
r¾zz(r) dr = ¡4a3 ¹E

3R
+ 2¼a2B : (8.104)

The corresponding relative displacement of the \centers of the spheres",

based on the solutions of the relevant elastic half-space problem, is

± = ±H + 2¼aB= ¹E = ¡2a2

R
+

2¼aB
¹E

: (8.105)

Finally, the role of the parameter B in determining energy variations must

be considered.
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The stress within the contact area as given by (8.103) is square-root

singular as r ! a−, so that the edge of the contact zone has the character of

an elastic crack (Lawn 1993); see Section 4.2.3. The elastic stress intensity

factor K associated with the singular stress ¯eld along this crack edge is

K = lim
r→a−

¾zz(r)
q
2¼(a¡ r) = B

p
¼a : (8.106)

The value of the component of the J¡integral (8.30) in the radial direction

is then

Jr =
K2

¹E
=

¼aB2

¹E
: (8.107)

Therefore, from (8.32), the value of Â for this process is

Â = ¡¼aB2

¹E
+ 2US (8.108)

for any value of B. Note that Â is positive, zero or negative according to

whether B is less than, equal to or greater than
q
2US ¹E=¼a, respectively.

Consider next the rate of change of free energy as a changes. Again,

the case of ± = constant is considered as a matter of convenience, so that

there is no exchange of energy between the system of two spheres and its

surroundings. Because the con¯guration is axially symmetric, it follows that

_F(t) = ¡2¼a _aÂ : (8.109)

The minus sign arises because the speed vp de¯ned in conjunction with

Figure 8.6 is ¡ _a in this case. It is evident from (8.109) that, for the system

to be in equilibrium, it is necessary for the driving force Â itself to be zero.

This requires that a and B must be related according to

B =
q
2US ¹E=¼a ; (8.110)

which establishes the value of the parameter introduced in (8.103) on phys-

ical grounds.

To represent the equilibrium behavior of the system, it is convenient

to de¯ne a natural length scale of the material as

³ =
2US
¼ ¹E

: (8.111)

The de¯nition leads naturally to

P̂ =
P

¼R2 ¹E

R

³
; ±̂ =

±

R

µ
R

³

¶2/3
; â =

a

R

µ
R

³

¶1/3
(8.112)
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Fig. 8.19. Plots of normalized contact zones size â and normalized contact force P̂

versus normalized relative separation distance ±̂ between centers of the spheres as
given in (8.114) and (8.113), respectively. The points corresponding to equilibrium
under zero applied force or under zero relative displacement are identi¯ed. The

point on the P̂ versus ±̂ curve with horizontal tangent locates a state of instability
during separation of the spheres under applied force. Likewise, the point on the
same curve with vertical tangent locates a state of instability during separation
under imposed relative displacement.

as convenient forms for normalized force, normalized de°ection and normal-

ized contact area radius, respectively. In terms of normalized variables, the

relationship between the radius of the contact area and the contact force is

P̂ (â) = ¡ 4

3¼
â3 + 2â3/2 ; (8.113)

and the relationship between the radius of the contact area and the relative

displacement of the centers of the spheres is

±̂(â) = ¡2â2 + 2¼â1/2 : (8.114)

The results of Hertz contact theory are recovered if the second term on the

right sides of both (8.113) and (8.114) are ignored. It is evident in both of

these expressions that the classical results are recovered whenever â À 1

but that the e®ect of cohesion is signi¯cant otherwise.

The relationships (8.113) and (8.114) involving contact force, contact
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radius and de°ection are shown graphically in Figure 8.19 in the form of â

versus ±̂ by means of a dashed curve and P̂ versus ±̂ by means of a solid curve.

Some general features of the behavior evident from Figure 8.19 are noted.

For example, suppose two identical elastic spheres are slowly brought into

close proximity with essentially no external force applied. The inference to

be drawn from Figure 8.19 is that, immediately upon touching of the surfaces

of the spheres as ±̂ ! 0+, the centers of the spheres will be drawn toward

each other until the state with P̂ = 0 is reached. This is a stable equilibrium

state with no external forces acting and with de°ection ±̂ = ¡¼(3¼=2)1/3;

the size of the contact area in this state is â = (3¼=2)2/3. Suppose that

two spheres are initially in this state and are then gradually separated by

increasing P̂ from zero. The relative displacement ±̂ ¯rst increases and â

decreases as P̂ increases up to a value of P̂ = 3¼=4, the point on the solid

curve at which the tangent line is parallel to the de°ection axis, whereupon

the spheres separate abruptly under the condition of imposed loading.

Alternatively, suppose that two spheres are gradually brought into

close proximity with the de°ection ±̂ controlled by means of external forces.

The inference to be drawn from Figure 8.19 in this case is that, immediately

upon touching at one point when ±̂ ! 0+, the surfaces of the spheres are

drawn together and the spheres deform elastically to make this possible;

the centers of the spheres are constrained to remain a distance 2R apart,

however. This is an equilibrium con¯guration with zero relative displace-

ment, as indicated in the ¯gure. The attraction induces a force between the

spheres of P̂ = 2¼=3 and the size of the resulting contact area is â = ¼2/3.

This is also a stable equilibrium position under small variations in â or ±̂. If

spheres which are initially in this state are gradually separated by increasing

±̂ from zero, then â gradually decreases. The force P̂ increases to a value

of 3¼=4, and it then decreases as ±̂ is further increased. When ±̂ reaches

the value 6(¼=4)4/3, corresponding to the point on the solid curve in the

¯gure at which the tangent line is parallel to the force axis, the separation

is completed abruptly.

This model is based on the idea that the energy gain or loss from the

macroscopic system per unit area of interface as a result of a singular stress

¯eld moving along this interface is the same as the work of cohesion of that

interface per unit area, as long as the active nonlinear zone in which separa-

tion is actually occurring is small in size compared to the size of the contact

area. The singular crack edge ¯eld provides the vehicle by which energy ex-

change between the elastic ¯elds and the subcontinuum surface energy can

occur. The transition behavior from cases dominated by a cohesion rule to
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those which are adequately represented by singular ¯elds has been discussed

by Maugis (1992) and thoroughly studied by Kim et al. (1998).

8.6.2 Example: Stress generated when islands impinge

During deposition of a ¯lm material onto the surface of a substrate of a di®erent
material, growth often tends to nucleate at distributed sites on the growth sur-
face. As deposition continues, ¯lm growth proceeds by expansion of clusters of ¯lm
material, or islands, from the nucleation sites. This is the Volmer{Weber growth
mechanism discussed in Section 1.3. A phenomenon which has been observed when
the islands become large enough to begin impinging on each other at their perime-
ters is that tensile stress is generated in the ¯lm (Nix and Clemens (1999), Seel
et al. (2000), Floro et al. (2001)). Most commonly, this stress is detected through
observation of the change in curvature of the substrate which it induces. Estimate
the magnitude of this stress, interpreted as a volume average stress, on the basis
of the foregoing cohesive sphere model for a regular array of islands. The volume
average stress is de¯ned as the spatially uniform stress that would produce the same
observed substrate curvature in a ¯lm of uniform thickness that has the same areal
density of ¯lm material as the island array.

Solution:

Consider an array of islands on a substrate in which all the islands are identi-
cal hemispheres of radius R. The centers of the islands are ¯xed at the intersection
points of the square grid of lines with uniform spacing 2R on the growth surface. It
is assumed that the islands otherwise behave like free spheres with surfaces having
free surface energy density US.

The islands are formed in this pattern with radii smaller than R, and they
grow until they achieve radii of R. The constraint of the substrate is assumed to be
negligible for purposes of this discussion, so the islands behave exactly as did the
spheres in the preceding section, but only one-half of the volume of each is taken
into account. Once the radius of each island reaches R, contact areas with cohesion
form spontaneously between each island and its four immediate neighbors. Again,
as a result of this cohesive contact, a tensile force is generated across each island
which could be sensed by means of substrate curvature measurement.

According to the result depicted in Figure 8.19, the normalized force P̂ that
is generated upon island impingement is one-half of 2¼=3 or P̂ = ¼=3. In terms of
the parameters that characterize the system, the force is

P =
¼2

3
R ¹E³ =

2¼

3
R° ; (8.115)

where ³ is the material length scale de¯ned in (8.111). A surprising feature of
the estimate in (8.115) is that it does not depend on the elastic properties of the
material. This feature was noted by Johnson et al. (1971) in their original study of
contact with cohesion, and experimental con¯rmation of features of the JKR theory
is described by Israelachvili (1992).

The volume of material included in a hemispherical island upon coalescence
is 2

3¼R
3. If the material in each island were to be spread uniformly over a 2R£ 2R

square area on the substrate, as indicated in Figure 8.20, the uniform depth h would
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Fig. 8.20. The hemispherical island of radius R is subjected to a tensile force P
on four sides due to impingement of four nearest neighbors. If the material were
spread uniformly to depth h = 1

6
¼R over the substrate surface area 2R£ 2R then

the uniform stress in the ¯lm of uniform thickness h which is the volume average
of the stress in the islands is ¾ave = P=2Rh.

be h = 1
6¼R. The area of a lateral face of this equivalent block of material is 2R£h,

so that the uniform tensile traction acting on this surface which produces the same
resultant force as in (8.115) is P=2Rh or

¾ave = 2
°

R
: (8.116)

This is the volume average tensile stress. As a representative numerical value of
¾ave, suppose that ° = 1J/m2 and that islands impinge when R = 80 nm. This
implies that ¾ave = 25MPa. The physical e®ect described here is believed to
account for the increase in tensile stress observed for ¯lms during the early stages
of deposition, as described in Section 1.8.3.

The estimate (8.116) should be viewed as an upper bound on a tensile stress

which might be expected upon island impingement in any given system because

the features which have been neglected would tend to reduce the stress from this

ideal value. For example, resistance to deformation of an island due to constraint

of the substrate would tend to diminish the contact force generated, although this

tendency would be o®set in curvature observations to some degree by stress gen-

erated in the substrate. Likewise, in growing ¯lms, island coalescence events do

not occur everywhere simultaneously, but are distributed, both spatially across the

surface of the substrate and temporally as the ¯lm thickens. This di®erence, too,

would tend to diminish the magnitude of average stress from its ideal value. Yet

another possibility is the tendency for stress to be relaxed upon contact by means

of mass di®usion over the surface of islands and into the grain boundaries formed

at island junctions. This e®ect, which would occur on a relatively slow time scale,

would also tend to decrease the magnitude of the average stress.

8.7 Consequences of misfit dislocation strain fields

Consider a uniformly strained ¯lm of thickness h that is epitaxially bonded

to a relatively thick substrate which has essentially the same elastic prop-

erties as the ¯lm. Before any strain-relieving dislocations are formed in the
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¯lm, the surface is °at and uniformly strained. It follows that the chemical

potential is spatially uniform over the surface of the ¯lm; the °at surface

is therefore an equilibrium shape. This equilibrium shape may be unstable,

in a sense described in Section 8.4, but °at surfaces are commonly observed

in strained ¯lms when the magnitude of the mismatch strain is not large.

Such surfaces may be stabilized by orientation dependence of the surface

energy density if the strain is not too large in magnitude, as discussed in

Section 8.8.3.

The condition of uniform chemical potential is altered once mis¯t dis-

locations are formed at the ¯lm{substrate interface. The magnitude of the

average elastic strain along the surface is reduced by the formation of dis-

locations, and the strain distribution becomes spatially nonuniform. The

magnitude of elastic strain at the ¯lm surface due to dislocations is typically

on the order of b=h where b is the length of the Burgers vector; this mag-

nitude may be comparable locally to the magnitude of the mismatch strain

itself. This nonuniform strain ¯eld can have any of several consequences.

For example, its presence implies that the surface chemical potential be-

comes nonuniform; consequently, there is a con¯gurational force acting on

the nominally °at surface tending to change its shape. Alternatively, if a

material with a large mis¯t strain is deposited epitaxially onto the surface of

a dislocated ¯lm, the deposit will be most likely to attach in regions where

the surface elastic strain is least, indicating a means of inducing geometri-

cal pattern into subsequent deposits as described in Section 8.7.2. These

consequences of mis¯t dislocation strain ¯elds are considered in this section.

8.7.1 Surface waviness due to misfit dislocations

In this subsection, the magnitude of the °uctuations in surface shape that

are required for a dislocated ¯lm to achieve an equilibrium morphology is

estimated. Fluctuations in surface shape of partially relaxed strained ¯lms

which correlate in position with mis¯t dislocations on the interface have

been observed, for example, by Pinnington et al. (1997), Giannakopoulos

and Goodhew (1998) and Springholz (1999). Furthermore, surface mor-

phology has been identi¯ed as an important factor in impeding the progress

of threading dislocations as they advance through the ¯lm (Samavedam and

Fitzgerald 1997). Modeling of mass transport processes that might account

for the formation of the °uctuations has not yet been pursued in a system-

atic way, but an estimate of achievable surface °uctuations can be obtained

on the basis of the approximations introduced by Jonsdottir and Freund

(1995).
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Fig. 8.21. Schematic diagram of a periodic array of edge dislocations at the inter-
face between a strained layer of thickness h and a relatively thick substrate. The
Burgers vector lies in the interface and in a direction consistent with relaxation of
the mismatch strain. The dislocation array is periodic with spacing p. An array
of dislocation clusters can be considered by viewing b as an appropriate integer
multiple of the Burgers vector.

Consider a periodic array of edge dislocations at the interface shared

by the strained ¯lm and its substrate, as illustrated in Figure 8.21. For sim-

plicity, the Burgers vector of length b of each mis¯t dislocation is assumed

to lie in the interface in a direction corresponding to strain relief, and the

dislocations are equally spaced along the interface at interval p. The defor-

mation is two-dimensional in this con¯guration. The distribution of stress

along the initially °at free surface due to these dislocations is given by

¾
(d)
xx (x)
¹E

=
b
h
¡4h¼ + 4h¼ cos 2πxp cosh 2hπ

p + 2pcos 2πxp sinh 2hπ
p ¡ p sinh 4hπ

p

i
2p2

h
cos 2πxp ¡ cosh 2hπ

p

i2 ;

(8.117)

where it has been assumed that the dislocations relieve a tensile mismatch

stress. If ¾m is the initial equi-biaxial mismatch stress, the strain energy

density along the °at free surface is

U(x) =
¾2m
M

+
1
¹E
¾(d)xx (x)

h
¾m + 1

2¾
(d)
xx (x)

i
: (8.118)

For a constant surface energy density US = °, the surface chemical potential

Â = U ¡ °∙ is nonuniform in this con¯guration. The objective is to identify

nearby shapes for which the chemical potential is again uniform.

Let ´(x) denote the local perturbation in surface shape, so that the

local perturbed ¯lm thickness is h+´(x), and assume that the perturbation

is also periodic in x with period p. For °uctuations in shape that are small in

amplitude compared to p, the °uctuation ´(x) is determined by the condition

of uniform chemical potential along the surface, which is assured by the

di®erential equation

U(x) + ¢U(x)¡ °´II(x) = constant ; (8.119)
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where ¢U(x) is the necessary modi¯cation in strain energy density along the

surface so as to account for the small °uctuation ´(x). For present purposes,

the modi¯cation ¢U(x) is assumed to be small compared to U(x) itself, so

that (8.119) is replaced by

U(x)¡ °´II(x) =
1

p

Z p

0
U(s) ds : (8.120)

The value of the constant incorporated into (8.120) is dictated by the con-

dition of periodicity. The resulting ordinary di®erential equation is readily

solved by numerical methods, with the constants of integration being deter-

mined by the constraint of periodicity and conservation of mass.

If all lengths are normalized by the initial ¯lm thickness h, then (8.120)

can be written in terms of the three nondimensional parameters

p̂ =
p

h
; °̂ =

° ¹E

h¾2m
; b̂ =

b ¹E

h¾m
: (8.121)

Results are included here for only two sets of values of these parameters,

namely, p̂ = 2, °̂ = 1, b̂ = 1 and p̂ = 8, °̂ = 1, b̂ = 4. Note that the

spatial average of elastic strain is the same in the two cases. However, this

is accomplished by placing single mis¯t dislocations at intervals of 2h on the

interface in the ¯rst case and by placing clusters of four mis¯t dislocations

at intervals of 8h on the interface in the second case.

Plots of ´(x)=h versus distance x=h along the interface for these two

cases are shown in Figure 8.22. For the case when p̂ = 2 and b̂ = 1, the

total peak-to-valley °uctuation in ¯lm thickness anticipated on the basis

of the approach taken here is approximately one percent of the initial ¯lm

thickness, a change that is too small to be of consequence. However, for

p̂ = 8 and b̂ = 4, the predicted °uctuation is approximately 15 percent of

the initial ¯lm thickness. This is a signi¯cant alteration in surface pro¯le

which could indeed in°uence subsequent strain relaxation; it should also be

noted that this result is probably beyond the range of small °uctuations

adopted at the outset. Dislocations are often observed to exist in clusters,

perhaps because all members in the cluster were produced from a common

source. Connections between surface morphology and strain relaxation by

dislocation motion has been studied by Samavedam and Fitzgerald (1997),

Fitzgerald et al. (1997) and Fitzgerald et al. (1999).

8.7.2 Growth patterning due to misfit dislocations

In this subsection, it is assumed that a thin ¯lm has been deposited epitax-

ially onto the surface of a relatively thick substrate with lattice mismatch.
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Fig. 8.22. Graphs of surface °uctuations from uniform ¯lm thickness that de¯ne
equilibrium morphologies on which the chemical potential is spatially uniform, ac-
cording to (8.120), for periodic arrays of dislocations at the ¯lm-substrate interface.
Results are shown for two cases corresponding to the same average elastic strain
in the ¯lm. In one case, individual dislocations exist at intervals of 2h along the
interface; in the second case, clusters of four dislocations each exist at intervals of
8h along the interface.

The ¯lm thickness is assumed to be beyond its critical thickness, and conse-

quently mis¯t dislocations have been formed at the ¯lm{substrate interface.

Thereafter, additional material with a lattice mismatch with respect to the

unrelaxed ¯lm material is to be deposited on the surface of the ¯lm. Subse-

quent deposit would be expected to nucleate most readily at places on the

growth surface at which the mismatch is smallest. For example, suppose

that a SiGe ¯lm with a mismatch strain ²m is deposited onto Si(001) to a

thickness beyond hcr as de¯ned in Chapter 5 and that the strain is then

partially relaxed through formation of mis¯t dislocations. As a result, the

elastic strain at the surface becomes nonuniform. Then, Ge is deposited on

the surface of the dislocated ¯lm. Because the lattice parameter of Ge is

larger than the e®ective lattice parameter of SiGe, the conditions are most

favorable for attachment of the Ge deposit at points on the surface at which

the remaining surface strain is the least compressive or the most relaxed.

To arrive at an estimate of the degree of relaxation that can be ex-
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pected to occur, consider the surface strain distribution in the vicinity of a

pair of interface mis¯t dislocations oriented at a right angle to each other.

Suppose that the ¯lm-substrate interface coincides with the xz¡plane and

that the ¯lm occupies the region 0 ∙ y ∙ h. One dislocation lies along the

x¡axis and the other along the z¡axis. The Burgers vector of the former

is by = bz = ¡b=
p
2 and of the latter is bx = by = ¡b=

p
2, where the sign

of b is assumed to be the same as the sign of ²m and its magnitude is the

amount of slip across the dislocation glide plane.

The surface stress ¯eld is readily determined by application of (6.2)

and (6.3), and the surface strain ¯eld follows readily by means of Hooke's

law. The sum of the elastic extensional strain components in the surface

due to the dislocations is

²(d)xx + ²(d)zz = ¡
p
2(3¡ 5º)

¼(1¡ º)

b

h

"
xh2(h+ x)

(h2 + x2)2
+

zh2(h+ z)

(h2 + z2)2

#
: (8.122)

A contour plot of the factor in square brackets on the right side of (8.122)

is shown in Figure 8.23. It is clear that the elastic strain of the ¯lm surface,

represented by ²m+²
(d)
xx +²

(d)
zz , is very nonuniform. For this particular choice

of Burgers vector, the relaxation is greatest at roughly the point on the

surface where the glide plane surface traces of the two dislocations intersect.

This particular result depends on the choice of Burgers vector, but other

possible Burgers vectors can be investigated in essentially the same way.

The growth sequence outlined above as motivation for considering

surface strain due to mis¯t dislocations was probed experimentally by Ross

(2001). First, a Si0.8Ge0.2 ¯lm was deposited onto Si(001) to a thickness be-

yond the critical thickness of the ¯lm, and partial relaxation of the mismatch

strain occurred by dislocation formation. Pure Ge was then deposited onto

the surface of the partially relaxed ¯lm. A representative result is shown on

the right side in Figure 8.23 as a plan view image of the ¯nal structure. The

white lines are interface mis¯t dislocations, and the black{white dots are Ge

islands that have been nucleated on the surface of the ¯lm. The most strik-

ing feature of the image is that islands formed in the same quadrant of all

dislocation intersections in the ¯eld of view. A detailed study of the results

con¯rmed that the island centers coincided more or less with the surface

traces of the dislocation glide planes, and that the quadrant in which the

islands formed was indeed the quadrant of maximum strain relaxation due

to dislocation formation.
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Fig. 8.23. The contour plot on the left shows level curves of the negative of the
quantity in square brackets in (8.122), indicating the reduction in surface strain as
a result of formation of a pair of orthogonal interface mis¯t dislocations lying along
the coordinate axes at the ¯lm-substrate interface a distance h below the surface.
The image on the right is a plan view transmission electron micrograph of the
results of depositing Ge on to a partially relaxed SiGe ¯lm on a Si (001) substrate;
the scale bar represents 100 nm. The image shows that Ge islands nucleated in a
particular quadrant of dislocation intersections, and an analysis of the con¯guration
con¯rms that this is the quadrant of largest strain relief through interface mis¯t
dislocation formation. Reproduced with permission from Ross (2001).

8.8 Surface energy anisotropy in strained materials

The concept of a chemical potential ¯eld as it applies to surface evolution

in materials was introduced in the early part of this chapter, and several

explicit forms relevant to certain physical processes were discussed in Sec-

tion 8.2. In each of these examples, a mathematical expression was deduced

for the driving force tending to alter a feature of the system. This force

represented the combined in°uence of surface energy and elastic strain en-

ergy. In the derivations of these force expressions, the analysis was simpli¯ed

considerably by restricting consideration to systems for which the surface

energy density in the reference con¯guration of the material is isotropic, the

elastic strain is everywhere in¯nitesimal, and the surface energy density is

independent of deformation of the surface. The main consequences of these

assumptions are that the surface energy density at any point on the surface
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is independent of local orientation of the surface with respect to the material

and no surface stress acts locally in the tangent plane of the surface.

Perhaps the most extreme of these assumptions is the restriction to

surface energy isotropy. In bulk response, material isotropy implies that

the stress required to enforce any deformation speci¯ed with respect to a

particular observer does not depend on the orientation of the material with

respect to that observer. Likewise, surface energy isotropy implies that the

value of surface energy density of a free surface with orientation speci¯ed

by a particular observer does not depend on the orientation of the mater-

ial with respect to that observer when the surface is created. Both ideas

can be applied globally for spatially homogeneous states and locally for in-

homogeneous states. Observations of cleavage behavior in single crystals

of most materials, as well as of the stepped structure of macroscopically

plane surfaces with orientations near the high symmetry orientations of

crystals, suggest a signi¯cant degree of surface energy anisotropy in real

materials (Blakely 1973). Surface stress e®ects have been observed in very

small material structures through their in°uence on deformation within the

bulk phase. Furthermore, the dependence of surface energy density on both

surface strain and surface orientation opens the possibility of coupling be-

tween these e®ects. In the remainder of this section, an expression for the

chemical potential of the free surface of an elastic solid is derived for a gen-

eral two-dimensional con¯guration, taking into account the e®ects of surface

energy anisotropy and surface stress. This result will incorporate virtually

all physical e®ects that can be represented by local continuum mechanics,

and the macroscopic continuum concept of surface stress arises naturally in

the development.

8.8.1 Implications of mechanical equilibrium

A portion of an elastic solid is shown in Figure 8.24 in its natural reference

con¯guration. For plane deformation, the material occupies the area R.

The portion of the bounding surface with the potential for shape change is

SI. The remainder of the boundary SII (shown dashed) represents workless

constraints. Material points are located in R with respect to a ¯xed frame of

reference by means of a set of rectangular base vectors ek and coordinates xk.

Arclength s along SI is measured from some arbitrary origin. Local surface

orientation is represented by the tangent line, with orientation described by

a unit vector mi in the direction of increasing s, and by a unit vector ni; the

two unit vectors satisfy mini = 0. It is also useful to represent local surface

orientation at any time t by means of the angle µ(s; t) = sin−1 [e3 ¢ (e1 £m)].
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Fig. 8.24. Schematic diagram of a deformable body in its natural reference con¯g-
uration, including a portion S0 of the surface which involves by mass transfer.

In terms of this angle, the surface curvature in the reference con¯guration

is

∙ =
@µ

@s
) @mi

@s
= ∙ni : (8.123)

at any position s on the surface and any time t.

The strain at a point of the surface SI is understood to be consistent

with the limiting value of bulk strain ²ij as the observation point approaches

the surface from within R. The surface strain ²Sij expressed as a three-

dimensional tensor ¯eld over the surface with outward unit normal ni is

²Sij = ²ij ¡ ²iknknj ¡ nink²kj + nink²klnlnj . (8.124)

For example, if n1 = n2 = 0, n3 = 1 then

²Sij =

264 ²11 ²12 0

²12 ²22 0

0 0 0

375 : (8.125)

The expression (8.124) faithfully reproduces strain components for all ma-

terial lines or directions within the surface, but includes no contribution

from lines or directions normal to the surface. Thus, it is convenient for

expressing energy changes of the surface associated with deformation. In

particular, for the two-dimensional state being considered, the extensional
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strain of the surface is de¯ned locally as

²(s; t) = mi²
S
ijmj = mi²ijmj : (8.126)

The superposed dot notation is reserved for the material time deriva-

tive of time-dependent ¯elds. The shape evolution of the free surface of the

material in its reference con¯guration is again described by the local normal

speed vn. Consider the neighborhood of a particular point on the surface

at a certain instant of time. If vn has a spatial gradient along the surface

at the point of interest, then the in¯nitesimal surface element has not only

a normal speed vn but also an angular rate of rotation. The rate of change

of orientation µ(s; t) is related to the gradient of normal speed along the

surface by

@µ

@t
=

@vn
@s

) @mi

@t
=

@µ

@t
ni : (8.127)

The total time rate of change of extensional strain of the surface in-

cludes contributions due to the time dependence of strain at a material

point, the time dependence of the orientation of the surface, and the motion

of the surface with respect to the material particles instantaneously on it.

If these e®ects are taken into account, then

d²

dt
= °mn

@vn
@s

+mi _²ijmj + vn
@²

@xk
nk ; (8.128)

where °mn = 2ni²ijmj is the shear strain between material directions aligned

with mi and ni in the reference con¯guration, and the last term is the

gradient of extensional strain parallel to the surface in a direction locally

normal to the surface.

It is assumed that the system free energy is again given by (8.1) where

US = US(µ; ²) depends on the elastic strain ¯eld and on the local orientation

of the material surface in a characteristic way for a given material. The

extensional strain of the surface is related to the bulk strain ¯eld through

(8.124). The process of elastic equilibration is expected to be very rapid

compared to shape equilibration, which requires di®usive transport of ma-

terial. Consequently, it is assumed from the outset that the elastic ¯eld is

always in mechanical equilibrium for any surface shape. This expectation

is enforced by requiring the variation in free energy due to a kinematically

admissible small perturbation ±ui in the displacement ¯eld from its equi-

librium distribution to be stationary, that is, to vanish to ¯rst order in the

perturbation.
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For any ¯xed surface shape, the variation in free energy due to ±ui is

±F =

Z
R

@U

@²ij
±ui;j dR+

Z
SI

@US
@²

mi±ui;jmj ds (8.129)

to ¯rst order in the perturbation. The quantity ¾ij = @U=@²ij is the mechan-

ical stress ¯eld. Likewise, the quantity ¿ = @US=@², which is work-conjugate

to the surface strain ², is the surface stress in the reference con¯guration.

It represents the sensitivity of surface energy density to surface strain, and

it arises naturally as a con¯gurational force or at the in the description of

the system. Integration by parts, followed by application of the divergence

theorem to the ¯rst term on the right side of (8.129), leads to

±F = ¡
Z
R
¾ij;j ±ui dR+

Z
SI

∙
¾ijnj ¡ @

@s
(¿mi)

¸
±ui ds : (8.130)

The integrated terms which arise drop out because of the condition of work-

less boundaries. Conditions necessary to ensure that ±F = 0 for arbitrary

±ui are

¾ij;j = 0 in R (8.131)

and

¾ijnj = mi
@¿

@s
+ ¿∙ni on SI : (8.132)

These equations are su±cient to determine the elastic strain distribution for

any surface shape. The condition (8.131) is the familiar local mechanical

equilibrium equation for stress throughout R and (8.132) is the traction

boundary condition on SI in the presence of surface stress. The second

term on the right side of (8.132) is the normal traction as usually speci¯ed

through the Laplace-Young relation (Gibbs 1878); the pressure within the

material balancing the quantity ¡¿∙ is usually called the Laplace pressure.

The ¯rst term on the right side is the shear traction induced in the material

by a gradient in surface stress along the surface. The main result is that,

given surface shape and surface characteristics, the equilibrium strain ¯eld

is known. It has been tacitly assumed that suitable boundary conditions

on the surface SII are known from external loading conditions, symmetry or

other imposed constraints. The validity of the results obtained do not hinge

on SII being a workless boundary.

In light of the equilibrium constraints summarized in (8.131) and

(8.132), it would appear that the free energy F de¯ned in (8.1) could be

written in terms of surface ¯elds alone by applying the divergence theorem

to the term representing bulk elastic energy. This is often the case, but the

process of executing the steps may involve some subtle issues. For example,
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if the elastically strained region R is unbounded in the model being studied,

then the elastic energy is also unbounded. However, this di±culty can be

circumvented by viewing U as the change in elastic energy density from an

initial value throughout the region. Another issue that may require special

attention arises when the mismatch strain de¯ned throughout the region R

is not compatible, a feature that would preclude transformation of the vol-

ume integral in (8.1) to a surface integral by application of the divergence

theorem. However, this di±culty can also be circumvented by viewing the

total strain as the sum of the mismatch strain plus any additional strain due

to change in shape of the boundary of the solid. The latter contribution to

the strain is necessarily compatible and, again, the portion of free energy

depending on the instantaneous shape of the surface SI can be converted to

a surface integral in most cases. A speci¯c example illustrating these points

is presented in Section 9.4.

This discussion is concluded with a few remarks concerning the re-

sults obtained. The consideration of states of deformation that are thermo-

dynamic equilibrium states for ¯xed surface shape is an assumption based

on the underlying physics, and not an essential restriction. For processes

of ¯lm growth from a vapor, and even for solidi¯cation from a liquid state,

the process is typically slow enough so that mechanical equilibrium is main-

tained continuously in time. There are instances of phase boundary motion

at rates large enough to warrant abandonment of this assumption as, for

example, in laser ablation of solid surfaces (Davis 2001), but these are not

germane in this discussion. The appearance of the surface stress ¿ in the

course of examining energy variations associated with deformation provides

a natural way to incorporate this concept in continuum modeling of surface

evolution. As such, it is a macroscopic concept for describing material be-

havior. There is a corresponding microscopic implementation of the same

physical e®ect, based on chemical bonding at a free solid surface, that will

arise in Section 8.8.3. The boundary condition (8.132) adds a new feature

to boundary value problems in continuum mechanics. In e®ect, this result

implies that the limiting value of normal and shear traction as the bounding

surface is approached from within the material are not zero, in general, even

though there is no applied traction on the surface. In this sense, the surface

takes on the character of a physical entity separate from the bulk mater-

ial. Finally, the development has been carried out within the framework of

small deformation theory. However, the results apply for large deformation

as well, provided that all ¯elds and orientations are interpreted in terms

of the reference con¯guration of the material (Wu (1996), Freund (1998),

Norris (1998)).
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8.8.2 Surface chemical potential

Once the assumption of mechanical equilibrium has been incorporated, the

free energy expression can be reinterpreted. Instead of viewing the free

energy as a functional of both strain and surface shape, it can instead be

viewed as a functional of surface shape alone (Shenoy and Freund 2002). In

principle, the strain is known in terms of surface shape through the solution

of the boundary value problem represented by (8.131) and (8.132). The goal

in this section is to write the time rate of change of free energy in the form

_F(t) =

Z
SI
Â(s; t)vn(s; t) ds ; (8.133)

in which case the quantity Â can again be identi¯ed as a surface chemical

potential.

Following the reasoning outlined in Section 8.2.1, the time rate of

change of free energy F(t) is

_F =

Z
SI
[¾ijnj _ui + Uvn ¡ ∙USvn] ds+

Z
SI

∙
@Us
@µ

dµ

dt
+

@US
@²

d²

dt

¸
ds : (8.134)

The ¯rst integral expression on the right side is the same as that found

in Section 8.2.1, where the boundary condition of the evolving surface was

¾ijnj = 0 as stated in (8.5). Here, the surface traction on the evolving

surface is not zero but, instead, is speci¯ed by (8.132). The second integral

expression on the right side of (8.134) introduces, in addition, the orienta-

tion and deformation dependence of the surface free energy density. The

con¯gurational force ¿ = @US=@² has already been identi¯ed in the forego-

ing discussion as the surface stress at a given surface orientation and level

of deformation. A second con¯gurational force arises here, namely,

q =
@US
@µ

: (8.135)

The quantity q can be interpreted as a distributed surface torque or moment

that tends to rotate the surface toward an orientation with lower surface

energy.

If the relations (8.127) and (8.128) are incorporated into (8.134), and

if integration by parts is invoked to isolate a factor vn in each term, it is

found that

_F =

Z
SI
vn

∙
U ¡ ∙US ¡ @

@s
(q + ¿°mn) + ¿

@²

@n

¸
ds : (8.136)

The terms obtained in the course of integration by parts have zero net value

because of the assumed workless nature of the boundary constraints. The

quantity °mn appearing in (8.136) is the shear strain introduced in (8.128)
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and @²=@n = nk@²=@xk is again the normal derivative of the extensional

strain in the direction parallel to the surface, which was also introduced in

the same expression.

In light of the result (8.136), it follows from (8.133) that

Â = U ¡ ∙US ¡ @

@s
(q + ¿°mn) + ¿

@²

@n
(8.137)

is the surface chemical potential incorporating surface anisotropy and de-

formation dependence. Similar results have been reported by Wu (1996),

Freund (1998) and Fried and Gurtin (2003). The quantities involving strain

{ U , °mn and ² { are presumed known from the solution of the mechanical

boundary value problem identi¯ed in Section 8.8.1. The remaining quanti-

ties are determined by the constituent of properties incorporated in US(µ; ²).

In writing (8.137), it has been tacitly assumed that US is twice di®erentiable

with respect to each of its arguments, but this is not so for all common de-

scriptions of surface behavior. The dependence of surface energy on strain

and orientation is very di±cult to characterize experimentally. Atomistic

simulations can also provide insight into the nature of this dependence. The

dependence of US on ² and µ for a vicinal surface is considered next.

8.8.3 Energy of a strained vicinal surface

For a continuum model of a single crystal, the value of energy density of

a given crystallographic surface orientation is determined by the ¯ne scale

structure of that surface. For a high symmetry orientation, such as a f100g
surface of a cubic crystal, the surface is atomically °at. For orientations

close to this surface, the structure usually consists of °at terraces with well

de¯ned local surface energies, separated by atomic scale ledges or steps,

as illustrated schematically in Figure 8.25. Such a surface is commonly

called a vicinal surface. The steps alter the macroscopic surface energy

from that of the high symmetry orientation by an amount corresponding

to their energy of formation and interaction. Furthermore, the energies of

individual steps and the interactions of these steps are in°uenced by the

presence of background strain in the crystal.

Macroscopically, the surface is assumed to be smooth (as indicated by

the dashed line in the ¯gure) and to have a local surface energy density US at

any point on the surface, determined by the orientation of the tangent plane

and the level of elastic strain in the crystal at that point. A quantitative

interpretation of the free energy of a strained crystal surface in terms of the
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physics of crystallographic steps has been developed by Shenoy and Freund

(2002). The surface chemical potential of a stepped surface follows from

(8.137), given the material speci¯c surface energy US(µ; ²). The actual form

of this dependence can be determined only through atomistic simulation or

experiment (Shenoy et al. 2002).

� � 

Fig. 8.25. Geometry of a vicinal surface that makes an angle of µ with a high
symmetry direction. The spacing d between the steps is related to the step-height
hst through the relation d = hst= tan µ. The dashed line shows the macroscopic
surface orientation.

The central idea of the continuum description is based upon an un-

derstanding of stepped crystal surfaces that is drawn from surface science

(Blakely (1973), Jeong and Williams (1999)). Below the characteristic

roughening temperature of the material, which can be in excess of 1000 ◦C for

semiconductors, a nominally °at surface of a crystal that is misoriented by

a small angle from a high-symmetry direction consists of a train of straight

parallel steps, as illustrated schematically in Figure 8.25. In the absence of

strain, the surface energy density of such a vicinal surface is given by

US(µ) = °0 cos µ + ¯1j sin µj+ ¯3
j sin µj3
cos2 µ

; (8.138)

where µ is the misorientation angle, °0 the energy density of the atomically

°at surface with µ = 0 per unit area in the reference con¯guration, and the

parameters ¯1 and ¯3 are related to step creation energy and interaction

energy, respectively. Speci¯cally, ¯1 is the energy needed to create a unit

length of an isolated step per unit height of that step. In writing (8.138),

it is tacitly assumed that the structure is symmetric under re°ection in the

plane x1 = 0. Like any other crystallographic defects, say dislocations or va-

cancies, steps give rise to long-range elastic stress ¯elds in the material; the

steps interact with each other, as well as with other defects in the material,

through these elastic stress ¯elds. The amplitude of the stress ¯eld pro-

duced by a step decays with the inverse square of the distance from the step

(Marchenko and Parshin 1980). The last term on the right in (8.138) arises
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from the interactions between steps through their stress ¯elds. For small

values of µ, it is evident that the second term on the right side of (8.138)

is linear in µ, being essentially proportional to the number of steps per unit

length along the surface. The last term on the right is cubic in µ, with a

factor µ arising once again from step density and the additional factor µ2

arising from the proportionality of interaction energy to the inverse square

of the separation distance between steps. Finally, US is understood to be

the energy per unit area in the reference con¯guration of the macroscopic

mean surface.

It is shown next that an elastic strain in the crystal, arising from

mismatch or some other origin, can lead to signi¯cant alteration of the

surface energy of the vicinal surfaces compared to that of the nearby high

symmetry orientation or compared to the unstrained vicinal surface. The

ideas incorporated in (8.138) are readily generalized to the case of strained

crystals by including the in°uence of surface strain ² on the coe±cients

for a speci¯c material structure. The expression (8.138) for surface energy

becomes

US(µ; ²) = (°0 + ¿0²) cos µ +
³
¯1 + ^̄

1²
´
j sin µj+ ¯3

j sin µj3
cos2 µ

(8.139)

where only the ¯rst-order in°uence of strain is incorporated for small strain

magnitudes. In this expression, ¿0 is the surface stress of the °at surface at

the current level of strain and ~̄
1 = d¯1=d² is a measure of the sensitivity of

the formation energy of a step to surface strain. The last term has the same

interpretation as in (8.138) and its inclusion is essential for a proper descrip-

tion of behavior. In principle, the coe±cient ¯3 should also be expanded to

account for the in°uence of surface strain. However, a reasonable approxi-

mation is obtained by ignoring this possibility and, consequently, only the

leading order term represented by ¯3 is retained.

Suppose that the reference surface µ = 0 is the f100g surface of a

cubic crystal, and that the background strain ²mij in this state is a spatially

uniform equilibrium elastic ¯eld consistent with a traction free surface. As

µ increases from zero, the surface strain ² is given by (8.126) where m1 =

cos µ, m2 = sin µ. The local state of strain would be altered as a result of

long-range elastic e®ects if µ would be spatially nonuniform; in the present

instance, such spatial variation is not taken into account and the surface

strain is determined by µ and the uniform strain ¯eld ²mij . For the case in

which ²m12 = 0, substitution of the expression for ² into (8.139), followed by
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Fig. 8.26. Schematic diagram illustrating the in°uence of background elastic strain
on the dependence of surface energy density on surface orientation for a stepped
surface, as implied by (8.140). The ¯gure is drawn under the assumption that
^̄
1 > 0. In this case, the dependence of surface energy on orientation suggests

that the high symmetry orientation µ = 0 becomes unstable for su±ciently large
compressive strain. Furthermore, as a result of the strong e®ect of step repulsion
at larger values of µ, a local minimum in surface energy emerges for some nonzero
value of µ, say µ¤, suggesting the appearance of preferred surface orientations due
to strain that do not arise in unstrained crystals.

expansion of the result in powers of µ up to degree three, yields

US = (°0 + ¿0²
m
11) +

³
¯1 + ^̄

1²
m
11

´
jµj+

h
¿0(²

m
22 ¡ 3

2²
m
11)¡ 1

2°0
i
µ2

+
h
¯3 ¡ 1

6¯1 +
^̄
1(²

m
22 ¡ 7

6²
m
11)

i
jµj3 : (8.140)

The ¯rst term in parentheses on the right side is the energy density of the

strained surface for µ = 0. The ¯rst-order term in µ is usually identi¯ed as

the origin of a sharp corner or cusp in the dependence of surface energy on

surface orientation, arising through the dependence of US on the absolute

value of µ. Such a feature is illustrated by the dotted line in Figure 8.26 for

the case of zero background strain.

When strain is involved, the coe±cient of jµj in (8.140), usually pre-

sumed to be positive for unstrained crystals, has some remarkable prop-

erties. This coe±cient depends asymmetrically on strain, assuming that
^̄
1 6= 0. Furthermore, if ^̄

1 6= 0, then it must be either positive or negative

for a ¯xed surface structure. It follows that ¯1 + ^̄
1²
m
11 may be negative in

value for compressive or tensile strain ²m11, respectively, of su±ciently large

magnitude. This implies that the energy of the stepped surface may become

lower than the energy of the surface without steps for strain of one sign or

the other. A plot of the surface energy of a vicinal surface for which ²m12 = 0

is shown by the solid line in Figure 8.26 to illustrate this point. In this case,
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when strains are su±ciently compressive with ~̄
1 > 0, the change of surface

energy with surface orientation µ is essentially

US ¡ (°0 + ¿0²
m
11) ¼ (¯1 + ^̄

1²
m
11)jµj+ ¯3jµj3 (8.141)

and it develops minima away from µ = 0. At small angles, the step forma-

tion energy dominates the repulsive interaction energy between the steps,

while at larger angles, the step interactions are dominant. The competition

between these two opposing e®ects may result in optimum misorientation

angles, denoted by µ = §µ∗ in the ¯gure, for su±ciently large compressive

strain. For most practical purposes, the value of this angle is essentially

µ∗ =

s
¡¯1 + ^̄

1²m11
¯3

(8.142)

when the minima in US with respect to µ exist. It follows that ~̄
1 is a key

quantity in determining the surface morphology of strained crystals. The

physical origin of this e®ect can be found in the details of surface reconstruc-

tion for the vicinal surface arrangement as proposed originally by Khor and

Das Sarma (1997). Tension is induced in all of the most severely strained

bonds in the vicinity of the surface steps in the course of reconstruction

(Shenoy et al. 2002). This results in a relatively large tensile surface stress

on the vicinal surface. Furthermore, because the stretching is predominantly

tensile, a superimposed background compressive strain can result in a dra-

matic reduction in macroscopic surface energy as illustrated schematically

in Figure 8.26.

Continuum theory provides no basis for estimating the sub-continuum

parameters ¯1, ^̄
1 and ¯3 for any particular material, even though these

parameters are well-de¯ned characteristics of behavior. They derive strictly

from the discreteness of the material, so values can be estimated only when

the model of the material includes that discreteness. Such estimates require

the adoption of a particular interatomic potential to simulate the material

and, in the case of the surface, an atomic structure for that surface.

The features of the dependence of surface energy on vicinal surface

orientation illustrated in Figure 8.26 are evident in experimental results re-

ported by Schelling et al. (2001). They deposited SiGe onto Si (001) miscut

by 4.34◦. For relatively high Ge content in the deposited material, a sur-

face morphology developed with average slope of 4.34◦ but with the surface

divided into more or less regular segments of slope +11◦ and ¡11◦. A repre-

sentative scan of the surface in the miscut direction resulting from deposition

of a 2.5 nm thick layer of Si0.5Ge0.5 at 650◦ is shown in Figure 8.27. The
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Fig. 8.27. The graph on the right shows an atomic force microscopy scan in the
miscut direction of the surface of a Si0:5Ge0:5 deposit, nominally 2:5 nm in thickness,
on a vicinal Si(001) surface miscut at 4.34±; the deposition temperature was 650 ±C.
Reproduced with permission from Schelling et al. (2001). The growth surface
retains the average slope of the miscut surface, represented by £ in the sketch on
the left, but it is divided into segments with slopes of either +µ¤ or¡µ¤, representing
the minima in surface energy for the strained stepped surface.

proportion of the surface at angle +11◦ to that at angle ¡11◦ is determined

by the proportion of the angle di®erence £ + µ∗ to the di®erence µ∗ ¡£.

8.8.4 Example: Stepped surface near (001) for strained Si

Interpret the surface energy expression (8.140) for the case of a strained vicinal
surface on a Si crystal near the high symmetry (001) orientation.

Solution:

Commonly used potentials for Si and Ge are the Stillinger{Weber potential
(Stillinger and Weber (1985), Ding and Andersen (1986)) and the Terso® potential
(Terso® (1988), Terso® (1989)). The most commonly adopted structure for the
(001) surface of Si or Ge is based on a 2 £ 1 reconstruction whereby long rows of
rebonded dimer pairs aligned with the [110] direction form in the [1¹10] direction,
or rows of dimers each aligned with the [1¹10] direction form in the [110] direction,
with these two reconstructions alternating with atomic plane through the crystal.

The introduction of steps on the surface complicates the picture signi¯cantly.
Terraces can alternate between the two dimer reconstructions indicated for step
heights of a single atomic plane, or one-fourth of the unit cell dimension in a dia-
mond cubic material. However, the search continues for minimum energy structures
that interrupt the dimer arrays and reconstruct to eliminate as many dangling bonds
as possible. A promising structure for steps aligned with the [100] direction has
been identi¯ed and analyzed by Shenoy et al. (2002) and Fujikawa et al. (2002) for
Si and Ge. In e®ect, steps are ¯rst formed in this orientation in the simplest way.
Then, alternate atoms along the step edge are removed. Finally, reconstructions
are introduced that signi¯cantly reduce the step energy and that lead to a behavior
consistent with observations. This con¯guration has been veri¯ed experimentally
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Fig. 8.28. Plots of surface energy density versus biaxial mismatch strain for (105)
vicinal surfaces with steps aligned with the [010] direction on (001) Si. The stepped
edges are `serrated' in both cases by removing every other step-edge atom, which
leaves two possibilities for dimer reconstruction on the terraces. In the con¯guration
proposed by Khor and Das Sarma (1997), the dimer nearest the step edge rebonds
directly into the step face, whereas the con¯guration proposed by Mo et al. (1990)
presumes the alternate dimer reconstruction. The plot is based on computations
by Shenoy et al. (2002) using the Terso® potential.

by atomic force microscopy observations of the growth surface of Ge deposited
epitaxially on Si(001) (Fujikawa et al. 2002).

Calculations based on the Terso® potential for strained Si crystals with mean
surface orientations (10n), where n = 1; 3; 5; 7; : : :, and imposed biaxial strain vary-
ing between ¡0:05 and 0:05 have been reported by Shenoy et al. (2002). For the
case of reconstructed steps of height equal to a single atomic plane or spacing, the

values of the parameters were found to be ¯1 = 0:093 J/m2, ^̄
1 = 16:8 J/m2 and

¯3 = 3:48 J/m2. These values are consistent with the dependence of surface energy
on orientation shown schematically in Figure 8.26. Plots of surface energy versus
strain for (105) stepped surfaces are illustrated in Figure 8.28,that is, the (105)
orientation.

The angle µ¤ implied by these parameter values at strain ²m11 is about 8.5±.
The actual crystal can assume only those angles characteristic of (10n) orientations,

where n = 5; 9; 13; : : :, for this reconstruction, and 8.5± is about midway between

the (105) and (109) orientations. Long range elastic e®ects, which have not been

taken into account in the discussion in this section, would tend to drive the angle

toward the larger angle orientation.
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8.9 Strained epitaxial islands

In Section 8.4.1 it was shown that the °at surface of a stressed solid with

isotropic surface energy is unstable under perturbations in shape of the sur-

face of the solid in its reference con¯guration. The shape perturbations

may be a consequence of mass rearrangement at ¯xed total mass, for exam-

ple. For su±ciently high stress and temperature, the con¯gurational driving

force tending to increase the amplitude of °uctuations in surface shape is

large enough to cause the °uctuations to grow. For the case of a thin ¯lm

deposited epitaxially on a substrate in the presence of lattice mismatch, the

°at surface of the stressed ¯lm is also unstable. Indeed, if the elastic proper-

ties of the ¯lm and the substrate are the same, then the stability condition

is the same as that obtained in Section 8.4.1. On the other hand, if the

substrate is elastically sti®er (more compliant) than the ¯lm material, the

°at surface con¯guration is destabilized at a larger (smaller) internal stress

than for an elastically homogeneous material. The in°uence of substrate

sti®ness was considered quantitatively in Section 8.4.3 and, for the case of

an isolated island, it is revisited at the end of Section 8.9.1.

In cases where the °at ¯lm surface is unstable, perturbations in surface

shape may grow in time by means of some mechanism of mass rearrange-

ment. In cases of growth, the valleys in surface topography may reach the

¯lm-substrate interface, resulting in clusters of ¯lm material being isolated

from one another by regions of exposed substrate surface or perhaps by

regions of the substrate covered only by a very thin wetting layer of ¯lm

material. Conditions under which this can occur were discussed brie°y in

Section 8.4.4. These isolated clusters are commonly called islands.

To see that there is a natural tendency for the ¯lm material to agglom-

erate into islands in the presence of mismatch strain, imagine the sequence

of events shown schematically in Figure 8.29. Initially, a ¯lm of uniform

thickness is formed on a substrate of relatively large thickness. The ¯lm

is assumed to be subject to an extensional mismatch strain ²m, isotropic

in the plane of the interface. The strain energy per unit volume for an

elastically isotropic ¯lm material is Mf²
2
m where Mf is the biaxial modulus

of the ¯lm. Imagine that the ¯lm material is then gathered into clusters

on the surface of the substrate, while maintaining the epitaxial bond with

the substrate. Furthermore, suppose that this is done in such a way that

tractions are applied to the lateral faces of the clusters which maintain the

mismatch strain in the ¯lm material at its initial value of ²m. At the end of
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Fig. 8.29. In order to visualize the competing energy e®ects involved in converting
a uniformly strained ¯lm into partially relaxed islands on a substrate, the process
is imagined to occur in two steps. In the ¯rst step, uniformly strained ¯lm material
is gathered into clusters, thereby increasing surface area without relaxing elastic
energy. In the second step, the surface traction that was arti¯cially introduced to
maintain elastic strain is relaxed, thereby reducing elastic energy without changing
the surface area.

this step, the total surface area of the material structure has been increased

from its value at the beginning of this step but the total elastic energy has

been left unchanged. If the surface energy densities of the ¯lm material

and the substrate material are comparable or, alternatively, if a very thin

wetting layer of ¯lm material remains in the gaps between the islands, then

the total surface energy of the system has been increased. The increase in

surface energy scales with a surface energy density, say °f .

Next, suppose that the arti¯cial tractions, which were introduced in

order to maintain the strain level everywhere in the ¯lm material, are re-

laxed. For any stable elastic material, the work done on the system by these

tractions as they are relaxed is negative. Consequently, once the tractions

have been completely removed, the total elastic energy has been decreased

from its value at the start of the step. This decrease in elastic energy scales

with the initial elastic energy density Mf²
2
m.

Thus, the total change in free energy in forming any particular island

arrangement from a strained thin ¯lm may be positive or negative, depend-

ing on whether the surface energy increase or the elastic energy reduction

dominates the process. If the net change in free energy is negative then the
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Fig. 8.30. Schematic diagram of an elastically strained island on a relatively large
substrate. The island is assumed to be in the shape of a right circular, for purposes
of illustration, and it is restrained from relaxing by the substrate.

change may occur spontaneously, but otherwise it may not. The ratio of the

scaling factors for the two steps in the imaginary process, that is, the ratio

³ =
°f

Mf²2m
; (8.143)

is a system parameter with the physical dimensions of length, analogous to

that introduced in Section 8.3 and elsewhere in this chapter. Whether or

not a particular island con¯guration will tend to arise spontaneously will

depend on the values of characteristic lengths of that con¯guration relative

to ³. This basic idea is developed more fully and in quantitative form in the

sections which follow.

8.9.1 An isolated island

Consider a single island of ¯lm material bonded to a relatively large sub-

strate. Even for this relatively simple material system, there are many

system parameters that can in°uence variations in total free energy. These

include size and shape of the island, elastic properties of the materials in-

volved, surface energies of the materials, surface energy anisotropy, and

proximity to other islands, to name a few possibilities. To facilitate under-

standing of the in°uence of size and shape on the free energy of the island,

each of these particular basic features are given one-parameter characteri-

zations; consideration of the remaining in°uences identi¯ed is postponed to

later discussion. Thus, a con¯guration that is completely characterized by

two geometrical parameters is considered. A simple shape that is suitable

for this purpose and that includes three-dimensional e®ects is a right cir-

cular cone, as illustrated in Figure 8.30. The size and shape of the conical

island is completely speci¯ed by the radius r of its base and the altitude

h. An alternate parameterization, and one that is more useful for present

purposes, is to specify the volume V of the cone and its aspect ratio a; in
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terms of the dimensions illustrated in Figure 8.30, these are

V = 1
3¼r

2h ; a = h=r : (8.144)

For the time being, the ¯lm and substrate materials are assumed to be

elastically isotropic and to have identical elastic properties, say the biaxial

modulusM and Poisson ratio º. The total elastic strain energy of the system

is

W =

Z
R

1
2cijkl²ij²kl dR ; (8.145)

where R is the region of space occupied by the island and its substrate, cijkl
is the array of elastic constants of the materials as introduced in Chapter 3,

and ²ij is the nonuniform elastic strain ¯eld throughout R. The strain arises

solely from the mismatch in lattice parameters between the two materials.

Suppose that all lengths in the system are re-scaled by the dimension V 1/3,

so that xi = V 1/3x̂i, for example, where x̂i is a nondimensional spatial

coordinate. If the particle displacement is also normalized in the same way,

then the strain itself depends on position in the island only through the

normalized coordinate x̂i. Furthermore, strain ²ij must depend linearly on

²m and it must vanish everywhere when ²m = 0. Therefore, there exists a

strain ¯eld ²̂ij(x̂1; x̂2; x̂3) that is independent of both ²m and V , and that is

de¯ned by

²̂ij(x̂1; x̂2; x̂3) = ²ij(x1; x2; x3)=²m : (8.146)

Note that ²̂ij(x̂1; x̂2; x̂3) is the strain ¯eld for an island of unit volume with

a unit mismatch strain with respect to the substrate. In addition, the array

of elastic moduli cijkl can be rewritten as

cijkl = Mĉijkl ; (8.147)

where the nondimensional components of ĉijkl may depend on º but are

independent of M . Once the scaling rules are introduced into (8.145), that

expression reduces to

W = M²2mV

Z
R̂

1
2 ĉijkl²̂ij ²̂kl dR̂ = M²2mV Ŵ (a; º) ; (8.148)

where Ŵ (a; º) is a dimensionless function of the island aspect ratio a and

Poisson ratio º. Its value must be determined numerically for speci¯c values

of these parameters, in general.

To consider the corresponding surface energy variation with aspect

ratio a for ¯xed volume V , assume that the surface energy density of the

¯lm material °f is independent of surface orientation. The energy densities
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of the substrate material and the ¯lm{substrate interface are denoted by °s
and °fs, respectively. A suitable expression for the net surface energy is

¡ = °f¼r
2
q
1 + h2=r2 + (°fs ¡ °s)¼r

2 : (8.149)

This expression provides the correct description of change in surface energy

with respect to change in aspect ratio. However, the value of ¡ as a measure

of surface energy is not useful because the amount of surface area involved

in this con¯guration is essentially unbounded, whereas the change in surface

energy is not.

The energy °fs per unit area of the epitaxial interface between the ¯lm

and the substrate materials is expected to be relatively small compared to

°f for a fully coherent interface, and this energy contribution is neglected

for convenience throughout the present discussion. If h and r are expressed

in terms of V and a according to (8.144), then

¡ = ¼

µ
3V

¼a

¶2/3 h
°f
p
1 + a2 ¡ °s

i
= °fV

2/3¡̂(a) ; (8.150)

where ¡̂(a) is a dimensionless function of aspect ratio. Note that the be-

havior of ¡̂(a) near a = 0 is consistent with the notion of surface wetting.

For example, if °f < °s then there is bene¯t in having the substrate covered

with ¯lm material and, accordingly, there is a deep energy well in ¡̂(a) as

a ! 0+. Likewise, if °f > °s then there is bene¯t in having the substrate

surface exposed, consistent with a minimum value in ¡̂(a) at some positive

value of a.

To pursue the discussion in further detail, with particular emphasis

on the in°uence of inelastic energy, assume that °f = °s = °. The total free

energy change due to formation of the island from the uniformly strained

¯lm con¯guration is W ¡M²2mV + ¡, or from (8.148)

F = M²2mV
h
Ŵ (a; º)¡ 1

i
+ °V 2/3¡̂(a) : (8.151)

Consequently, the total free energy change normalized by the initial elastic

energy of a °at ¯lm is

F
M²2mV

= Ŵ (a; º)¡ 1 + Z¡̂(a) ; (8.152)

where the nondimensional ratio Z is de¯ned to be

Z =
°

M²2mV
1/3

: (8.153)

An alternative, and more useful, interpretation of (8.152) is as the free energy
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Fig. 8.31. Graphs of the elastic energy shape factor Ŵ de¯ned in (8.148) and the

surface energy shape factor ¡̂ de¯ned in (8.150) versus island aspect ratio a = h=r
for a Poisson ratio of 1/4.

change of the system per unit volume of island material, normalized by the

initial elastic energy per unit volume. All dimensional parameters appear in

this expression through the single quantity Z which relates the size of the

island, namely V 1/3, to the characteristic length ³ of the system as de¯ned

in (8.143). The normalized free energy change is speci¯ed for any º by the

aspect ratio a and the size parameter Z.

The dependence of the function Ŵ (a; º) on a for º = 1=4 is read-

ily established by appeal to numerical simulations using the ¯nite element

method. The island and substrate were analyzed as a rotationally symmet-

ric elastic structure. The axis of the cone is the axis of rotational symmetry

of the structure, and the substrate is assumed to be a right circular cylinder

with both radius and height equal to 10r. The e®ect of the incompatibility

strain due to lattice mismatch is simulated as a thermoelastic deformation.

A nonzero coe±cient of thermal expansion is assigned to the island material,

and a temperature change is imposed so that the stress-free isotropic ther-

mal expansion strain of the island would be ¡²m if it were not constrained.

The fact that the expansion of the island is resisted by the substrate gives

rise to the nonuniform elastic strain denoted by ²ij in (8.145). There is no

net force acting on the island. Consequently, the stress ¯eld decays in ampli-

tude in the substrate with increasing distance from the island. The energy
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Fig. 8.32. Free energy change per unit volume of island of material due to reorgani-
zation of uniformly strained ¯lm material to a nonuniformly strained conical island.
The parameter Z, de¯ned in (8.153), represents the size of the island relative to
the natural system length ³.

calculation is insensitive to the details of the boundary conditions on the

lateral surface or the base of the cylinder representing the substrate. The

result is shown in Figure 8.31. The dependence of the function ¡̂(a), de¯ned

in (8.152), on a is also shown in the same ¯gure. The two functions Ŵ and

¡̂ represent the in°uence of elastic energy and surface energy on total free

energy reduction, respectively, and the parameter Z represents the in°uence

of surface energy relative to elastic energy.

The normalized free energy change per unit volume versus a is shown

in Figure 8.32 for a range of values of Z. To provide an indication of

the range of physical parameters involved, note that if ° = 1J/m2, M =

1011N/m2 and ²m = 0:01 then Z = 1 implies V 1/3 = 100 nm. Each curve

in Figure 8.32 represents the variation of the free energy change per unit

volume of the island material with aspect ratio for a fixed volume of island

material. The island volume V varies inversely with Z according to (8.153);

therefore, each curve represents the free energy per unit volume of an island

of a particular volume.

Several signi¯cant observations can be made concerning the results in

Figure 8.32. All curves leave the origin with negative slope, implying that
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Fig. 8.33. Dependence of elastic energy change in the strained system due to island
formation on the ratio of the elastic sti®ness of the substrate to that of the ¯lm.
Results are shown for island aspect ratio of 0.2 and a common Poisson ratio of 0.25.

the initial °at ¯lm is unstable. It is also evident that each curve has a local

minimum for some nonzero aspect ratio, and that there is a con¯gurational

force tending to drive any particular material volume to the shape with

this particular aspect ratio. The con¯gurational force tending to change the

aspect ratio of an island of a given volume is the negative slope of the curve

corresponding to that volume at the current aspect ratio. Furthermore,

the value of the aspect ratio at the free energy minimum increases with

increasing volume V or with decreasing Z. Thus, larger islands tend to

have higher aspect ratios at equilibrium than do smaller islands, within the

framework of the present model. This is so because more elastic energy

can be released by increasing aspect ratio while the penalty associated with

increasing surface energy is rendered less signi¯cant by the small value of Z

for large islands.

The calculation of free energy change in the transition of a uniformly

strained ¯lm into an isolated epitaxial island which led to Figure 8.32 was

based on the assumption that the elastic properties of the ¯lm material and

substrate material are identical. If this is not the case, the modulus di®er-

ence between the materials can have a signi¯cant in°uence on the change

in elastic energy associated with island formation. To illustrate this point,
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consider the formation of an isolated conical island from a uniform ¯lm with

biaxial elastic modulus Mf and Poisson ratio ºf . The corresponding prop-

erties of the substrate are Ms and ºs. Suppose that attention is limited to

a particular aspect ratio, say a = 0:2, and that ºs = ºf = 0:25. The nor-

malized elastic energy reduction per unit volume of the island, which was

denoted by Ŵ (a; º)¡ 1 in (8.152), can then be calculated for ¯xed Mf and

²m, and for a range of values of modulus ratio Ms=Mf . The result for a = 0:2

is shown in Figure 8.33, which illustrates the in°uence of modulus di®erence

on energy change. For example, when Ms = Mf the elastic energy reduction

in island formation is about 24%, as shown in Figure 8.32. For purposes of

comparison, when Ms = 2Mf it is only about 12% and when Ms =
1
2Mf it

is about 40%. The in°uence of modulus di®erence for other aspect ratios is

similar.

8.9.2 Influence of an intervening strained layer

In the foregoing study of elastic energy change during island formation, it

was demonstrated that the elastic sti®ness of the substrate has a relatively

strong in°uence on the proportion of elastic mis¯t energy that can be re-

leased to drive the process. In the analysis, it was tacitly assumed that the

substrate itself was not subject to a mis¯t strain. In other words, virtually

all material subjected to mis¯t with respect to the unstrained substrate is

ultimately gathered into the island. This need not be so. It is conceivable

that an island will be formed on the surface of a layer which itself is subject

to the same mis¯t strain. This strained layer, in turn, may be bonded to the

surface of a relatively thick substrate. This is the situation considered here.

The main point to be made is that the mis¯t strain in such an intervening

layer, lying between a thick substrate and a surface island, has no e®ect

whatsoever on the energy reduction associated with island formation.

The conclusion follows directly from superposition of linear elastic

¯elds, without the need for detailed calculation. The system under discus-

sion is depicted in part (a) of Figure 8.34. The ¯gure shows a relatively

thick elastic substrate with a ¯lm of some uniform thickness bonded to its

surface. The ¯lm supports a spatially uniform mismatch strain, presumably

due to the constraint of epitaxy. The elastic properties of the ¯lm material

may be di®erent from those of the substrate material. Some of the ¯lm

material has gathered into an isolated epitaxial island on the surface of the

strained layer. The island material also supports the same mismatch strain.

The lateral faces of the island are free of applied traction. As a result, the

elastic strain ¯eld is spatially nonuniform and the elastic strain energy is
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Fig. 8.34. Linear superposition of elastic deformation ¯elds associated with island
formation in a strained layer system. The con¯guration with a fully formed, par-
tially relaxed island in part (a) is decomposed into island formation without relax-
ation in part (b), which involves introduction of arti¯cial surface tractions on the
island surface, plus negation of the arti¯cial tractions in part (c) to result in an
island with free lateral surfaces.

partially relaxed from the uniform density of the °at ¯lm. For purposes of

this development, the island may have any shape, either two-dimensional or

three-dimensional. For any particular island size and shape, how does the

presence of mis¯t strain in the layer between the island and the substrate

in°uence elastic energy reduction upon island formation?

The answer to the question becomes evident if the elastic state de-

picted in part (a) of Figure 8.34 is reduced, by means of linear superposition,

to the sum of states shown in parts (b) and (c) of the same ¯gure. In part

(b), the substrate supports no mismatch strain, while the intervening uni-

form layer and the island are both subject to the spatially uniform mismatch

strain ²mij . In this case, however, the lateral faces of the island are subjected

to precisely the right traction to prevent elastic relaxation in the island,

that is, it is subjected to the traction ¾mijnj where ni is the outward unit

normal vector to the island surface and ¾mij = cijkl²
m
kl. Thus, the uniform

elastic strain in both the island and the intervening layer is still ²mij , and

the elastic strain in the substrate is everywhere zero. The elastic properties

of the substrate may be di®erent from those of the strained layer and the

island which may, in turn, be di®erent from each other. Furthermore, the

mismatch strain in the island and in the intervening strained layer may also

be di®erent from each other, as will be clear from the arguments to follow.

The elastic state in part (c) of Figure 8.34 must be added to that in
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part (b) to recover the state of interest in part (a). The elastic properties

of the materials and the geometrical con¯guration are identical in parts (a),

(b) and (c). In part (c), however, none of the material components carries

mismatch strain; all the mismatch strain is already taken into account in part

(b). To render the lateral surface of the island traction-free, it is necessary

to impose a surface traction ¡¾mijnj on the island surface in part (c). The

elastic strain in all material components in part (c) is solely that strain

which arises from relaxation of the lateral faces, say ²rij . It is a compatible,

spatially nonuniform strain ¯eld.

The superposition argument is based on recognition that the total

elastic strain is the sum of the mismatch strain and a relaxation strain

²ij = ²mij + ²rij , and it separates the in°uence of these two strain contribu-

tions to energy change. There is no elastic energy change associated with

island formation in part (b). Thus, the elastic energy change associated

with island formation is represented by the ¯elds of part (c) alone, but this

state does not involve the elastic mismatch strain in the intervening layer in

any way. It follows that the energy change is independent of this mismatch

strain. Furthermore, the conclusion does not depend on the thickness of

the intervening layer, on the shape of the island or on the relative elastic

properties of the materials. The same conclusion can be reached by direct

appeal to elastic ¯eld theory; the details are left as an exercise.

8.9.3 Influence of surface energy anisotropy

In the description of formation of a strained epitaxial island in Section 8.9.1,

it was assumed that the surface energy density of the ¯lm material was in-

dependent of strain and of surface orientation. It was recognized in Sec-

tion 8.8.3 that, if the lateral faces of the island are vicinal surfaces of the

crystalline material, then the surface energy density may depend on both

orientation and strain. In this section, the question of free energy change in

the system during island formation is revisited for the case when the surface

energy density varies linearly with surface slope for slopes of small ampli-

tude, as indicated by the general expression (8.138) with a = tan jµj. How

does this surface energy anisotropy in°uence island formation? The corre-

sponding issue for large values of slope is pursued in subsequent sections.

The principal change from the development of Section 8.9.1 is that the

factor ° in the ¯rst term on the right side of (8.149) must be replaced by

(°0 + ¯1a)=
p
1 + a2 , neglecting the step interaction contribution for small

values of a. The change in surface energy of the system can again be written
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as ¡ = °0V
2/3¡̂(a), but in this case

¡̂(a) = ¼

µ
3

¼a

¶2/3 ∙µ
1 +

¯1
°0

a

¶
¡ 1

¸
= ¼

µ
3

¼

¶2/3 ¯1
°0

a1/3 : (8.154)

This expression di®ers from the corresponding result for the case of isotropic

surface energy density in one particularly important aspect.

The expression (8.154) implies that, as aspect ratio a increases from

zero, the increase in surface energy always dominates the corresponding

decrease in elastic energy, which is essentially linear in a for any material

volume V . In other words, the appearance of the factor a1/3 in (8.154),

instead of a4/3 as in (8.150), implies that the °at surface of the strained ¯lm

is stable against formation of island-like perturbations of its surface for any

material volume.

Although the foregoing result was obtained in the course of study-

ing a particular con¯guration, that result is quite general in scope. Surface

energy anisotropy of the kind represented by the plot labeled \no strain"

in Figure 8.26 has a strong stabilizing in°uence on the °at surface of a

strained crystal in a high symmetry orientation. This behavior is consis-

tent with observations for situations in which the strain magnitude is very

small. However, formation of epitaxial islands on high symmetry surfaces

is common in strained layer systems, and the apparent reason for this be-

havior is that strain itself can have pronounced in°uence on surface energy

density for surface orientations that are close to high asymmetry directions,

as described in Section 8.8.3.

If the in°uence of strain is also taken into account in describing the

surface energy of the lateral faces of an isolated island for small aspect ratio

a, then (8.154) is replaced by

¡̂(a) = ¼

µ
3

¼

¶2/3 ¯1 + ^̄
1²m

°0
a1/3 (8.155)

for small values of a, where ²m is the equi-biaxial mismatch strain of the ¯lm

material with respect to the substrate material. For values of the parameters

¯1 and ^̄
1 appropriate for the Si/Ge material systems, and for compressive

mismatch strain ²m greater in magnitude than about one-half of one percent,

the coe±cient of a1/3 in (8.155) becomes negative. This implies that the

(001) strained surface is unstable against island formation of any volume.

The dependence of surface energy density of a vicinal surface on strain

given in (8.140), as well as its implications for island formation re°ected in

(8.155), point to an asymmetry of behavior with respect to the sign of strain

that drives island formation. If a nominally °at surface becomes unstable
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under small perturbations in its shape for a particular strain, either tensile

or compressive, it will not exhibit an instability for an imposed strain of

the same magnitude of opposite sign. This is in contrast to the classical

stability result described in Section 8.4.1 where mismatch strain ²m enters

the description only through the quantity ²2m; as such, the stability condition

for tensile strain is indistinguishable from the corresponding condition for

compressive strain.

The asymmetry in behavior with respect to the sign of strain was an-

ticipated in the experimental results reported by Xie et al. (1994). They de-

posited 5 nm ¯lms of Si0.5Ge0.5 on relaxed substrates of Si1−xGex at 650 ◦C,
with x varying within the range 0 < x < 1. This implies that the ¯lm growth

surface was always the same material. As a result, the mismatch strain of

the ¯lm varied within the range ¡0:02 < ²m < 0:02. The root-mean-square

surface roughness of the ¯lms after deposition was determined by means of

atomic force microscopy. For tensile mismatch strains, the roughness was

found to be no greater than the roughness of the surface of the substrate

prior to growth. For compressive mismatch strain, on the other hand, the

measured surface roughness was signi¯cantly larger in general, and as much

as 20 times larger for compressive mismatch strains greater in magnitude

than about one percent. The e®ect was attributed to the energies of recon-

structed dimer pairs on the terraces near the step edges.

Experimental observations reported by Sutter and Lagally (2000) and

Tromp et al. (2000) on the growth of Si1−xGex ¯lms on Si(001) substrates,

with Ge concentration x in the range 0:1 ∙ x ∙ 0:4, have clearly revealed

that shallow mounds emerge during early stages of growth. These mounds

are the nuclei for an intrinsic morphological instability of the strained ¯lm

material. Because these mounds assumed crystallographic features from the

outset, it was assumed that their lateral faces were vicinal surfaces with

widely spaced steps. As more material was deposited, the spacing between

the steps gradually decreased until the lateral surfaces reached a certain crys-

tallographic orientation. This island formation behavior arises as a natural

surface instability, as implied by (8.155). Approaches to surface instabil-

ity that account for neither orientation dependence nor strain dependance

of surface energy have been unable to explain the observed growth mode.

It is evident that any assumed surface behavior of the form (8.155) will

lead to a similar description of island growth; the development of this form

within the context of stepped surfaces provides a fundamentally consistent

picture. A similar growth mode was also observed in Ge ¯lms grown on

Si(001) substrate Vailionis et al. (2000) with widely spaced steps were the

three-dimensional features that ¯rst appear during growth; these features
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were precursors to the faceted islands which formed eventually. The emer-

gence of islands with crystallographically stepped lateral surfaces, arising as

a natural surface instability, can be explained by incorporating the physics of

steps, in particular their interactions and the dependance of their formation

energies on the mismatch strain, as was done in Section 8.8.3.

8.9.4 Nucleation barrier for islands on stable surfaces

From the foregoing discussion, it is evident that there is invariably an elas-

tic energetic driving force for formation of an island on the surface of a

strained layer. Elastic strain energy is always reduced in the course of is-

land formation from a strained ¯lm with an initially °at surface. In arriving

at the description of free energy variations with island shape illustrated in

Figure 8.32, it was assumed that the surface energy density of the island

faces was independent of surface orientation. If the surface energy density

of the material does depend on surface orientation, then the process of is-

land formation can be altered signi¯cantly. If the surface energy density

is smaller for surface orientations which are inclined slightly to the growth

surface than for the growth surface itself, as suggested for some vicinal sur-

faces in connection with (8.155), then the dependence of free energy per unit

volume of island material on island aspect ratio illustrated in Figure 8.32

departs from a = 0 with an even steeper negative slope. In such a case, the

°at growth surface is unstable and islands can form spontaneously from the

outset. On the other hand, if the growth surface orientation is stable in this

sense, the question arises as to whether or not islands can still form. The

goal in this section is to illustrate that island formation is still possible, but

that a nucleation barrier must be overcome in order to achieve formation.

To pursue this issue, consider the dependence of the free energy change

associated with island formation on both island volume V and aspect ratio

a, retaining the notation and con¯guration introduced in Section 8.9.3. In

the present instance, however, the surface energy density depends on a. The

surface energy density for a = 0 is denoted by °0 for both the substrate or

growth surface and for the °at surface of the ¯lm material. For surfaces

inclined to the growth surface, the surface energy density depends on the

angle of inclination in some way; examples are given in Section 8.9.3. For ex-

ample, for the surface energy density of a vicinal surface as given in (8.138),

the nondimensional surface energy factor ¡̂(a) introduced in Section 8.9.1

takes the form (8.154), which implies that the °at growth surface is stabi-

lized against small perturbations from a = 0. For any such surface energy
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factor, the normalized free energy of the island-substrate system is

F̂(v; a) =
F

M²2γ³
3
0

= v3
h
Ŵ (a; º)¡ 1 + v−1¡̂(a)

i
(8.156)

in nondimensional form, where

³0 = °0=M²2m and v = V 1/3=³0 : (8.157)

The function F̂(v; a) de¯nes a surface over the plane of v > 0 versus a > 0

that represents the energy `landscape' in terms of con¯guration.

For any growth surface orientation that is stable under small °uctu-

ations in shape, F̂ = 0 at v = a = 0 and F̂ > 0 for all con¯gurations in a

small neighborhood of that point. It is known that the elastic energy e®ects

can overwhelm surface energy in°uences for su±ciently large islands. In

many cases, the energy surface de¯ned by (8.156) has the form of a `saddle'

with large values of F for v ! 1, a ! 0+ and for v ! 0+, a ! 1, but

with more moderate values between these extremes. In such cases, the sta-

tionary point at the root of the `saddle' de¯nes an energy barrier that must

be overcome to create an island. The energy barrier height represents an

activation energy for island formation on material surfaces that are stable

under small °uctuations due to surface energy anisotropy. A related issue

was described in detail in Section 1.3.5.

The values v = v∗, a = a∗ of volume and aspect ratio that locate the

stationery point are found among the roots of the two equations

@F
@v

= 0 ;
@F
@a

= 0 ; (8.158)

which are nonlinear, in general. The corresponding energy level F̂∗ =

F̂(v∗; a∗) at that point is found by substituting the pertinent roots into

(8.156). It is interesting to note that the equations in (8.158) can be uncou-

pled to obtain a single equation ¡3¡̂I(a)
h
Ŵ (a; º)¡ 1

i
+ 2¡̂(a)Ŵ I(a; º) = 0

that can ¯rst be solved for a∗; the prime denotes di®erentiation with re-

spect to aspect ratio. With that result in hand, v∗ can be determined from

v = ¡¡̂I(a)=Ŵ I(a; º). For the surface energy factor ¡̂(a) given in (8.154)

with ¯1=°0 = 0:1, for example, it is found that v∗ = 0:30, a∗ = 0:73 and

F∗ = 0:0082. The details of the calculation are left as an exercise.

A similar approach to that discussed in this section was followed by

Terso® and LeGoues (1994) in the study of island nucleation. In that work,

it was assumed that only discrete values of aspect ratio a were admissible.

The nature of behavior under this constraint can be seen by adding a verti-

cal line to Figure 8.32 marking the smallest nonzero admissible value of a,
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a pre-assigned value. It is immediately obvious that islands of small volume

would have to increase their energies to form, whereas islands of relatively

large volume could form with a net decrease in free energy. The discrimi-

nating value of island volume between these two types of behavior implies

the existence of a critical island volume and a corresponding energy barrier

to island formation in the sense discussed in this section.

8.9.5 Shape transition for preferred sidewall orientations

Suppose that only certain discrete values of slope of the lateral surface of the

island are possible. In this subsection, implications of this assumption are

examined for circumstances in which more than one such preferred lateral

face orientation exists. The surface energy density of the substrate surface

or °at growth surface is °0. Once it is nucleated at a certain aspect ratio,

say a1, the volume V of an island continues to increase, due perhaps to

deposition or coarsening, but with ¯xed aspect ratio a1. The surface energy

density of the orientation is °1. Within the context of the model of cone-

shaped islands, the free energy per unit volume of material in the island

is
F(a1; Z; °1=°0)

M²2mV
= Ŵ (a1; º)¡ 1 + Z¡̂(a1; °1=°0) ; (8.159)

where Z and ¡̂ are de¯ned by

Z =
°0

M²2mV
1/3

; ¡̂(a1; °1=°0) =

µ
9

¼a21

¶1/3 ∙°1
°0

q
1 + a21 ¡ 1

¸
: (8.160)

As the volume of the island grows larger, the free energy per unit

volume diminishes. If there is another admissible surface orientation, say

a = a2 > a1 with surface energy density °2, then the free energy per unit

volume for that aspect ratio is also given by F(a2; Z; °2=°0)=M²2mV as de-

¯ned in (8.159). Eventually, V becomes large enough so that circumstances

will favor an island with a larger aspect ratio. The transition ¯rst becomes

possible when F(a1; Z; °1=°0) = F(a2; Z; °2=°0) for some Z. This transition

is illustrated in Figure 8.35 for the case when a1 = 0:2, a2 = 0:4, °1=°0 = 1

and °2=°0 = 1; 1:1 or 1:2. The ¯gure shows graphs of free energy reduction

as a result of island formation versus island size, represented by the normal-

ized length Z−1. For example, for the case when °2=°0 = 1:1, the shaped

transition from a = a1 to a = a2 ¯rst becomes possible when Z−1 has in-

creased to the value of approximately 2.2. It is evident from Figure 8.35

that the transition size is strongly dependent on the relative surface energy

densities of the lateral face orientations involved in the shaped transition.
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Fig. 8.35. Representative plots of free energy reduction per unit island volume
versus island size for several combinations of relative surface energy density and
island aspect ratio. The crossover points of the grafts identify conditions under
which an island shape with larger aspect ratio becomes more favorable manned the
smaller aspect con¯guration.

Fig. 8.36. Island shape transitions are represented in Figure 8.35 under the assump-
tion that only abrupt transitions from one conical shape with relatively small aspect
ratio a1 to another with relatively large aspect ratio a2 are possible. This diagram
suggests a more gradual transition from one conical shape to another, e®ected by
having the steeper orientation a2 gradually expand on the lateral face of the island
until the transition is completed.

The foregoing discussion is based on the assumption that the only

possible island shapes are truncated solid cones with any of a discrete set

of aspect ratios. The transitions from one to another aspect ratio implied

by this simple picture are abrupt. A more realistic situation involving grad-

ual transition might emerge if it is assumed that the islands take on shapes

with surface orientation constrained by the slopes a1 and a2, but that these

orientations can coexist. For example, an intermediate shape might consist
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Fig. 8.37. Surface pro¯les of Si0:8Ge0:2 grown epitaxially on the (001) surface of a
Si substrate at 755 ±C, obtained by means of atomic force microscopy. The plan
view area of each image is 2¹m£2¹m, and the vertical scales are identical. The
mean deposition depths are 25ºA in the upper image, where widely spaced incipient
islands are evident, and 100ºA in the lower image, where an array of islands with
f105g lateral faces has been formed. Reproduced with permission from Floro et al.
(1997, 1998).

of a frustum of cone with lateral surface slope a2 plus a cone with lateral

surface slope a1 < a2. A sequence of such shapes is illustrated in Figure 8.36

with the transition accomplished by increasing the portion of surface area at

slope a2 and decreasing the portion at slope a1. Presumably, the proportion

of surface of each orientation would be determined by means of a require-

ment that any con¯guration must be a minimum energy con¯guration within

the family of admissible shapes. Behavior maps for describing such shape

changes, analogous to phase diagrams, have been introduced by Daruka et

al. (1999). Observations of shape transitions in the Si/Ge material systems

are described in the next section.
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8.9.6 Observations of island formation

Images of islands that formed spontaneously during deposition of the al-

loy Si0.8Ge0.2 on Si(001) at 755 ◦C, obtained by means of atomic force mi-

croscopy after the deposition was interrupted, are shown in Figure 8.37. The

upper image shows very small islands forming on the growth surface dur-

ing the early stage of the position. In the lower image, islands have grown

nearly to the point of mutual impingement. The edges of the square island

bases are aligned with h100i directions on the growth surface. Note that

the lateral faces of the islands all have approximately the same slope. An

enlarged view of a cross-section of one of the islands in the lower portion

of Figure 8.37, obtained by transmission electron microscopy, is shown in

Figure 8.38. This image reveals that the lateral faces of the island appear

to be f105g surfaces.

& ! ! 	 � �

Fig. 8.38. Cross-sectional image of one of the islands in the lower portion of Fig-
ure 8.37, obtained by means of transmission electron microscopy. The lateral faces
of the island are f105g surfaces, typical for this material system. Reproduced with
permission from Floro et al. (1997).

The evolution of island shapes and the transition from a pyramidal

shape to a dome shape has been studied in detail for the SiGe/Si(001) ma-

terial system by Ross et al. (1999). The observations were carried out in an

apparatus that integrated low energy electron microscopy (LEEM) with in

situ ¯lm growth capabilities. Geometrical features of evolving island con¯g-

urations are distinguishable in LEEM images due to their relatively strong

contrast. The shape transition for Si0.75Ge0.25 deposited at 730 ◦C is sum-

marized in Figure 8.39. The °at growth surface in this case is unstable as

described in Section 8.9.3, and the deposit agglomerates into islands with

vicinal lateral faces approaching the f105g orientation, the so-called pyra-

midal (P) shape. As the island becomes larger in volume, it transforms to a



690 Equilibrium and stability of surfaces

Fig. 8.39. Low energy electron microscopy images showing transitions in shape of
epitaxial SiGe islands deposited on a Si(001) substrate. Reproduced with permis-
sion from Ross et al. (1999).

truncated pyramid (TP) shape as f113g faces appear at the corners of the

square base and grow in area; a schematic of the TP shape is illustrated

on the right in Figure 8.39. Once the f113g faces become fully established,

additional faces emerge which appear to °atten edges at face boundaries to

a certain extent. The con¯guration proceeds through successive dome-like

shapes (D1, D2, D3) until the ¯nal shape D4 is reached, consisting of f113g
and f15 3 23g lateral surfaces plus remnants of the f105g faces at the top.

The transitions all appear to be temperature dependent.

Although the plots in Figure 8.32 are based on the assumption of a

single island which is isolated by distance from any other islands on the

same surface of the substrate, they imply that there is a driving force for a

coarsening of any island distribution on the surface. Any two islands with

individual volumes V1 and V2 can lower the free energy per unit volume of

the material involved by combining into a single larger island with volume

V1+V2. This tendency prevails at any size scale and hence there is a driving

force for coarsening which persists at all size scales. This simple picture

overlooks any elastic interaction of islands in close proximity to each other,
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(a) (b) (c)

(d) (e) (f)
1 µm

Fig. 8.40. Scanning electron micrographs, shown at the same magni¯cation, of is-
lands formed during the MBE growth of Si0:8Ge0:2 onto a Si (100) substrate during
six di®erent depositions. The images were taken after ¯lm deposition to a mass
equivalent thickness of (a) 10.4, (b) 13, (c) 17, (d) 23 and (e) 27.5 nm. The image
shown in Figure (f) is a scanning electron micrograph of a ¯lm grown to a thickness
of 10.4 nm, following which it was annealed at 755 ±C for 45 min. Reproduced with
permission from Floro et al. (1998).

as well as the transient mechanisms which must come into play to actually

transfer material from one island to another or to cause islands to coalesce.

Processes by which material microstructures coarsen or \ripen" in response

to such an energetic driving force are often identi¯ed collectively as Ostwald

ripening processes (Ostwald (1887), Zinke-Allmang et al. (1992)).

The in°uence of elastic interactions can be anticipated, to a certain

extent. As noted in the discussion above, the elastic energy change due

to formation of an isolated island of some shape and size depends on the

elastic compliance of the substrate. If this same island is formed in close

proximity to other islands bonded to the surface of the substrate, then the

substrate invariably appears to be less compliant than it would if the island

were isolated from all others. This implies that there will be less relaxation

of elastic energy due to formation of closely spaced islands than is the case

for formation of widely spaced islands. This, in turn, implies the existence

of a repulsive con¯gurational force tending to increase separation distance

between closely spaced islands, assuming both have mismatch strain of this

same sign. This force opposes the tendency for structural coarsening of

island arrays, and can in°uence the stress driven evolution of islands (Floro

et al. 2000).

The role of elastic interactions in in°uencing island shape transitions
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in Si0.8Ge0.2 ¯lms was studied by Floro et al. (1998) using two di®erent

methods. They monitored ¯lm stress by recourse to in situ substrate curva-

ture measurements that involved the multibeam optical stress sensor, which

was described in Section 2.3.2, during the deposition of the ¯lms to di®erent

thicknesses by molecular beam epitaxy onto Si (100) surfaces at a tem-

perature of 755§10 ◦C and growth rate of 0.1 ºA/s. An optical scattering

technique, relying on the peak in the optical scattering spectrum produced

by the islands which act as a di®raction grating, during the broadband il-

lumination of the substrate was used to estimate the mean spacing of the

island arrays through spectroscopic detection of the backscattered light.

Figures 8.40(a){(f) are scanning electron microscope images showing

the evolution of island morphology after six di®erent depositions. The ¯rst

¯ve images in this ¯gure correspond to Si0.8Ge0.2 mass equivalent ¯lm thick-

nesses of 10.4, 13, 17, 23 and 27.5 nm, respectively. Figure (f) is an image

of a ¯lm grown to a thickness of 10.4 nm following which it was annealed

at 755 ◦C for 45 minutes to facilitate static coarsening of the islands. It was

found that such static coarsening reduced the areal coverage of the island

array by nearly one half while the mean island volume was approximately

doubled compared to continuous growth from 10.4 to 13 nm, that is, for

continuous growth that occurred between Figures (a) and (b). These ob-

servations suggest that when the growth surface is heavily covered by SiGe

islands, the equilibrium transition volume as well as the activation barrier

for the transition from the pyramid-shaped islands bound by f501g surfaces,

that is, the so-called hut morphology, to the more isotropic island shape

bound by f311g facets, the so-called dome morphology, can be strongly in-

°uenced by the elastic interactions between the islands.

Studies of Ge island formation on Si (100) substrates during physical

vapor deposition at approximately 600 ◦C in ultrahigh vacuum have been

performed by Medeiros-Ribeiro et al. (1998), who observed the nascent is-

lands using an in situ scanning tunneling microscope (STM) with a lateral

resultion of 1.25 nm. Figure 8.41(a) is an STM image showing the island

height as a function of position where the smaller nanocrystals were iden-

ti¯ed to be square-based pyramidal huts and the larger ones multifaceted

domes. The size distribution of islands observed in these experiments were

similar to that seen by Kamins et al. (1997) and Williams et al. (2000) dur-

ing the chemical vapor deposition of Ge onto Si (100) at approximately the

same substrate temperature and growth rate, although the background pres-

sures in these two deposition conditions di®ered by as much as 11 orders of

magnitude. In both cases, a bimodal distribution of island distribution was

found with the smaller, pyramid-shaped island huts, up to 6 nm in height,
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(a) (b)

Fig. 8.41. (a) Scanning tunneling microscope image showing the topography of Ge
islands formed on the surface of Si (100) during physical vapor deposition in ultra-
high vacuum at a substrate temperature of 600 ±C. This image was obtained after
deposition of eight equivalent monolayers of Ge where one equivalent monolayer
corresponds to 6.3£1018 atoms=m2. (b) A higher magni¯cation image showing the
coexistence of a hut or pyramid and a dome. Reproduced with permission from
Medeiros{Ribeiro et al. (1998).

forming at lower volumes of deposited material, typically less than 5,000

nm3; for deposition volume in excess of 10,000 nm3, larger nanocrystals

with multifaceted domes, which were up to 15 nm in height, were observed.

An example of coexistent shapes of Ge islands on a Si(001) substrate is il-

lustrated in Figure 8.41(b). The smaller island is a hut or pyramid shape

with f105g lateral faces and a square base aligned with h100i directions on
the growth surface. The larger island is a so-called dome shape with lateral

surface consisting of a number of di®erent orientations, as suggested by the

intermediate stage in the diagram of Figure 8.36.

The description of the energetics of island formation as developed in

this chapter does not lead to a prediction of a preferred island size for a given

material system. In order to identify a preferred size for pyramidal epitaxial

islands, Shchukin et al. (1995) included a contribution in the elastic energy

change associated with island formation that accounts for the in°uence of

the unbalanced surface stress at edges where °at lateral faces are joined

on the distribution of elastic strain. This energy scales with the linear

dimension of an island, whereas the surface energy scales with area and the

bulk elastic energy scales with the volume. It has been suggested that the

additional natural length scale can account for the existence of a preferred

island volume and for the narrow distributions of island size that have been

observed for some material systems. Alternatively, it could also be argued

that the growth of an array of islands is restricted by the fact that the surface

energy density °f of the lateral faces is less than the surface energy density
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°s of the growth surface. In the process of coarsening, islands increase the

amount of the area with surface energy °s and decrease the amount with

surface energy °f , which represents a net increase in surface energy of the

system. Yet another limitation on island size is that mass transfer from

one island to another is very restricted, so that the material available for

incorporation into each island is about the same as for any other island.

The foregoing experimental observations readily reveal that the actual

formation of islands in a particular material system is a complicated tran-

sient process, with islands evolving through mass transport in the presence

of a deposition °ux. Consequently, temperature, deposition rate and other

factors not included in the present discussion can have a strong in°uence.

For example, Copel et al. (1989) have shown that use of As as a surfac-

tant suppresses the formation of Ge islands on Si(001) whereas the work of

Kamins et al. (2001) indicates that the addition of P as a dopant drastically

alters the shape of the islands formed in the same system. Experiments have

also shown that the crystal structure of the deposited material can have a

strong e®ect on the shape and orientation of the nanocrystalline islands

formed on the Si substrate. The addition of rare earth metals with hexago-

nal crystal structure, such as Er, results in the formation of stable silicides

at elevated temperatures and these silicide nanocrystals grow along certain

preferential crystallographic directions on the substrate surface. Figure 8.42

schematically illustrates the interplay among crystal structure, surface en-

ergy and stress ¯elds which can in°uence the evolution of nanoscrystalline

islands on surfaces; the multitude of factors shown here also points to the

°exibility with which the size, shape and spatial distribution of such islands

can be controlled by recourse to materials chemistry.

The analyses presented in this chapter lead to the ¯rm conclusion

that there is a signi¯cant driving force for formation of epitaxial islands in

strained material systems. The manner in which the surface energy of the

material in°uences the response to this driving force determines the nature of

island growth. Determining how this surface energy is modi¯ed by a variety

of geometrical, chemical and material parameters remains a work in progress.

The rich variety of physical phenomena which in°uence the thermodynamics

and kinetics of surface evolution also provide potential opportunity for the

controlled synthesis of patterned surfaces for many functional applications.

8.10 Exercises

1. In the study of surface stability in Section 8.4.1, it was shown that the
°at surface of a strained elastic solid is unstable under small amplitude
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Fig. 8.42. Schematic illustration of the interactions among crystal structure, surface
energy and stress ¯elds and their collective in°uence on the evolution of surfaces in
small-volume structures. Adapted from Williams (2003).

sinusoidal perturbations in shape for isotropic surface energy density US.
Repeat the calculation for an anisotropic surface energy that depends on
a the magnitude of the local surface slope according to US = ° + ¯jh;xj,
where ° and ¯ are material constants with physical dimensions of energy per
unit area. Show that the surface is stable under small amplitude sinusoidal
perturbations of shape at all wavelengths if ¯ > 0; the parameter ° is always
positive.

Fig. 8.43. A ridge formed on the surface of a strained elastic material under
plane strain conditions is shown on the left. The diagram on the right shows a
pair of identical ridges with their centers separated by a distance d.

2. The expression (8.85) provides a means for calculating the reduction in elas-
tic energy of a biaxially strained material with an initially °at surface when
some material is formed into a ridge as depicted in Figure 8.43, provided
that h=a ¿ 1.
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(a) Determine the fractional reduction in elastic energy as a function of
h=a for an isolated ridge.

(b) Consider the case of parallel ridges on the surface, as depicted on
the right in Figure 8.43. Determine the fractional reduction in elastic
energy for h=a = 0:15 as a function of separation distance d in the
range 0 ∙ d ∙ 3a.

3. Continuous measurements of substrate curvature were made during the de-
position of a thin ¯lm onto a relatively thick (100) Si substrate; the substrate
thickness is 600 ¹m. It was determined that ¯lm growth follows the Volmer{
Weber mechanism, and that the process of stress evolution could be approx-
imated by the island impingement model presented in Section 8.6.2. The
surface energy per unit area of the thin ¯lm is approximately 1 J/m2. The
magnitude of substrate curvature at the instant when the islands impinge
on the surface of the ¯lm was measured to be 5.8£10¡5 m¡1.

(a) Estimate the average radius of the islands when they impinge.
(b) What is the direction of bending of the substrate?
(c) Calculate the volume-averaged stress in the ¯lm.

4. The values of the parameters in (8.139) that characterize the dependence of
energy US of a strained surface on step density have been estimated to be

¯1 = 0:162 J/m2, ^̄
1 = 12:5 J/m2 and ¯3 = 2:29 J/m2 for Ge on the basis of

the Terso® interatomic potentials (Shenoy et al. 2002). Determine the angle
µ¤ de¯ned in (8.142) for epitaxial growth of Ge on Si(001).

5. Consider the chemical potential expression (8.137) for the special case when
the surface energy density US depends on orientation µ but not on surface
strain ². Verify that the chemical potential expression reduces to Â = U ¡
∙(US + U 00

S ), where the prime denotes di®erentiation with respect to µ. The
quantity in parentheses is sometimes called surface sti®ness; its existence
presumes the function US(µ) is indeed twice di®erentiable.

6. The change in elastic energy due to island formation is the elastic energy of
the state in part (a) of Figure 8.34 minus that of the state in part (b), or

¢W =

Z
R

1
2
cijkl²ij²kl dR¡

Z
R

1
2
cijkl²

m
ij ²

m
kl dR (8.161)

where R is the volume of space occupied by the material system and cijkl
is the array of elastic constants which may have di®erent values within the
distinct material components. Use the idea of superposition as depicted in
Figure 8.34 to show that the expression for ¢W can be expressed in terms
of only the relaxation ¯eld in part (c), thereby con¯rming the conclusions of
Section 8.9.2.
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The role of stress in mass transport

In Chapter 8, connections between the energetic state of a small material

volume subjected to stress and the con¯guration of the bounding surface

of that volume were considered. The dependence of the free energy of the

material system on its con¯guration was established, and the nature of the

variation of system free energy in the course of alterations in con¯guration

was examined. Attention was limited to processes that are slow enough so

that the system is always in mechanical equilibrium. This point of view

leads naturally to the notion of thermodynamic equilibrium state of a small

material volume as a state in which any admissible variation in con¯guration

results in an increase in the free energy of the system. If this is true only

for small excursions in con¯guration then the equilibrium con¯guration is

metastable or locally stable; if it is true for admissible °uctuations of any

magnitude then the equilibrium con¯guration is globally stable.

The fundamental criteria of thermodynamic equilibrium and stability

are usually stated in somewhat di®erent terms, but the equivalence to the

fundamental criteria is readily established for the physical systems of interest

here. The ¯rst law of thermodynamics states that the rate of change of

internal energy U of a material system equals the rate at which work W is

being done on it plus the rate at which heat Q is being added to it, or

_U = _W + _Q ; (9.1)

where the dot denotes time rate of change and where all rates are regarded

as accumulations from some initial state.

In general, work and heat can be a added through boundaries or

through volumetric in°uences { body forces, radiation absorption, and so

on. In addition, work can be dissipated internally as heat through defor-

mation for some materials. The entropy H of the system is the portion of

the internal energy that cannot be recovered as work and that exists as heat

697
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within the system according to

_H =
_Q
T

; (9.2)

where T is the absolute temperature, with the rates again representing ac-

cumulations from some initial state.

The ¯rst law of thermodynamics (9.1) states that the sum of energies

added to the material system in the various forms in which it can exist

equals the increase in internal energy. The second law of thermodynamics

has the form of a constraint on the nature of changes that can occur in a

material system that is not in equilibrium. While it can be stated in various

ways, all expressions are equivalent to the statement that any changes in

the state of a closed system lead to an increase in entropy, or possibly leave

entropy unchanged. In other words, if a nonequilibrium system exchanges

neither work nor heat with its surroundings in the course of changing its

con¯guration, so that _U = 0, then it can do so only with

_H ¸ 0 : (9.3)

An immediate consequence is that the closed system will be in stable equi-

librium if and only if the entropy of that system is maximum under all ad-

missible variations of its con¯guration. The stability can be local or global,

depending on whether the variations of state used to probe stability are

in¯nitesimal or arbitrary in magnitude. This is the form of the original

statement on equilibrium and stability of material systems Gibbs (1876) .

The discussion of energy variations in preceding chapters has been ex-

pressed entirely in terms of free energy, or Helmholtz free energy at constant

temperature. In approximate terms, free energy is the portion of internal

energy that can be recovered from a material system to perform work, or

the excess of internal energy over entropic energy, that is,

F = U ¡ TH : (9.4)

To demonstrate the validity of the statement of equilibrium and stability in

terms of free energy adopted in Chapter 8 for the system studied, consider

a closed material system in which the total volume of material is very large

compared to the volume of material undergoing a changing con¯guration;

the large volume serves as a heat reservoir to maintain the overall temper-

ature constant through conduction, even though entropy is produced over

a small portion of the material. For a closed system ( _U = 0) at constant

temperature ( _T = 0), the rate of change of free energy is

_F = ¡T _H (9.5)
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where absolute temperature T is nonnegative.

If the criterion for a stable equilibrium con¯guration is that entropy

assumes a maximum value, it follows immediately from (9.5) that an equiva-

lent statement for the class of systems described is that a stable equilibrium

con¯guration is one in which free energy assumes a minimum value. Further-

more, it follows from the second law (9.3) that, if a nonequilibrium system

of this class alters its con¯guration spontaneously, it must do so with

_F ∙ 0 : (9.6)

In light of these observations on equivalence of various statements of stability

and equilibrium, evolution of con¯gurations of material systems is discussed

in terms of free energy variations in the sections to follow.

The particular evolution phenomena in material systems considered in

this chapter include the transition from a nominally °at surface to a wavy

surface in a stressed solid, the spontaneous growth of epitaxial islands due to

deposition of a material on a substrate with lattice mismatch, stress relax-

ation by grain boundary di®usion, the role of stress in altering compositional

variations in solid solutions, and stress-assisted di®usion in the presence of

an electric ¯eld or electromigration.

9.1 Mechanisms of surface evolution

The surface chemical potential ¯eld of a solid material, as developed in

Chapter 8, represents a local free energy change accompanying addition of

material locally on the surface; the change is measured per unit volume

of added material. In describing the energetics of surface evolution, it be-

comes necessary to say something about the energy state of that material

before it is added. This can be done in a fairly straightforward way for

two common mechanisms of surface evolution, namely, surface di®usion and

condensation{evaporation. In the case of surface di®usion, material moves

from one location on the material surface to another, and the resultant

change in free energy is represented in terms of the gradient of chemical

potential along the surface. In the case of condensation, on the other hand,

the material added to the solid surface is drawn from an adjacent vapor.

Thus, it becomes necessary to relate the thermodynamic state of the vapor

to that of the solid in order to draw conclusions about the free energy change

associated with condensation. The basic notions underlying these two mech-

anisms are introduced in this section. These two physical processes could

contribute to shape change simultaneously, but they will be discussed sep-
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arately for the most part in this chapter. The basic features of surface

di®usion will be considered ¯rst.
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Fig. 9.1. Schematic diagram showing a stressed solid with free surface S0. Variation
in chemical potential along the surface provides a driving force for mass transport
by means surface di®usion from regions of high chemical potential to regions of low
chemical potential.

9.1.1 Surface diffusion

Consider a stressed solid with a free surface SI in its reference con¯guration,

under circumstances in which the body does not exchange mass or energy

with its surroundings, as depicted in Figure 9.1). The chemical potential

¯eld over the free surface SI is given in terms of the elastic constants, the

state of deformation, the surface shape and the surface energy density by

(8.8). Variation in this surface ¯eld along the surface represents the tendency

for the material system to alter its surface shape spontaneously in order to

reduce the free energy of the system.

At elevated temperature, atoms at the surface of a crystal tend to

move about on the surface in a random manner in the absence of stress

and/or curvature, and possibly to exchange positions with atoms in the

nearby subsurface region. The role of a chemical potential gradient is to

bias this random motion, resulting in a net directional drift of material along

the surface; this net drift is a mechanism of mass transport usually termed

surface diffusion of the material. From the de¯nition of chemical potential

as the energy change per unit volume of material deposited locally, it follows

that the physical dimensions of the components of the chemical potential

gradient are force/length3.

The °ux of material along the surface SI is represented by a surface

vector ¯eld j that is everywhere tangent to the surface SI. If τ S is any unit

vector that is tangent to the surface at a point, then the inner product j ¢τ S
is the volume °ow rate of material in the direction τS per unit distance in
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the surface direction perpendicular to τS. From the de¯nition of material

°ux as volume of material passing a line per unit length of that line per

unit time, it follows that the components of the °ux vector have physical

dimensions of length2/time. The °ux vector is assumed to be related to

the chemical potential gradient through a kinetic relationship, a postulate

on material behavior that must be introduced as a constitutive assumption.

Unless stated to the contrary, it will be assumed that this relationship is

linear and that surface transport is isotropic, so that the kinetic relationship

has the form

j = ¡mSrSÂ ; (9.7)

where mS > 0 is a surface mobility coe±cient, a parameter characteris-

tic of the system, and rS is the interior gradient operator on the surface.

The surface mobility parameter, which incorporates e®ects of surface dif-

fusivity, concentration of di®using species, and temperature, is discussed

further below. If surface di®usion would be anisotropic, the mobility would

be represented by a second rank tensor and mass °ux would be expressed

as the negative of a quantity obtained by the operation of this tensor on the

vector-valued surface gradient of chemical potential.

Conservation of mass at each point on the surface requires that the

net rate of material accumulation at that point due to surface °ux is the

negative of the divergence of the surface °ux at that point. The net rate of

material accumulation determines the surface speed vn, which is the normal

speed of the free surface relative to the material points currently on that

surface, all referred to the reference con¯guration. Thus, in the present

context,

vn = ¡rS ¢ j : (9.8)

When coupled with (9.7), the surface normal speed is related to the surface

chemical potential through

vn = rS ¢ (mSrSÂ) : (9.9)

This result provides the normal velocity of the surface in terms of local elas-

tic strain energy density, the local mean curvature, and the surface energy

density.

The transport equation (9.7) is known by several names, with Nernst-

Einstein equation and Fick's law being among them. The former identi¯er

commonly refers to charge transport through an electrode and the latter

refers to concentration driven transport. The ¯rst application in the study
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of mass transport along a surface was that reported by Mullins (1957) in

a theory of thermal grooving on material surfaces. Consequently, the re-

lationship (9.7) will be termed the Mullins equation in the discussion to

follow.

The surface mobility coe±cient mS is a phenomenological parameter

that represents the net mass °ow per unit gradient in surface chemical poten-

tial. The physical mechanisms of mass transport underlying this parameter

are not well understood quantitatively, but some dependencies can be sur-

mised. Surely, mobility must depend on temperature, binding energy and

concentration of the di®using species. A qualitative argument that leads to

an estimate of the mobility coe±cient proceeds as follows.

Mass transport by surface di®usion is a dissipative process, with the

dissipation rate being

D =
1

mS

Z
S
j ¢ j dS : (9.10)

Note that the dissipation varies inversely with the surface mobility. On a

vicinal surface, as described in Section 8.8.3, energy is dissipated in trans-

port either over the terraces or across the steps at the terrace boundaries,

and the mobility parameter should re°ect these two in°uences in some way.

The dissipation occurring in the course of di®usion on terraces is understood

better, and this mechanism is discussed. This is followed by similar obser-

vations on dissipation due to transport across crystallographic steps. The

separate mobility coe±cients for these two mechanisms are denoted as mS1

and mS2 , respectively.

Consider the thermally activated motion of adatoms on the surface of

a crystal. For purposes of this discussion, the surface is imagined to be a

regular array of energy wells, each separated from its neighbors by an energy

barrier of height Ed. An adatom spends most of the time oscillating in one or

another of the energy wells on the surface. From statistical mechanics, the

probability that the energy of an adatom equals or exceeds the barrier height

is exp[¡Ed=kT ], where k is the Boltzmann constant and T is the absolute

temperature. The rate of successful attempts by the adatom to hop out of a

well is !d exp[¡Ed=kT ] where !d is the frequency of vibration. Viewing the

vibration as that of an isolated harmonic oscillator, the sti®ness is roughly

Ea, where E is the elastic modulus and a is the well-to-well spacing; the mass

of the adatom is roughly ½−, where ½ is the mass density of the material

and − is its atomic volume. If the direction in which the adatom hops from

one well to the next is random, then the frequency of hops in a particular
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direction is about 14!d exp[¡Ed=kT ]. Motion is as likely to occur in any one

direction as in any other, and there is no net mass transport.

Suppose now that the energy wells become slightly shallower by some

amount ¢E from one well to the next in a certain direction, so that the

barrier height in that direction is Ed+¢E ; the barrier height in the opposite

direction is Ed¡¢E . Then, the net rate of well-to-well hops in that direction

for a given well is

!d
4
e−(Ed+∆E)/kT ¡ !d

4
e−(Ed−∆E)/kT ¼ ¡!d

2

¢E
kT

e−Ed/kT (9.11)

times the fraction of wells that are occupied, where the result has been

linearized for small values of ¢E=kT . Then, if ¢E is identi¯ed with −arSÂ,
hopping rate with aj=−, and fraction of wells occupied with a2cd where cd
is the number of di®using particles per unit area of the surface, it follows

that

mS1 »
a2!dcd−

2

2kT
e−Ed/kT : (9.12)

The activation barrier Ed is usually considered to be a fraction of the chem-

ical bonding energy Ef (Zangwill 1988).
Suppose now that di®usion on the terraces is very rapid, implying

that all atoms on a particular terrace have the same energy state, and that

transport is controlled by movement across steps. If it is assumed that

hopping up and down a step are equally likely, then (9.11) again applies

but with a value of Ed representing the energy barrier imposed by the step.

The energy distribution of atoms on any given terrace is now uniform, and

¢E represents the di®erence in this energy level from one terrace to the

next in a particular direction. To make the connection to the macroscopic

representation of transport (9.7) in this case, denote the terrace width by

wd. Then, if ¢E is identi¯ed with −wdrSÂ, hopping rate with aj=−, fraction

of sites occupied along the step with a2cd, and a=wd with the magnitude of

the local slope of the surface jrSSj, it follows that

mS2 »
a2!dcd−

2

2kT jrSSje
−Ed/kT : (9.13)

The two e®ects represented by (9.12) and (9.13) can be combined into

a single mobility parameter by assuming that

mS =
mS1mS2

mS1 +mS2

; (9.14)

which assures that transport is controlled by themore dissipative mechanism

of the two possibilities discussed here. For example, if mS1 ¿ mS2 then
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mS ¼ mS1 . A number of interesting observations on this dissipation process

associated with surface di®usion are discussed by Nozieres (1992). Among

these is the so-called Schwoebel e®ect whereby di®using species encounter

signi¯cantly greater resistance in crossing steps in the downward direction

than in the upward direction (Schwoebel 1969).

9.1.2 Condensation—evaporation

The process of condensation or evaporation at a solid surface involves a

phase transformation of the material. As a result, the mass of the solid is

not conserved in the course of deposition, in general, unlike the situation

for the process of shape change by means of surface di®usion. In light of

this di®erence, it becomes necessary to indicate the thermodynamic state

of the material being added or removed from the surface of the solid before

it is added or after it is removed, respectively. Throughout the discussion

of condensation, it is assumed that the solid surface of interest, customarily

denoted by SI, is in contact with a spatially uniform vapor of the same

material. Furthermore, the state of the vapor as represented by pressure,

temperature and density, remains the same throughout the condensation

process. The thermodynamic state of the vapor is represented in terms of

the state of an auxiliary solid body of material, identical to that in contact

with the vapor but which is homogeneously deformed and in contact with

the vapor over a planar surface. The pressure in the vapor is taken to be the

equilibrium vapor pressure, as de¯ned in Section 1.3.1, for the case in which

the auxiliary solid is subjected to a spatially uniform equi-biaxial stress ¾v
acting in the plane parallel to the solid-vapor interface. The free energy per

atom of the vapor and auxiliary solid are identical in this situation, which

is the basis on which equilibrium vapor pressure is de¯ned. If ½s and ½v are

the mass densities of the solid and vapor, respectively, then the free energy

per unit volume of the vapor is Âv = ½v¾
2
v=M½s, where M is the biaxial

modulus of the elastic solid.

Recall that the chemical potential Â of a solid surface, as de¯ned

throughout Chapter 8, can be interpreted as the the local free energy of

the solid per unit reference volume of the material added to the surface SI.
The free energy per unit volume of this same material prior to its addition

to the solid was di®erent from Â, in general. The basic idea is that the

surface SI tends to move spontaneously with respect to the material on it in

a way to reduce system free energy. Thus, in the present instance, it tends

to incorporate more material onto the solid through condensation at points

at which Â < Âv; likewise, the surface tends to recede at places on SI at
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which Â > Âv. A simple kinetic relationship representing surface response

to chemical potential variations on SI is (Mullins (1959), Nozieres (1992))

vn = ¡cS (Â¡ Âv) ; (9.15)

where cS is a material constant controlling the rate of transformation with

physical dimensions of length/(time£force). It could be argued that it is

only the di®erence Â¡ Âv that should be called a chemical potential in this

context. The relationship (9.15) is commonly adopted in situations that are

close to equilibrium situations, that is, where Â di®ers only slightly from Âv.

The di®erence in chemical potentials appearing on the right side of (9.15)

is consistent with the interface chemical potential obtained in (8.22) un-

der circumstances for which the equilibrium vapor pressure is small enough

so that the traction Ti on the interface is negligibly small. In the special

case when ¾v = ¾m and elastic energy e®ects are ignored, (9.9) and (9.15)

represent the two extreme cases of di®usion-limited surface motion and at-

tachment limited surface motion, which have been discussed by Cahn and

Taylor (1994).

9.2 Evolution of small surface perturbations

In this section, situations are considered for which the surface of a stressed

solid is initially °at, or nearly so, and for which the slope of the evolving

surface is everywhere small in magnitude throughout the evolution process.

Chemical potential for a one-dimensional sinusoidal surface shape was devel-

oped in Section 8.4.1, for a two-dimensional sinusoidal shape in Section 8.5.3,

and for a general small amplitude surface pro¯le in Section 8.5.2. These

results are used to examine surface evolution by either the mechanism of

surface di®usion or condensation, as described in Section 9.1. In all cases

considered in this section, surface energy is assumed to have the constant

value °0, independent of surface orientation and surface strain. Implications

of surface energy anisotropy and strain dependence are examined subse-

quently.

9.2.1 One-dimensional sinusoidal surface

Consider a biaxially stressed solid with a free surface described in a rectan-

gular coordinate system by its height

y = h(x; t) = ¹h(t) + a(t) cos
2¼x

¸
(9.16)
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with respect to the plane y = 0, where ¸ is a constant wavelength, ¹h is the

mean surface height, and a is a time-dependent amplitude of the °uctuation

with respect to mean height. The material occupies the region y ∙ h(x; t)

for all x and z. The remote equi-biaxial stress of magnitude ¾m acts in the

x; z¡plane. The chemical potential Â for this case is given in (8.57).

Assuming that the sinusoidal surface evolves into a sinusoidal surface

of the same wavelength under generalized plane strain conditions, the normal

speed of the evolving surface with respect to the material instantaneously

on it is

vn =
_¹h+ _a cos(2¼x=¸)q

1 + (2¼a=¸)2 sin2(2¼x=¸)
¼ _¹h+ _a cos

2¼x

¸
: (9.17)

The speed is positive locally if material is being added there. Substitution

of the normal surface speed vn and chemical potential Â for this particular

case into the general relationship (9.9) governing surface di®usion yields the

ordinary di®erential equations

_¹h(t) = 0 ; _a(t) +
16¼3mS

¸3

∙
¼

¸
°0 ¡ (1 + º)Um

¸
a(t) = 0 (9.18)

for the amplitude and mean height. Conservation of mass implies immedi-

ately that ¹h(t) = 0 in this case. If the second equation is augmented by

an initial condition, say a(0) = a0 > 0, then it is evident that a(t) grows

(decays) exponentially in time if the quantity in square brackets in (9.18) is

negative (positive). If both amplitude and wavelength are rescaled by the

natural length parameter ³ = °0=Um de¯ned in (8.60), then this di®erential

equation reduces to

dâ

dt̂
(t̂) +

16¼3

^̧4

h
¼ ¡ (1 + º)^̧

i
â(t̂) = 0 (9.19)

in nondimensional form, where

â = a=³ ; ^̧ = ¸=³ ; t̂ = mS°0t=³
4 : (9.20)

The quantity

¿ = ³4=mS°0 (9.21)

emerges as a natural time parameter for the evolution process.

The sinusoidal surface is stable or unstable, depending on whether â

grows inde¯nitely with time or decays continuously with time. The value of

the wavelength ¸ discriminating between these two possibilities is that value
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which reduces the quantity in square brackets in (9.19) to zero; this is pre-

cisely the critical wavelength ¸cr de¯ned in (8.61) on the basis of equilibrium

considerations.

It is evident from the evolution equation (9.19) that the rate of growth

is zero when ¸ = ¸cr, and it is also zero in the limit as ¸=¸cr ! 1. Because

the growth rate is everywhere positive between these extremes, it must have

an absolute maximum in value for some ¯nite wavelength larger than ¸cr.

Examination of the coe±cient of â in (9.19) leads immediately to the con-

clusion that the growth rate is maximum when ^̧ = 4¼=3(1 + º). If the

corresponding value of wavelength ¸ is denoted by ¸gr, then this fastest-

growing wavelength is (Srolovitz 1989)

¸gr =
4
3¸cr : (9.22)

Study of the evolution of this same material system under conditions

of condensation{evaporation for the case when Âv = Um leads to the same

evolution equations for amplitude and mean height, except that the char-

acteristic time for amplitude evolution is determined by di®erent material

parameters. Derivation of these evolution equations is left as an exercise. If

Âv > Um, then the sinusoidal °uctuation in surface shape is superimposed

on the mean surface speed _¹h = ¡cS(Um ¡ Âv).

9.2.2 Example: The characteristic time

The characteristic time de¯ned in (9.21) establishes a time scale for surface evo-
lution of the kind discussed in the preceding section. Its de¯nition depends on a
number of parameter values that are not measurable and, therefore, are not known
with any certainty. To get some idea of its magnitude, estimate the value of the
characteristic time for the particular case of a Si surface with a mismatch strain
of ²m = 0:008 at a temperature of T = 600 ±C. Base the estimate on the unit
cell dimension of a = 0:5431 nm for the diamond cubic crystal structure, and on
the following values of macroscopic material parameters: an elastic modulus of
E = 130GPa, a Poisson ratio of º = 0:25, a mass density of ½ = 2328 kg/m2, and
the surface energy of °0 = 2J/m2. Assume that 10% of the surface atoms are
involved in the mass transport process at any instant so that cda

2 = 0:1.

Solution:

By combining (8.60) and (9.7) with (9.21), the expression for the character-
istic time becomes

¿ =

µ
°0

M²2m

¶4
2kT

°0a2cd!d−2
eEd=kT : (9.23)

The biaxial modulus is given by M = E=(1 ¡ º) = 173GPa and °0 is given, so
the characteristic length in this case is ³ = 180 nm. The atomic volume − of the
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diamond cubic crystal structure is related to the unit cell dimension a by − = a3=8.
As in Section 9.1.1, vibrational frequency !d can be estimated by assuming that an
atom vibrates as a simple harmonic oscillator with the elastic sti®ness estimated to
be E−1=3 and the oscillator mass estimated to be ½−, which implies that

!d =
1

2¼−1=3

s
E

½
= 3:75£ 1012 cycles/s : (9.24)

The height of the di®usion barrier Ed is assumed to be 30% of the binding energy Ef ,
which is given roughly by °0−

2=3. Finally, the thermal energy kT is 1:21£ 10¡20 J

at 600 ±C. Combining these estimates of the parameters involved, it follows that

the characteristic time is estimated to be ¿ = 5:03 s. The result implies that an

initial shape imperfection on an unstable surface can grow to a size e times larger

than the initial size in a few seconds for this system.

9.2.3 General surface perturbations

Building on the results obtained in Sections 8.5.2 and 8.5.3, it would be

possible at this point to treat the evolution of the doubly periodic surface

perturbation directly, in much the same way as was done in Section 9.2.1.

Alternatively, this case can be viewed as a special case of general small

amplitude surface perturbations, and this is the point of view adopted here.

In this section, a general solution for evolving surface shape under conditions

of surface di®usion is derived. This solution is obviously restricted by the

condition that the slope is small in magnitude everywhere. It is also limited

to surface shapes having certain re°ective symmetries but this is not an

essential restriction. Rather, it is adopted because a general solution for

evolving surface shape can be obtained in a far more transparent way than if

it were not invoked. The restriction excludes no general features of behavior,

and the way to relax it becomes evident in the course of the analysis. The

approach has been generalized by Kim et al. (1999) in the study of chemical

etching of surfaces.

Once again, suppose that the surface SI is de¯ned in a rectangular

coordinate system with reference to a °at surface with the interior coordi-

nates x; z. The y¡direction is normal to this °at reference surface. The

nearly °at material surface can be speci¯ed by giving its y¡coordinate as a

function of position x; z at any time t, say

y = h(x; z; t) : (9.25)
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The restriction to small amplitude °uctuations requires thatq
h;2x+h;2z ¿ 1 (9.26)

for all x; z and t. If this is the case, then all surface ¯elds can be regarded

as functions of x, z and t, the surface normal speed vn is approximately h;t,

the surface gradient operator rS is the two-dimensional gradient operator

r in the x; z-plane, and the curvature ¯eld ∙ is approximately r2h. With

these approximations, the surface evolution equation (9.9) becomes

h;t (x; z; t) = mSr2
h
U(x; z; t)¡ °0r2h(x; z; t)

i
(9.27)

with US = °0 as noted above.

The block of material is subjected to an equi-biaxial remote traction

so that, when the surface is perfectly °at with h(x; z; t) ´ 0, the state of

stress everywhere is ¾xx = ¾zz = ¾m and other stress components are zero.

The equi-biaxial strain corresponding to the stress is ²m = ¾m=M . This

simple state of stress and deformation is then perturbed by formation of

surface waviness. The perturbed stress ¯eld determines the surface strain

energy density U(x; z; t) in (9.27).

A procedure by which the perturbed stress ¯eld can be determined has

already been described for both plane strain deformation and general three-

dimensional deformation in Chapter 8, all subject to the limitation of small

amplitude surface °uctuations. To lowest order in the surface °uctuation,

the strain energy density disbribution over the surface is

U(x; z; t) = Um + U (h)(x; z; t) (9.28)

where the second term on the right side of (9.28) is given in (8.88). Therefore,

the dependence of the ¯eld U(x; z; t) in (9.27) on the surface shape h(x; z; t)

is already in hand. It is linear in h(x; z; t) and, at each point x; z on the

surface, it depends on the behavior of h over the entire surface. In spite of

this apparent complexity, solutions can be found for some cases of interest.

Based on experience with the simpler case of sinusoidal perturbations,

it is again convenient to reduce the governing equation (9.27) to a nondi-

mensional form by introducing the natural length scale ³ and the natural

time scale ¿ , similar to (9.20). Nondimensional variables are again denoted

by a superposed hat. The normalizations that are incorporated are

Û =
U

Um
; x̂ =

x

³
; ĥ =

h

³
; t̂ =

mS°0t

³4
(9.29)

and similarly for other length parameters. In terms of these parameters, the
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surface evolution equation (9.27) reduces to

@ĥ

@t̂
(x̂; ẑ; t̂) = r̂2

h
Û(x̂; ẑ; t̂)¡ r̂2ĥ(x̂; ẑ; t̂)

i
: (9.30)

The goal of the analysis is to determine solutions of this equation for various

choices of initial surface shape

ĥ(x̂; ẑ; 0) = ĥI(x̂; ẑ) (9.31)

and possibly for speci¯ed asymptotic behavior of ĥ(x̂; ẑ; t̂) as
p
x̂2 + ẑ2 ! 1;

such behavior must be dictated by physical features in any speci¯c case.

Because of the form of U (h) as a convolution integral, the govern-

ing equation is readily solved by means of Fourier transforms. If attention

is restricted to surface shapes with the re°ective symmetry prescribed by

h(x;¡z; t) = h(¡x; z; t) = h(x; z; t), then the real Fourier cosine transform

can be used; this feature accounts for the relative transparency of the steps

that follow. Suppose that H(®; ¯; t̂) is the time-dependent double Fourier

cosine transform of ĥ(x̂; ẑ; t̂) in both x and z, that is,

H(®; ¯; t̂) =
4

¼2

Z ∞
0

Z ∞
0

ĥ(x̂; ẑ; t̂) cos®x̂ cos¯ẑ dx̂dẑ (9.32)

with transform parameters ® and ¯ corresponding to the physical coordi-

nates x and z, respectively. The result of applying this transform to each

term of the governing equation is the ordinary di®erential equation

@H

@t̂
(®; ¯; t̂) = ¡(®2 + ¯2)3/2

h
(®2 + ¯2)1/2 ¡ 2(1 + º)

i
H(®; ¯; t̂) : (9.33)

The solution of this di®erential equation, which depends parametrically on

the transform variables ® and ¯, is

H(®; ¯; t̂) = HI(®; ¯)e
−ω(α,β)t̂ (9.34)

where

!(®; ¯) = (®2 + ¯2)3/2
h
(®2 + ¯2)1/2 ¡ 2(1 + º)

i
(9.35)

and HI(®; ¯) is the double cosine transform of the initial shape ĥI(x̂; ẑ).

Thus, the solution of the governing equation (9.27) subject to the initial

condition (9.31) is obtained as (Freund 1995a)

ĥ(x̂; ẑ; t̂) =

Z ∞
0

Z ∞
0

HI(®; ¯)e
−ω(α,β)t̂ cos®x̂ cos¯ẑ d®d¯ : (9.36)

As is usual in the application of integral transform methods to solve bound-

ary value problems, it is tacitly assumed that all the integrals which have
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Fig. 9.2. Graph of the function !(®; ¯) de¯ned in (9.35). This function appears in
the exponent of the general solution for surface evolution given in (9.36), expressed
as a Fourier integral. Adapted from Freund (1995a).

been written actually converge. This must be con¯rmed in any particu-

lar case before the solution implied by (9.36) can be accepted as an actual

solution.

A feature that is central to the behavior of the solution ĥ in (9.36) is

the form of !(®; ¯) in the exponent of the integrand. If !(®; ¯) < 0 for any

part of the range of ® and ¯ in transform space, then a solution may grow

without bound as t̂ ! 1. Exploiting the fact that this function depends on

® and ¯ only through the combination ®2+¯2, it is plotted in Figure 9.2 in

the form of !(®; ¯)=16(1+ º)4 versus
p
®2 + ¯2=2(1+ º) where it is evident

that ! < 0 for 0 <
p
®2 + ¯2 < 2(1 + º) and that the local minimum in !

occurs for
p
®2 + ¯2 = 3(1 + º)=2. The implication of these observations is

that, if any portion of the spectrum HI(®; ¯) of the initial shape falls within

the region where ! < 0, than that portion will grow inde¯nitely large as

time goes on. The way in which this occurs depends on the details of any

particular case, and some illustrative cases are considered in the sections

that follow.

For example, study of the doubly periodic function

hI(x; z) = h0 cos
2¼x

¸x
cos

2¼z

¸z
; (9.37)

where ¸x > 0 and ¸z > 0 are wavelengths in surface topography in the x
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and z directions, and h0 > 0 is an amplitude that is small compared to

either wavelength leads once again to the stability condition given in (8.98)

and provides a basis for determining the wavelength for which the amplitude

grows most rapidly. The case of an isolated surface mound or shallow island

is considered in the next subsection.

9.2.4 An isolated surface mound

Suppose that the initial surface shape is a shallow mound, circular in plan

view, that is described by the rotationally symmetric function

hI(x; z) = h0e
−(x2+z2)/a2 ; (9.38)

where a > 0 is a length parameter and h0 > 0 is an amplitude which is

small compared to a. A cross-section of the shape represented by (9.38) is

included in Figure 9.3. The surface is essentially °at everywhere outside of

a circle of radius about 2a in the x; z¡plane, which is centered at the origin.

Within this circular region, there is a smooth, rotationally symmetric mound

of material with center height of h0. Given this initial shape, the goal is to

determine h(x; z; t) for t > 0.

The Fourier transform of the initial shape in normalized variables is

HI(®; ¯) =
â2ĥ0
¼

; e−
1
4
â2(α2+β2) (9.39)

where â = a=³. The transient solution for surface shape is then given by

(9.36) and it is restricted to be rotationally symmetric. The fact that ®

and ¯ appear in the transformed solution only in the combination ®2 + ¯2

suggests a transformation from rectangular coordinates ® and ¯ to polar

coordinates, say ½ and ', in the transformed plane according to

® = ½ cos' ; ¯ = ½ sin' : (9.40)

A comparable coordinate transformation to polar coordinates, say r̂ and µ,

in the physical plane is

x̂ = r̂ cos µ ; ẑ = r̂ sin µ : (9.41)

The cosine factors in the integrand are then rewritten in terms of polar

coordinates by means of the identity

cos®x̂ cos¯ẑ = 1
2 cos [r̂½ cos(µ + ')] + 1

2 cos [r̂½ cos(µ ¡ ')]

= J0(r̂½) + 2
∞X
k=1

(¡1)kJ2k(r̂½) cos 2kµ cos 2k' ; (9.42)



9.2 Evolution of small surface perturbations 713

0 1 2 3 4 5
r / ζ - normalized radial distance

0

5

10

15

^
0.5

1.0

h
 / 

h
0 

- 
n

o
rm

al
iz

ed
 s

u
rf

ac
e 

h
ei

g
h

t

t = 0.0

a = agr

Fig. 9.3. The initial cross-sectional pro¯le t̂ = 0:0 of an isolated surface mound,
as given by (9.38), and the shapes of the mound resulting from mass transport
by surface di®usion at two later times are illustrated for the case when a = agr,

which exhibits the most rapid growth. The pro¯les for times t̂ = 0:5 and 1.0 were
determined by numerical evaluation of (9.43).

where Jm is the ordinary Bessel function of the ¯rst kind of integer order m.

The area element transforms as d® d¯ ! ½ d½ d' with the integration range

becoming 0 < ½ < 1, 0 < ' < ¼=2.

The only place in the integrand where ' appears is through the factor

cos 2k' in each term of the in¯nite series in (9.42). The integral of each

such term over ' is zero. Consequently, the solution is independent of µ, as

was expected, and it takes the form

ĥ(r̂; t̂) = ĥ0
â2

2

Z ∞
0

e−
1
4
ρ2â2−ω(ρ)t̂J0(r̂½) ½ d½ : (9.43)

Under the change of variables (9.40), !(®; ¯) is a function of only a single

variable ½. Nevertheless, the same symbol !(½) is again used to represent

this function of ½, with the intended independent variables being evident

from the context

In general, the integral (9.43) must be evaluated numerically for given

values of r̂ and t̂, which is a straightforward task. However, some useful

information can be obtained in closed form by considering the initial rate of

change of island height at its center, that is, @ĥ=@t̂ for r̂ = 0 and t̂ ! 0+.
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The result of evaluating the integral in (9.43) for this special case is

@ĥ

@t̂
(0; 0) = ĥ0

12
p
¼â(1 + º)¡ 32

â4
: (9.44)

From this result, a critical value of the size parameter a, which is propor-

tional to the characteristic dimension ³ of the system, can be identi¯ed as

a0 =
8³

3
p
¼(1 + º)

=
8°0

3
p
¼(1 + º)Um

: (9.45)

For a < a0, the height of the island initially diminishes from h0 whereas, for

a > a0, the height initially increases. All other things being equal, the value

of a for which the height has the greatest rate of growth, is

agr =
32³

9
p
¼(1 + º)

=
32°0

9
p
¼(1 + º)Um

: (9.46)

Azimuthal sections of the surface shapes determined from (9.43) at nor-

malized times t̂ = 0, 0.5 and 1.0 and for values of the size parameter of

â = agr=2, a = agr and a = 2agr are shown in Figure 9.3; Poisson's ratio was

taken to be º = 1=4 in the calcuations.

Because the Fourier transform of the initial shape includes all possible

wavelengths to some degree, including contributions for which (®2+¯2)1/2 <

2(1 + º), the height of the island eventually grows larger for any value of a.

This is illustrated in Figure 9.4 which shows ĥ(0; t̂)=ĥ0 versus t̂ for values

of a which are equal to 1
4 ;
1
2 ; 1; 2; 4 times agr. It is evident from this ¯gure

that islands within a fairly narrow size range near agr grow much more

rapidly than islands which are signi¯cantly larger or smaller. All of these

observations are based on behavior of small amplitude °uctuations in surface

shape, and there is no reason to expect this behavior to persist far into the

regime of large amplitude °uctuations. Finally, other simple surface shapes,

such as a pair of mounds in close proximity, can be analyzed in the same

way as long as surface slopes are small. If this is not the case, then a

computational approach must be developed as a means of studying surface

evolution (Kukta and Freund 1997).

9.3 A variational approach to surface evolution

A partial di®erential equation governing the evolution of the surface of a

strained elastic solid due to surface di®usion appears in (9.9). Given the in-

stantaneous elastic state of the deformed solid and the instantaneous shape

of the evolving surface, this partial di®erential equation speci¯es the rate
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Fig. 9.4. The height of the surface of the center of the mound above the reference
plane, normalized by the initial height, versus normalized time for several values
of the size parameter a. As was anticipated in (9.46), most rapid growth of the
mound occurs for the case when a = agr. These results were obtained by evaluation
of (9.43) for r = 0.

of change of surface shape. The principal assumption underlying the equa-

tion is that the system free energy is the sum of elastic strain energy and

surface energy. The equation applies for general shape changes and for gen-

eral anisotropic elastic properties and/or surface energy density. When the

shape change is only a small perturbation from a simple smooth shape and

the surface energy density is constant, the governing equation reduces to a

linear partial di®erential equation along the unperturbed boundary shape;

an illustration of such a linear equation is given by (9.27) for perturbations

of an initially °at free surface.

If the evolving shape itself must be determined over the course of time

as part of the solution, the underlying boundary value problem is no longer

linear. Analysis of surface evolution in such situations must rely on approx-

imate methods, in general. The two most common approaches are: (i) to

determine approximate solutions to the governing partial di®erential equa-

tions by numerical methods and (ii) to express the evolving shape in terms

of a small number of modes, each with its own time-dependent amplitude.

In the former approach, the solution proceeds incrementally. An elasticity
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problem is solved for the con¯guration of ¯xed shape at time t, yielding

the distribution of strain energy density U over the evolving surface. The

surface curvature ∙ is known from the shape and hence the chemical poten-

tial ¯eld Â is known over the surface. Then, during a small time increment

¢t, the surface in the reference con¯guration moves locally in the normal

direction a distance vn¢t where vn is given by (9.9), thereby de¯ning a new

con¯guration to be analyzed in the same way starting at time t + ¢t, and

so on. On the other hand, in the modal approach, the objective is to de-

termine ordinary di®erential equations governing the time evolution of the

mode amplitudes. In fact, this was the approach followed in Section 8.4 for

a cosine mode shape with amplitude a(t).

For either numerical solution of the ¯eld equations by means of the

¯nite element method or determination of a system of ordinary di®erential

equations for modal amplitudes, the existence of a variational statement

or weak form of the ¯eld equations is essential. For the complementary

aspect of the problem concerned with the elastic ¯eld for a ¯xed bound-

ary con¯guration, the powerful minimum potential energy theorem is avail-

able (Fung 1965). The purpose here is to introduce a variational principle

as a basis for describing the rate of shape evolution for a ¯xed shape and a

¯xed elastic ¯eld.

9.3.1 A variational principle for surface flux

The starting point for this development is the expression

_F =

Z
S
Âvn dS (9.47)

for the rate of change of free energy in terms of the surface chemical potential

¯eld Â and the instantaneous normal velocity vn of the evolving free surface;

(9.47) follows from the de¯nition of chemical potential in (8.7) and (8.8).

Recall that, in writing (9.47), it is assumed that the surface S represents the

evolving part of the boundary of the solid, and that there is no exchange of

energy between the deforming solid and its surroundings other than a pos-

sible addition or reduction of material at S. The form of (9.47) motivated

the introduction of the constitutive equation (9.7) relating the local rate of

material transport j over the surface S to the local surface gradient in chem-

ical potential rSÂ. The local surface divergence of mass °ux then prescribes

the rate of normal advance vn of the surface S as a result of conservation of

mass, which is equivalent to conservation of material volume in the reference

con¯guration. These results can be recast into variational form, leading to
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a result that provides the weak form of the governing equations that is the

basis for the variational methods outlined.

Suppose that the mass conservation equation is used to replace vn in

(9.47) by its equivalent form in terms of j. Then, after application of a

vector identity in the integrand,

_F = ¡
Z
S
rS ¢ (Â j) dS +

Z
S
j ¢ rSÂdS : (9.48)

The ¯rst term on the right side of (9.48) is the integral of a divergence

expression, so it can be rewritten as an integral along the bounding curve of

S. The role of this contribution from the bounding curve of S is discussed

further later in this section. However, the value of the contribution is exactly

zero in a number of cases of interest. For example, if S is a closed surface then

it has no bounding curve and the value is zero. If the ¯elds and surface shape

are spatially periodic and if S includes exactly one period of the system, then

the value of the integral is also zero. This follows from the observation that

Â would have the same value on opposite sides of a segment of S in this case

due to periodicity, and the mass °ux out of S on one side would exactly

cancel the mass °ux out on the opposite side for the same reason. Similarly,

if the surface S extends to inde¯nitely remote regions compared to the size

of the ¯eld of view, and if the evolving portion of S is small enough so that

the magnitude of Â j decays appropriately with distance into remote regions,

the contribution to _F from the bounding curve of S will vanish even though

the length of that bounding curve may become inde¯nitely large. Thus, this

integral over S of a divergence expression is neglected here and elsewhere in

this development. If the constitutive equation (9.7) is used to replace the

chemical potential gradient rSÂ in favor of j in (9.48),

_F = ¡ 1

mS

Z
S
j ¢ j dS < 0 : (9.49)

This result implies that any choice of surface mass °ux j on S derived from

a chemical potential results in a reduction in free energy, provided only that

mS > 0. This as an essential feature of spontaneous surface evolution, and

the result also provides an important ingredient for a variational statement.

Next, suppose that j and Â in (9.7) are the actual mass °ux ¯eld and

chemical potential ¯eld on S. Furthermore, suppose that q is any possible

mass °ux ¯eld on S, that is, it shares any properties of periodicity, smooth-

ness and remote decay characteristics with j, but is otherwise arbitrary.

Form the inner product of each side of (9.7) with q and then integrate each



718 The role of stress in mass transport

side over S. The result can be written in the formZ
S
ÂrS ¢ q dS ¡ 1

mS

Z
S
j ¢ q dS = 0 (9.50)

where an integral of a divergence expression has again been set equal to

zero.

The two results in (9.49) and (9.50) provide the basis for an extremum

principle which can be expressed as either a minimum principle or a maxi-

mum principle; the two forms are equivalent and the latter option is adopted

here. For a given surface shape and elastic ¯eld, de¯ne a functional over the

range of all trial surface °ux ¯elds j∗ as

©[ j∗] =
Z
S

∙
ÂrS ¢ j∗ ¡ 1

2mS
j∗ ¢ j∗

¸
dS ; (9.51)

where Â is the actual chemical potential of the state being considered at

the present instant. Then (9.50) implies that this functional is stationary

under arbitrary variations of surface °ux j∗ when the °ux ¯eld is the actual

¯eld, that is, when j∗ = j. This follows immediately from (9.50) if q is

interpreted as the perturbation in °ux ±j∗ in the usual variational notation.

The arbitrariness of ±j∗ and the fundamental theorem of the calculus of

variations require that j must satisfy (9.7) pointwise on S. The fact that

©[ j∗] is not only stationary when j∗ = j but is also an absolute maximum

under variations in j∗ follows from consideration of the quantity ©[j∗+±j∗]¡
©[j∗] in light of the requirement that mS > 0.

Next, a situation in which the ¯rst term on the right side of (9.48)

comes into play is considered brie°y. The situation is depicted in Fig-

ure 9.5. The surface S consists of two smooth surface segments, denoted

by S1 and S2, which intersect along the space curve C. The chemical poten-

tial ¯elds Â(1) and Â(2) exist over the surfaces S1 and S2, respectively, with

the corresponding surface mass °ux vectors j(1) and j(2) being related to the

corresponding chemical potentials through the kinetic relations

j(k) = ¡mSkrSÂ(k) (9.52)

over the surfaces. On either surface, the mass °ux is a vector ¯eld which,

at any surface point, lies in the tangent plane to the surface at that point.

The local mass °ux out of S1 at a point on C is a component of the

limiting value of j(1) at that point on C from within S1. This component is

determined by the properties that it must be normal to C, must be directed

away from S1 and must lie in the tangent plane to S1 at that point. This
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Fig. 9.5. Schematic diagram of a surface consisting of two smooth segments S1

and S2 joined along a space curve C. The component of surface mass °ux along

C labeled j
(k)
C represents the rate of mass loss from surface Sk due to transport

through C for either k = 1 or 2.

mass °ux is labeled j
(1)
C in Figure 9.5. Similarly, j

(2)
C is the mass °ux out of

S2 through C. If no material is gained or lost along C, conservation of mass

requires that

j
(1)
C + j

(2)
C = 0 : (9.53)

The limiting values of chemical potential on C from within S1 and S2 are

di®erent, in general, and this di®erence can be assumed to drive mass °ow

past C according to a constitutive equation which might have the form

j
(1)
C = ¡mC

³
Â
(2)
C ¡ Â

(1)
C

´
; (9.54)

where mC is a mobility parameter. In this case, the functional

©[ j∗] =
Z
S

∙
ÂrS ¢ j∗ ¡ 1

2mS
j∗ ¢ j∗

¸
dS ¡

Z
C

1

2mC

³
j
(1)
C

´2
dC (9.55)

replaces the functional de¯ned in (9.51) in the statement of the variational

principle. In this compact form of the functional, it is presumed that the

surface S is divided into the parts S1 and S2, and that the appropriate form

of chemical potential and surface mobility is selected for each part. If mC is

large compared to either mS1 or mS2 divided by a typical linear dimension

of the body, then the in°uence of the added term in (9.55) can be ignored.

A variational principle equivalent to (9.51) expressed in terms of a

functional of the scalar normal velocity ¯eld on S, rather than the vector

surface transport ¯eld, can be constructed in the same way. The functional
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in this case is

ª[v∗n] =
Z
S

h
mSv

∗
nr2SÂ¡ 1

2v
∗
n
2
i
dS : (9.56)

For a speci¯ed shape of the surface S and a prescribed chemical potential

¯eld Â over S, this functional is maximum when the trial velocity ¯eld v∗n
is in fact that actual velocity ¯eld vn de¯ned by (9.9). The variational

approach in terms of surface °ux was introduced in a numerical study of

grain boundary transport and cavitation by Needleman and Rice (1980),

for which the grain boundary chemical potential is given by (8.14). It was

introduced in the way as described here by Suo (1997) and Zhang et al.

(1999) as a basis for study of surface evolution.

9.3.2 Application to second order surface perturbation

In Section 8.4.4, the higher order perturbation of the shape of the surface

of the biaxially stressed elastic solid was considered under two-dimensional

conditions of generalized plane strain. The material response is linear in this

case, but the boundary conditions of vanishing traction on the perturbed

surface were expanded to second-order in the small slope of the perturbed

surface shape given by (8.75). These boundary conditions are given in (8.74).

The appearance of the second order contributions in the boundary condi-

tions dictates the introduction of a second term in the assumed surface

shape which is the ¯rst harmonic of the dominant sinusoidal term, as seen

in (8.75). The generalized forces Q1 and Q2 that are work conjugate to

the mode amplitudes a1 and a2, respectively, were determined; they appear

in (8.81). The variational principle introduced in Section 9.3.1 provides a

means for determining the nonlinear system of ordinary di®erential equa-

tions that govern a1(t) and a2(t). These equations are determined in this

section, and a numerical solution is presented for a particular case.

The surface °ux vector j∗ appearing in the functional de¯ned in (9.51)

is completely determined by the amplitudes ak(t) appearing in (8.75). The

functional has the form

©[ _a1; _a2] = Qk(a1; a2) _ak ¡ 1

2mS

Z
S
j∗ ¢ j∗ ds : (9.57)

The task remaining is to write the dissipation term on the right side of this

expression in terms of the amplitudes ak and the rates _ak.

The normal speed of the surface can be expressed in terms of the

time-dependent surface shape h(x; t) given in (8.75) as

vn(x; t) = h;t
³
1¡ 1

2h;
2
x

´
; (9.58)
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accurate to second-order in the small slope. If j(x; t) is the magnitude of

the surface mass °ux along the wavy surface, then vn = ¡@j=@s. If this

relationship is expressed to second-order in surface slope, it reduces to the

simple form

h;t= ¡j;x : (9.59)

The °ux itself is then readily determined by elementary integration to yield

j(x; t) = ¡ _a1(t)
¸

2¼
sin

2¼x

¸
¡ _a2

¸

4¼
sin

4¼x

¸
: (9.60)

This expression is then substituted into the last term in (9.57) according to

the identi¯cation j∗¢j∗ = j(x; t)2, and the integral is evaluated for the interval

0 ∙ x ∙ ¸, retaining terms of second-order in the small slope in changing

the variable of integration from arclength s to rectangular coordinate x.

Di®erential equations for ak(t) are then obtained by imposing the

requirement that the optimal choice of the amplitudes is that which renders

the functional a maximum, that is, the optimal choice is de¯ned by

@©

@ _ak
[ _a1; _a2] = 0 ; k = 1; 2 : (9.61)

The resulting equations can be written compactly in terms of normalized

time t̂ and normalized amplitudes âk de¯ned by

t̂ = mSUSt=¸
4
cr ; âk = ak=¸ (9.62)

for constant surface energy density US and surface mobility mS. The natural

length parameter ¸cr is de¯ned in (8.61). In terms of these quantities, the

di®erential equations are

1
16

h
2¼−2 + 3â21

i
âI1 +

1
4 â1â2â

I
2 =

¸4cr(1 + º)4

¸4¼4US
Q1(â1; â2)

1
4 â1â2â

I
1 +

1
32

h
¼−2 + â21

i
âI2 =

¸4cr(1 + º)4

¸4¼4US
Q2(â1; â2) (9.63)

where the prime denotes di®erentiation with respect to t̂. If the amplitude

a2 is set equal to zero for the moment and the di®erential equation (9.63) is

linearized for small a1, it reduces to

âI1 =
16(1 + º)4

¼2
¸4cr
¸4

µ
¸

¸cr
¡ 1

¶
â1 : (9.64)

The amplitude â1 decays in time according to this equation from its initial

value if ¸ < ¸cr, whereas it grows without bound if ¸ > ¸cr, as expected.

Furthermore, the greatest rate of amplitude growth occurs for ¸ = 4
3¸cr,
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Fig. 9.6. Evolution of normalized amplitudes a1(t)=¸ and a2(t)=¸ according to the
di®erential equation (9.63). The dashed curve is the solution of the linearized
di®erential equation (9.63)1 for a1(t)=¸. The normalized time scale is (1 + º)4t̂=¼4

where t̂ is de¯ned in (9.62).

as anticipated in in the results of the linearized approach; see (9.22). In

retrospect, this result on rate of growth was the basis for choosing the value

of 43 for ¸=¸cr in doing numerical calculations in Section 8.4.4.

The nonlinear coupled ordinary di®erential equations (9.63) are read-

ily solved numerically. For the case when ¸ = 4
3¸cr, â1(0) = 0:01 and â2 = 0,

numerical results are shown in Figure 9.6. The solid lines represent a1(t)=¸

and a2(t)=¸ as indicated; the dashed line represents the solution of the lin-

ear equation (9.64) for a1(t)¸ for the same values of system parameters. For

very small normalized time on the scale of the plot, the system response is

consistent with the linear theory. The amplitude a1(t)¸ begins to increase

exponentially, following the solution of the linear problem which is shown

by the dashed curve in the ¯gure; the ¯rst harmonic amplitude remains es-

sentially zero during this time. After the amplitude a1(t)=¸ becomes large

enough to bring second order e®ects into play, the response diverges dramat-

ically from linear behavior, mainly due to the geometry dependence of the

driving forces. After a relatively long time, the solution approaches an equi-

librium state that corresponds to the intersection of the two curves Q1 = 0

and Q2 = 0 in Figure 8.15. The trajectory of the con¯guration in the plane

of a2 and a1 passes through the crescent shaped region of Figure 8.15 as
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anticipated in Section 8.4.4, starting from a1(0)=¸ = 0:02, a2(0)=¸ = 0 and

terminating at a1(1)=¸ = 0:11, a2(1)=¸ = ¡0:025.

Although the development in this section is nonlinear, it is su±ciently

transparent to reveal several signi¯cant features of behavior. For one thing,

it provides quantitative information on the limit to the range of linear be-

havior, as illustrated in Figure 9.6. Secondly, the departure in surface shape

from a simple sinusoidal to a morphology with sharper valleys and °atter

peaks emerges. Finally, the results illustrate a situation in which a system

that is globally unstable from the point of view of linear perturbation evolves

to a nearby stable equilibrium con¯guration according to the nonlinear for-

mulation. The general case of evolution of the periodic surface shape under

plane strain conditions, as governed by (9.9) but without restriction on the

magnitude of accessible surface slopes, must be analyzed numerically. This

has been done by means of di®erent methods but with consistent results by

Chiu and Gao (1994), Yang and Srolovitz (1994) and Spencer and Meiron

(1994). The numerical solutions showed that the valleys in the periodic

surface become narrower or sharper as time goes on, eventually becoming

cusp-like as the surface tangent line becomes nearly perpendicular to the

original nominally °at surface orientation.

9.4 Growth of islands with stepped surfaces

The description of surface energy anisotropy for stepped or vicinal crystal-

lographic surfaces was outlined in Section 8.8.3. Key factors in determining

the di®erence in surface energy between a vicinal surface and that of the

nearby high symmetry surface are the step formation energy and the in-

teraction of steps through their long-range elastic ¯elds. These factors are

represented by the parameters ¯1 and ¯3 in the expression (8.138) for de-

pendence of surface energy density on angular orientation with respect to

the high symmetry orientation. Values of these parameters for particular

materials to be used in a continuum model must be inferred from obser-

vations or estimated through atomistic simulations. Once these values are

known, no additional parameters are needed to develop a continuum picture

of relaxation. For unstrained crystals, the surface energy of a vicinal surface

is invariably higher than that of the nearby high symmetry surface.

Because values of step formation energy ¯1 depend on changes in

lengths of chemical bonds, it is likely that the values will be sensitive to

imposed background strain in the crystal. This point was pursued in Sec-

tion 8.8.3 where it was demonstrated that there is a potential for the step

formation energy to become negative for strain of one sign or the other,
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if that strain is su±ciently large in magnitude. This di®erence has im-

portant rami¯cations for island formation and evolution. It was shown in

Section 8.9.3 that a positive step formation energy has a strong stabilizing

e®ect on surfaces in atomically °at, high symmetry orientations, thereby

overriding the type of surface instability in strained materials discussed in

Section 8.4.1 for isotropic surface energies. An incipient island, if it is to

form at all in this case, must overcome a nucleation barrier. However, under

conditions for which the step formation energy is negative due to strain, the

surface energy has a destabilizing in°uence and islands can form sponta-

neously from strained deposits on a surface of high symmetry orientation.

The purpose in this section is to illustrate island formation and evolu-

tion under circumstances in which strain destabilizes the growth surface, fol-

lowing the work of Shenoy and Freund (2002). This is approached by adopt-

ing the description of surface energy developed throughout Section 8.8.3,

incorporating it into the representation of free energy in Section 8.8.1, and

applying the variational principle of Section 9.3 to solve for the evolving

surface pro¯les as seemingly faceted islands emerge.

9.4.1 Free energy change

The analysis is based on a physical system consisting of an isotropic elas-

tic half-space y ∙ 0 onto which a mismatched isotropic elastic material is

deposited at certain °ux rate f starting at time t = 0. This °ux, which is

assumed to be constant, has physical dimensions of volume per unit area

per unit time. As time increases, the mean deposited ¯lm thickness is ft.

The analysis is limited to two-dimensional con¯gurations with all ¯elds be-

ing uniform in the z¡direction, but this is not an essential restriction. The

pro¯le of the material surface at any time is y = h(x; t). No features of be-

havior are precluded by limiting consideration to surfaces inclined by small

angles from the growth surface, so it is assumed throughout that jh;xj ¿ 1

for all x and t.

The deposited material is assumed to have an equi-biaxial elastic mis-

match ²m in the plane of the interface with respect to the substrate, and

the elastic constants of the ¯lm are taken to be the same as those of the

substrate. The total stress (strain) at any material point is the sum of the

mismatch stress (strain), which is zero in the substrate, and a contribution

due to change in shape of the ¯lm surface, that is,

¾xx = ¾
(h)
xx + ¾m ; ¾yy = ¾

(h)
yy ; ¾xy = ¾

(h)
xy
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²xx = ²
(h)
xx + ²m ; ²yy = ²

(h)
yy ¡ 2º

1¡ º
²m ; ²xy = ²

(h)
xy ; (9.65)

where it is understood that ¾m and ²m vanish for y ∙ 0. To ¯rst order in

surface slope, the components of the surface normal vector ni are nx = ¡h;x,

ny = 1 and of tangent vector mi are mx = 1, my = h;x.

The surface energy density for small slope is adapted from (8.141) as

US = (°0 + ¿0²m) +
³
¯1 + ^̄

1²m
´
jh;xj+ ¯3jh;xj3 ; (9.66)

where °0 is the surface energy density of the high symmetry surface in the

absence of strain, ¿0 is the surface stress of the high symmetry surface, ¯1 is

the step formation energy on the vicinal surface in the absence of strain, ^̄1 is

the sensitivity of step formation energy to strain and ¯3 represents the step

interaction energy. The contribution proportional to surface slope raised to

the third power is the dominant factor limiting step density; even though

this is a higher order contribution to the surface energy, it is essential that

this term be retained even when considering the small slope approximation

because it is the dominant e®ect resisting slope increase; linearization would

eliminate this important physical e®ect. The term independent of slope

does not enter into the description of surface evolution. The surface stress

for small slope is

¿ = ¿0 + ^̄
1jh;xj : (9.67)

With these small slope approximations made explicit, the traction

boundary conditions (8.132) on the evolving surface can be written in terms

of surface shape and system parameters as

¾(h)xy = ¾mh;x+^̄
1Sgn[h;x ]h;xx´ px ; ¾(h)yy = ¿0h;xx´ py ; (9.68)

where Sgn[ ¢ ] denotes the algebraic sign of its argument. The physical in-

terpretation of the contributions to these boundary conditions is relatively

straightforward. The ¯rst term in (9.68) is necessary to negate the trac-

tion induced on the growth surface by the elastic mismatch ¯eld. As is to

be expected for a stepped surface, the remaining terms in the boundary

traction are proportional to the surface curvature h;xx. The surface slope

arises from a distribution of surface steps, and the in°uence of these steps

is captured in the continuum model by representation as a distribution of

dipoles. A spatially uniform distribution of surface dipoles corresponding to

h;xx= 0 has no resultant force locally, whereas a nonuniform dipole distrib-

ution does give rise to a local force distribution that is proportional to the

local curvature.

The di®erence between the value of total free energy F of the system
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with a wavy surface and the corresponding value for a °at surface at the

same time t, say F0, is then given as a functional of the surface shape by

F(t) = F0(t) +
Z
SI

h³
¯1 + ^̄

1²m
´
jh;x (x; t)j+ ¯3jh;x (x; t)j3

+1
2

³
px(x; t)u

(h)
x (x; t) + py(x; t)u

(h)
y (x; t)

´i
dx ;(9.69)

where u
(h)
i (x; t) is the equilibrium surface displacement due to application

of the surface traction pi(x; t) for any surface shape. The displacement is

related to the traction through the surface Green's function as established

by the Flamant solution of the theory of elasticity. Consequently, the free

energy can be calculated for any surface shape h(x; t).

9.4.2 Formation and interaction of islands

For surface transport dominated by resistance to di®usion on the terraces of

the stepped surfaces, the surface mass °ux j(x; t) is related to surface chem-

ical potential according to (9.7). In the present instance, the dependence

of the chemical potential on surface orientation is discontinuous at the high

symmetry orientation. As a result, the gradient of the chemical potential

along the surface is strongly singular and direct numerical solution is com-

plicated; Spohn (1993) and Hager and Spohn (1995) have shown that the

evolution can be approached as a free-boundary problem. The variational

principle developed in Section 9.3 provides an attractive alternative as the

basis for numerical analysis of the evolution. It can be used without the need

for an ad hoc regularization of the singularity in chemical potential gradient,

and it can lead to a numerical solution of high accuracy in the form of a

series representation of the surface shape, provided that convergence in time

can be demonstrated.

It is assumed that the surface pro¯le for t > 0 is described by the

¯nite series

h(x; t) =
NhX
k=0

ak(t) cos
2¼kx

¸
(9.70)

within an interval 0 ∙ x ∙ ¸, where the parameter Nh is a speci¯ed integer.

Obviously, the solution is assumed to be spatially periodic with period ¸.

The idea is to select ¸ to be large enough (or, equivalently, to select Nh to

be large enough) to include many incipient islands within the range. The

objective is to understand how these incipient islands grow and interact with

each other over the course of time. The Fourier cosine series is a complete

representation of all moderately smooth symmetric functions in the interval
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0 ∙ x ∙ ¸. The concern in application of the variational approach is the

behavior of ak(t) as t ! 1 for large values of k.

For any surface shape (9.70), the mass °ux distribution is related to

shape change through local mass conservation. The surface mass conserva-

tion requirement is given in (9.8) in the absence of a deposition °ux. In

the present instance, the mass conservation relation is modi¯ed through the

inclusion of deposition °ux, and it takes the form

h;t+j;x= f ; (9.71)

where the small slope approximation vn ¼ h;t has also been incorporated.

In light of (9.70), the surface mass °ux can be determined by means of (9.71)

to be

j(x; t) =
NhX
k=1

_ak(t)
¸

2¼k
sin

2¼kx

¸
: (9.72)

The mean surface height is a0(t) = ft.

A key observation in applying the variational principle is in recognizing

that the ¯rst term on the right side of (9.51) which de¯nes the functional

© is the time rate of change of free energy F . Furthermore, in light of the

explicit spatial dependence of surface mass °ux in the representation (9.72),

the second term in the de¯nition of © can be readily integrated. Recognizing

that the free energy is completely determined by the values of the coe±cients

ak(t), the functional of surface shape © is reduced to an ordinary function

of the time rates of change _ak of the amplitudes representing surface shape

in (9.70), that is,

©( _a1; _a2; : : :) = F(a0; a1; a2; : : :) +
1

2mS

NhX
k=1

¼

k

µ
¸

2¼

¶3
_a2k : (9.73)

The optimum choice of rates _ak is the set that renders © a maximum with

respect to variations in those rates, which leads to a system of nonlinear

ordinary di®erential equations for ak(t) of the form

@©

@ _ak
= 0 ) _ak(t) = ¡mSk

¼

µ
2¼

¸

¶3 @F
@ak

(a0(t); a1(t); : : :) (9.74)

for k = 1; : : : ; Nh. These di®erential equations, augmented by suitable initial

conditions at t = 0, must be integrated numerically. The integration is fairly

straightforward if the mismatch strain ²m is allowed to extend inde¯nitely

into the substrate. On the other hand, it is signi¯cantly more di±cult to

execute if the mismatch strain is restricted to the deposited material only,

that is, if it is restricted to y ¸ 0. In the latter situation, the value of
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¾m must be set to zero for any surface points extending into y < 0. Only

results of calculations in which the substrate is unstrained are included here

(Shenoy and Freund 2002).

The numerical integration of (9.74) was carried out using the fourth-

order Runge{Kutta procedure with adaptive step-size control as described

in detail by Press et al. (1992). The parameters in the continuum description

of the energy were chosen to be ¯1 = 0:03 J/m2, ~̄
1 = 15 J/m2, ¿0 = 1J/m2,

²m = ¡0:01 and ¯3 = 2:86 J/m2. It is assumed that the elastic modulus and

the Poisson's ratio are 1011N/m2 and 0:3, respectively, for both the ¯lm and

substrate materials. For the compressively strained ¯lm, the surface energy

of the ¯lm (sketched schematically in Figure 8.26) attains a minimum when

µ∗ = 0:12, which implies that the sidewalls of the stepped mounds would

evolve naturally toward this angle.

The initial pro¯le of the ¯lm was chosen to be a sinusoid with a

wavelength of ¸ = 400nm and with an amplitude of 0:4 nm; the only non-

vanishing Fourier component amplitudes at t = 0 were a0 and a1. In these

calculations, sixteen Fourier coe±cients were used to represent the surface

shape, so Nh = 16. The evolution of the deposited ¯lm is shown in Fig-

ure 9.7. As the deposition °ux is turned on at t = 0, the material on the

surface quickly gathers into ¯ve stepped mounds with slopes much smaller

than the optimum value of 0:12 as shown in Figure 9.7. The inserts in Fig-

ures 9.7(a)-(c) track the evolution of one of these mounds. As more material

is deposited, the side-walls of the mound being tracked become steeper until

they reach the optimum angles µ = §0:12 in Figure 9.7(c). It can also be

observed that the center of mass of the mound shifts gradually to the right

in going from Figure 9.7(a) to Figure 9.7(c). This shift can be understood

by looking at the interactions between the islands. Since elastic relaxation

is achieved for widely spaced islands, the islands tend to repel each other

(Floro et al. 2000); examples of such interactions were also illustrated in

Figure 8.40. The island in Figure 9.7(a) is located closer to the island on its

left and would therefore tend to shift towards the right via di®usion of atoms

from the side-wall on the left to the one on the right. Once the side-walls of

the islands reach the optimum orientation, they grow in a more or less self-

similar fashion, until they come in contact with their neighbors as shown in

Figure 9.7(c). At this point, self-similar coarsening is initiated, which leads

to a decrease in the fraction of the surface of the substrate covered by the

¯lm, as is evident in Figure 9.7(e). Here there are two islands, with side

walls at µ = §0:12, separated by 50 nm. As more material is deposited,

these further grow in size and, eventually, one of the islands grows at the

expense of the other island as shown in Figure 9.7(f).
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Fig. 9.7. The ¯gure shows a time sequence of surface pro¯les of h(x; t) versus x for
a strained ¯lm with a constant deposition °ux onto a lattice-mismatched substrate.
All the dimensions are in nanometers. The insets in (a)-(c) show the evolution of
the third island from the right. To aid in the comparison of shapes at di®erent
times, the island shape from (a) has been included in (b). Similarly, the island
shapes from (a) and (b) in (c). The slope of the largest island in each of the smaller
insets is indicated.
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The evolution of the ¯lm in the early stages of island growth are in

agreement with the observations of Sutter and Lagally (2000) and Tromp

et al. (2000) on Ge/Si(001). The key result of these experiments is that the

islands evolve as a natural instability without any nucleation barrier. As was

shown in Section 8.9.3, there is no barrier for nucleating stepped islands in

this material system if the strains are compressive. Islands with orientations

below the optimum face orientation lower the energy of the ¯lm and provide

a kinetic pathway for obtaining faceted islands that is free of any nucleation

barrier. This is indeed what is seen in experiments and during early stages of

growth in Figure 9.7(a-c). Furthermore, observations indicate that evolving

islands show crystallographic features from the outset, which implies that

the island surfaces evolve as vicinal surfaces.

It can be seen from Section 8.9 that the energy of the islands is dom-

inated by the surface energy at small island volumes and by the elastic

energy at large volumes. Using the parameters adopted in these calcula-

tions, it can be seen that the crossover between these two regimes takes

place when the base width of the island is about 200{300 nm. When the

island sizes are smaller than this value, the sidewalls are oriented at angles

close to the optimum angle that minimizes the surface energy. With in-

creasing base width, it is known that the islands undergo shape transitions

(Medeiros-Ribeiro et al. (1998), Ross et al. (1999)), where the sidewall angles

change to a steeper orientation, which is usually a combination of low-energy

crystallographic orientations as discussed in Section 8.8. The slope of the

sidewalls of the large islands in Figure 9.7(e) is about 0:15, which is about

25% larger than the optimum slope. This indicates that elastic energy vari-

ations of these larger islands is becoming comparable to the surface energy

variations. There is no fundamental impediment to including additional low

energy surface orientations in order to study steeper sidewall facets. For ex-

ample, these might appear as additional relative minima in the variation of

US(µ) with orientation µ at angles greater in magnitude than µ∗, as shown

in the sketch in Figure 9.8. Pioneering measurements of the dependence

of energies of surfaces of strained crystals on orientation are discussed by

Blakely (1973); such data are central to understanding the evolution of small

crystal structures and this is an area requiring further study.

Island growth behavior of the type described here is typical of the

SiGe/Ge material systems in the presence of compressive mismatch strain

in the deposited ¯lm. Images illustrating the dominance of the surface ori-

entation of about 11 degrees with respect to the growth surface as a result of

the strain-induced surface energy minimum have been shown in Figures 8.12

and 8.38. A particularly distinct hut structure image with nearly perfect
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Fig. 9.8. A schematic of surface energy density versus surface orientation in a single
plane, suggesting the possibility of multiple local minima in the dependence. In this
particular diagram, the minima closest to the reference singular or atomically °at
surface orientation at µ = 0, which is destabilized by strain, are smooth minima
representing stable stepped surfaces. Other singular orientations, represented as
stable in this diagram, occur at larger angular de°ections from the reference surface.
The faces corresponding to combinations of local minima, perhaps some strain-
stabilized vicinal orientations and other stable singular orientations, could coexist
to form the island dome structures discussed in Section 8.9.5.

(105) faces is shown in Figure 9.9 (Williams et al. 2000); the material sys-

tem in this case is Ge/Si(001). The left front edge of the pyramid, where

adjacent f105g faces intersect, appears to have features twice as large as

those on the f105g faces. A possible interpretation is that the faces are

f001g vicinal surfaces with single height steps aligned with h100i directions,
whereas the edge region is a f001g vicinal surface with double-height steps

aligned with a h110i direction (Shenoy et al. 2002). A number of intriguing

images from experiments in the SiGe/Si(001) material system were also re-

ported by Rastelli et al. (2001). In a series of experiments, they deposited

Ge on to Si (001) and, as expected, the deposited Ge evolved into the islands

with quite steep and complicated faces almost immediately. Then, Si was

deposited onto the islanded surface. In the course of deposition of Si, the

islands changed through a sequence of shapes. This presumably occurred

because the Si was absorbed into the islands, thereby reducing the mismatch

strain magnitude which, in turn, increased the role of surface energy relative

to elastic energy. It is also possible that the varying composition in°uenced

the surface energy in ways that are not yet understood.

9.5 Diffusion along interfaces

The role of grain boundary di®usion in stress relaxation in a thin polycrys-

talline ¯lm on a substrate is considered here, as a vehicle for illustrating the
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Fig. 9.9. An island con¯guration observed by scanning tunneling microscopy in
the course of depositing Ge islands on a Si(001) surface. The base of the island
covers an area of 18 £ 18 square nm and the height of the peak above the base is
1:8 nm, and the lateral surfaces are f105g surfaces. Reproduced with permission
from Medeiros-Ribeiro et al. (1998). The island incorporates approximately 6000
atoms.

use of the variational principle for mass °ux. This process, an example of

which is illustrated in Figure 7.28, is rich in physical phenomena and in-

cludes the competition of various nonequilibrium processes to achieve stress

relaxation; only the most rudimentary aspects will be incorporated in the

course of developing an illustration. Those aspects of the relaxation process

that are being overlooked will be noted along the way. More realistic models

have been discussed by Thouless (1993) and Gao et al. (1999). The discus-

sion of grain boundary di®usion is followed by an example of a sigin¯cantly

enhanced di®usion along a deformation band during the application of stress

whereby nanocrystalline particles form locally.

9.5.1 Stress relaxation by grain boundary diffusion

Consider a polycrystalline ¯lm of initial thickness h0 on a substrate. The

state of deformation is assumed to be plane strain. All grains have the

same initial width b0, as indicated in the sketch in Figure 9.10, and to have

relatively large extent in the direction normal to the plane of the sketch.

The grain boundaries are perpendicular to the plane of the ¯lm, and the

con¯guration is periodic in the direction along the ¯lm. The top surfaces of
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Fig. 9.10. Schematic diagram of a polycrystalline thin ¯lm of thickness h on a
substrate. Grains are of width b and the system is periodic in the x¡direction.
Initially, the ¯lm supports a mismatch tensile stress in the direction the interface,
which induces a con¯gurational force tending to drive mass transport from the free
surface into the grain boundaries. The mass °uxes jh along the free surface and jb
along the interface are estimated through the use of the variational principle based
on the functional in (9.51).

the grains are free; the bottom faces are con¯ned to slide along the substrate

surface but are otherwise unconstrained. Any deformation of the substrate

is neglected. Initially, the ¯lm supports a uniaxial extensional elastic strain

²0. This strain will be assumed to be positive to facilitate the discussion,

but the case ²0 < 0 is identical except for the algebraic signs of all ¯rst-

order ¯elds representing physical quantities. The mechanical response of

each grain is assumed to be linearly elastic, for the time being, with plane

strain modulus ¹E.

According to (8.14), the initial tensile stress ¹E²0 acting on the grain

boundary implies a layer of large negative chemical potential. On the free

surface of the ¯lm, on the other hand, the strain energy density is everywhere

positive and the curvature of the surface is zero. Consequently, the chemical

potential is positive and there is a thermodynamic driving force tending to

move material from the free surface and into the grain boundary.

Suppose that a mass transport process actually takes place in response

to this con¯gurational force. Mass °ow along the free surface in the positive

x¡direction is represented by the °ux jh(x; t) and mass °ow along the grain

boundary in the positive y¡direction is represented by jb(y; t). No other

transport processes are active. The objective of this example is to arrive

at estimates of the °uxes by appeal to the functional (9.51) underlying the

variational principle stated earlier in this section.

In constructing an admissible mass °ux ¯eld, it is assumed that the

free surface of the grain remains essentially °at, corresponding to a relatively

high surface energy compared to the interfacial energy of the grain boundary.
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The unstrained ¯lm thickness at time t is h(t), where h(0) = h0. It is also

assumed that the surface °ux is symmetric with respect to the center of the

grain, with the °ux being toward the nearer grain boundary at all points on

the surface. A surface °ux consistent with these characteristics is

jh(x; t) = ¡ _h(t)x : (9.75)

Within each grain boundary, it is assumed that the rate of material addi-

tion to each grain is spatially uniform, which requires the base of the grain

to slide freely along the substrate surface. This is an extreme assumption

that can be overcome in a number of ways by allowing for spatially nonuni-

form deformation. However, the complexity added by taking into account

nonuniform deformation obscures the main points being illustrated, so the

assumption of an unconstrained base remains in place. At the junction of

the grain boundary and the ¯lm-substrate interface, the grain boundary °ux

must vanish. It is also assumed that the grain boundary neither distorts out

of its plane nor migrates along the ¯lm. The unstrained grain width at

time t is b(t), with b(0) = b0. A grain boundary °ux consistent with these

characteristics is

jb(y; t) = ¡_b(t)y : (9.76)

At the junction of the grain boundary and the free surface, mass conservation

requires that the °uxes are related according to

2jh(b=2; t) + jb(h; t) = 0 ; (9.77)

which implies that the unstrained cross-sectional area of each grain b(t)h(t) =

b0h0 remains unchanged.

Under the assumptions adopted, the chemical potentials are spatially

uniform over both the free surface and the grain boundary. The free surface

chemical potential is denoted by Âh(x; t) and is determined according to

(8.8), while the grain boundary chemical potential is denoted by Âb(y; t)

and is determined according to (8.14). In terms of instantaneous grain

dimensions, these are

Âh =
1

2
¹E

µ
²0 ¡ b(t)¡ b0

b0

¶2
; Âb = ¡ ¹E

µ
²0 ¡ b(t)¡ b0

b0

¶
; (9.78)

where the term (b(t) ¡ b0)=b0 is the stress free strain along the ¯lm due to

mass rearrangement.

Finally, the mass °uxes jh and jb are assumed to be related to gradi-

ents in the corresponding chemical potentials according to a transport equa-

tion of the form (9.7) with mobility parameters mh and mb, respectively.
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In order to consider the implications of the variational principle, values of

the free surface mobility parameter mh and the grain boundary mobility

parameter mb are required. Only the notion of their relative magnitudes is

important for this illustration. For copper at 327C, these were estimated by

Thouless (1993) to have the values

mh = 2:35£ 10−32m6/J¢s ; mb = 5:27£ 10−33m6/J¢s : (9.79)

For present purposes, it is only important to note that the surface mobility

is usually found to be about 4 to 10 times larger than the grain boundary

mobility.

The functional in (9.51) is evaluated over the region 0 < x < b, 0 <

y < h which includes a volume of material that exchanges no energy with

its surroundings, due to symmetry in this case; the condition of no energy

change with external sources satis¯es one of the important constraints on

the variational principle as developed here. The two rate variables _h and _b

are related through the mass conservation relation (9.77), and _b is chosen

arbitrarily as the independent variable in the argument of the functional.

The result is

©[_b(t)] = ¡Âh _hb¡ Âb _bh¡
_h2b3

24mh
¡

_b2h3

6mb
; (9.80)

where h = b0h0=b and _h = ¡_bb0h0=b
2. The property that the functional is

stationary for the optimum transport ¯eld, within the range of admissible

¯elds, means that b(t) should be chosen to render @©=@ _b = 0, which implies

that it should satisfy the ordinary di®erential equation

1

2
¹E

µ
²0 ¡ b¡ b0

b0

¶2
+ ¹E

µ
²0 ¡ b¡ b0

b0

¶
=

_bh0b0
12mh

+
_bb20h

2
0

3mbb2
: (9.81)

Upon comparing the two terms on the left side of this equation, it is noted

that the ¯rst term is essentially an elastic strain times the second term.

Because elastic strain is assumed to be very small compared to one, the ¯rst

term is negligible compared to the second and its contribution is ignored. If

the di®erential equation is expressed in terms of the stress free strain along

the ¯lm ´(t) = (b(t) ¡ b0)=b0 and it is then linearized for ´(t) ¿ 1, it is

found that

´(t) = ²0
³
1¡ e−t/t0

´
; (9.82)

where

t0 =
h0b0
48 ¹E

µ
b0
mh

+
16h0
mb

¶
(9.83)
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Fig. 9.11. Schematic diagram showing a possible physical structure for the tran-
sition from the free surface of a grain to the grain boundary for the case of a
polycrystalline ¯lm illustrated in Figure 9.10. The rapid transition in chemical po-
tential through this small region provides little resistance to mass transport in this
case.

is the characteristic time for the process. It is clear from the characteristic

time that, if the grain size is comparable to ¯lm thickness, the relaxation

process is dominated by grain boundary mobility.

The in°uence of a contribution to the functional that arises from the

\corner" where the free surface of the grain meets the grain boundary, rep-

resented by the integral over C in (9.55), has been ignored in this example.

This may be justi¯ed by considering the structure of this corner on a smaller

size scale. For example, the corner may have the appearance suggested by

Figure 9.11 where the radius of curvature of the arc from point H to the

point B is everywhere very small compared to grain size and ¯lm thickness.

The chemical potential must vary continuously from Âh at point H to Âb at

point B, and the mass °ux is essentially uniform throughout the arc with

value jh. Integration of (9.52) over this arc yields

jh¢s = ¡mh (Âb ¡ Âh) ; (9.84)

where ¢s is the arclength from point H to B. On a larger scale, for which

the details of the corner structure are indiscernible, the corner transport is

described by (9.54) which, in the notation of the example being developed

in this section, is

jh = ¡mC (Âb ¡ Âh) : (9.85)
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But consistency of these two results requires that

mC =
mh

¢s
=

mh

b

b

¢s
: (9.86)

Because b=¢s À 1, mC is very large compared to mh=b and the corner e®ect

is indeed negligible in this case. Other lines of reasoning must be followed

if the physical structure of the corner di®ers from that imagined in this

illustration.

A model of the process that includes the resistance of an elastically

deforming substrate and also includes nonuniform mass °ux within the grain

boundary has been analyzed by Gao et al. (1999). These e®ects both retard

the process compared to the simple picture developed here. Thouless (1993)

showed that surface di®usion acts in series with other di®usive mechanisms

of mass transport. Nonequilibrium surface curvatures that develop during

grain creep were found to induce back stresses that inhibit grain boundary

di®usion, thus retarding the relaxation process. This rate limiting role of

surface di®usion would probably be enhanced if three-dimensional e®ects

were taken into account, which would increase the amount of grain boundary

per unit area of ¯lm-substrate interface; the additional grain boundaries

would compete for mass di®using along the free surfaces of grains and the

relaxation process would be further retarded.

In the foregoing discussion, it was assumed that deposition of ¯lm ma-

terial was not occurring during relaxation by grain boundary di®usion and

that the free surface of the ¯lm was an equilibrium surface at the prevailing

temperature. It was observed in Chapter 1 that a growth °ux provides a

supersaturated distribution of adatoms on the growth surface. These atoms

have free energy in excess of that of equilibrium surface atoms. This excess

energy may be su±cient to drive material into the grain boundaries, even

in the absence of elastic strain to be relaxed. The incorporation of excess

atoms into the grain boundaries tends to produce a compressive stress in

the ¯lm. In the absence of °ux, (9.82) implies that elastic strain eventually

decays to zero amplitude. In the presence of the growth °ux, however, it

is conceivable that ¯lm stress would become compressive, even though this

implies a positive chemical potential within the grain boundaries with re-

spect to an equilibrium ¯lm surface. Such stress evolution phenomena in

thin polycrystalline ¯lms are not yet fully understood.
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Fig. 9.12. (a) Atomic force microscope image of the impression created on a Zr{
17.9Cu{14.6Ni{10Al{5Ti (atomic percent) bulk metallic glass alloy which was sub-
jected to nanoindentation at a maximum load of 60 mN. Discontinuous shear bands
encompass the indent. (b) SAD patterns showing di®raction spots which were pro-
duced by the formation of nanocrystalline particles at the indents and in the shear
bands. The inset schematically shows six di®raction spots which were associated
with the (111) plane of tetragonal Zr2Ni particles. (c) A small distance away from
the indent only halo ring patterns characteristic of a fully amorphous structure are
seen. Reproduced with permission from Kim et al. (2002).

9.5.2 Diffusion along shear bands during deformation

The discussion up to this point has focused on the role of free surfaces and

internal interfaces, such as grain boundaries, in mass di®usion. Surfaces

produced internally in the material as a consequence of permanent deforma-

tion and damage induced by stress can also serve, in some cases, as paths

along which enhanced atomic di®usion may occur. In amorphous solids

undergoing active plastic °ow, such increased atomic mobility along shear

bands can result in the formation of nanocrystalline particles locally at the

bands. An example of such crystallization process is illustrated in this sec-

tion for the case of a bulk amorphous metallic alloy subjected to quasi-static

nanoindentation at room temperature.

Glassy metal alloys, in thin ¯lm or bulk form, are not in a state of



9.5 Diffusion along interfaces 739

stable equilibrium. Consequently, they undergo crystallization when heated.

Subjecting thin ribbons of amorphous glasses to severe bending or high en-

ergy ball milling or mechanical alloying is also known to result in the forma-

tion of shear bands within which nanocrystalline particles nucleate (Chen

et al. 1994). Substantial local heating due to adiabatic shear is possible in

thin ribbons of amorphous solids during severe plastic deformation, dynamic

loading and fracture, and consequently, the occurrence of crystallization dur-

ing plastic °ow in these loading situations has often been associated with

local temperature rise. Recent experiments, however, have been performed

by Kim et al. (2002) in bulk amorphous alloys stressed to form crack-like

shear bands that are connected to ideal heat sinks around quasi-statically

produced nanoindents where the possibility of any appreciable local heating

is essentially fully suppressed. Figure 9.12(a) shows an atomic force micro-

scope image of the impression produced on the surface of a Zr-based bulk

amorphous alloy which was subjected to a slow indentation to a maximum

load of 60 mN; application of this indentation load to the alloy caused the

pyramid-shaped diamond indenter tip to penetrate the surface to a max-

imum depth of approximately 720 nm (see Section 7.9.5). Discontinuous

shear bands formed in the vicinity of the indentation are clearly evident in

this ¯gure. Figure 9.12(b) is a selected area di®raction (SAD) pattern ob-

tained in an electron microscope in the center region of a similarly produced

indenter impression where the di®raction spots associated with the presence

of nanocrystalline particles is clearly visible; the inset in this ¯gure schemat-

ically shows the location of the di®raction spots. Electron di®raction results

in both a di®used halo ring pattern, which is indicative of the amorphous

material, and distinct spots, which are indicative of nanocrystalline particles,

because the aperture size for SAD is about the same as the indent size. The

six spots visible in Figure 9.12(b) were close to the exact Bragg condition,

and analysis by Kim et al. revealed that they were produced by di®raction

from the (111) plane of tetragonal Zr2Ni nanocrystalline particles.

Preferential crystallographic alignment of these particles appears to

have been induced by nanoindentation. Transmission electron microscope

(TEM) observations showed the presence of these nanoparticles, about 10

to 40 nm in diameter with a median size of approximately 20 nm, along

the faces of the indent and in the regime directly beneath the center of the

impression. These crystalline particles were also found to be the same as

those nucleated in the same alloy at an annealing temperature of 783 K in

the absence of any mechanical deformation (Wang et al. 2000). In regions a

small distance away from the indent, no crystalline particles form, and the

SAD pattern shown in Figure 9.12(c) reveals only halo rings representative
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of a fully amorphous structure. An identical glassy structure with di®use

ring patterns and no di®raction spots was also seen in the as-received, unin-

dented metallic glass on which TEM observations were made using thin foil

preparation techniques that were identical to the ones employed to produce

the information in Figure 9.12.

Plastic deformation in a disordered, amorphous solid at temperatures

well below the glass transition temperature Tg is expected to engender °ow

dilatation which is associated with intense shear localization along well de-

¯ned shear bands such as those shown in Figure 9.12(a) (Spaepen 1977).

Direct di®usion measurements on amorphous polymers at temperatures well

below Tg have further shown that the atomic level topological features and

di®usional mobilities inside actively deforming shear bands are nearly the

same as those at Tg (Zhou et al. 2001). In particular, it was shown that

the rate of penetration of a low molecular weight diluent into a high mole-

cular weight glassy polymer subjected to active plastic deformation at 386

K was essentially the same as the penetration rate of the former into the

latter at the glass transition temperature of 486 K in the absence of any

plastic °ow. This deformation-induced enhancement in di®usion constant

was estimated by Zhou et al. to be as high as four orders of magnitude.

On the other hand, an increase in local dilatation or free volume due to an

increase in temperature would be expected to result in a marked decrease

in interatomic interactions. Although comparable direct measurements of

di®usion rates during deformation have not been performed in amorphous

metals, the nanocrystallization phenomenon produced during deformation

in the indentation experiments shown in Figure 9.12 also appears to arise

from the pronounced increase in atomic di®usion within shear bands of the

metallic glass as a result of °ow dilatation.

9.6 Compositional variations in solid solutions

Throughout the foregoing chapters, frequent reference has been made to

the behavior of alloy materials, either compounds or solid solutions, in thin

¯lms and layered materials. In particular, alloying is the origin of the elas-

tic mismatch strain ²m in epitaxial ¯lms in some cases. The mismatch

strain provides the driving force for dislocation formation, surface morphol-

ogy change, and other physical processes. The goal of this section is to

introduce phenomena involving alloys with spatially nonuniform composi-

tion and to examine the role of mechanical stress in determining the stability

of compositions or in in°uencing the time evolution of compositional varia-

tions.
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Attention is focused mainly on the behavior of a solid solution, which

is a continuous sequence of substances with compositions varying between

those of two chemically distinct homogeneous materials at the extremes of

the range of composition. Perhaps the most thoroughly studied semicon-

ductor solid solution is Si1−ξGeξ where » is the atomic fraction or volume

per unit volume of Ge in the solution. The simple for atomic fraction is

changed from the customary x to » because of the need to consider spa-

tially varying compositions for which atomic fraction » may be a function

of spatial coordinate x. The properties of this material are assumed to vary

continuously from those of elemental Si when » = 0 to those of elemental Ge

when » = 1. A more complex semiconductor solid solution is InξGa1−ξAs
where » is the atomic fraction of group III sites in the lattice of the zinc

blende structure occupied by In atoms. The properties in this case are as-

sumed to vary continuously between those of the limiting homogeneous zinc

blende phases for GaAs and InAs. In both of these examples, as well as

in all examples to be discussed in this section, the two chemically distinct

materials de¯ning the extremes are crystals of the same class. Furthermore,

the solutions considered are of the substitutional type, in which any given

atom can occupy only particular sites. In this case, compositional changes

can occur only by exchanges of atoms between sites, assuming that there is

no creation or annihilation of vacancies.

It is also assumed that the atoms are distributed among the possible

sites throughout the lattice in a more or less random way. In other words,

the probability that any particular site in the diamond cubic lattice of ho-

mogeneous Si1−ξGeξ alloy is occupied by the Ge atom is ». Solid solutions

with this characteristic are normally said to be disordered. The notions of

lattice unit cell and lattice translational invariance are not strictly valid in

a disordered solid solution. Nonetheless, an e®ective or average unit cell

dimension can be adopted for a solid solution at any composition between

the limiting chemically homogeneous materials at the end points of the com-

positional range. For example, the average unit cell dimension of Si1−ξGeξ
in the absence of applied stress is given by the linear interpolation between

values for Si and Ge as in (1.14) (Christian 1975).

9.6.1 Free energy of a homogeneous solution

Consider a statistically homogeneous solid solution, with homogeneous and

chemically distinct materials A and B as its endpoint compositions, at some

¯xed temperature T . Any intermediate composition is characterized by

the parameter » which is the fraction of lattice site atoms distinguishing
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A from B occupied by the atoms of material B; as such, this parameter

is in the range 0 ∙ » ∙ 1. In the SiGe system, the number of lattice

sites involved in this comparison is eight per unit cell, which represents all

possible sites. On the other hand, in the InGaAs system, only four atom

sites per unit cell are occupied by either In or Ga atoms. The free energy

per unit volume of the homogeneous stress-free solution at temperature T

is commonly expressed in terms of the free energy densities of the pure

substances under the same conditions of stress and temperature, say 'A
and 'B, and the volume fraction » as

'(») = (1¡ »)'A + »'B + 'mix(») ; (9.87)

where 'mix represents the free energy of mixing of A and B. If the two

component materials do not interact chemically with each other in solution,

then the internal energy of mixing is zero and the free energy of mixing is

only the con¯gurational entropy of the atomic arrangement. For a random

arrangement of constituents, the con¯gurational entropy per atom is kT [(1¡
») ln(1 ¡ ») + » ln »]; the coe±cient is replaced by kT=− to represent this

quantity as a free energy per unit volume (Christian 1975). A convenient

empirical form to adopt for additional contributions to the free energy of

a less ideal solution is an algebraic function of » that vanishes at the end

points. The simplest among these is »(1¡ »), which would commonly have

a (possibly temperature-dependent) positive coe±cient. Tsao (1993) adopts

this form for the SiGe solutions where the coe±cient is estimated to be

0:045 eV/atom.

Possible dependence of free energy per unit volume '(») on composi-

tion » for a binary solution is illustrated by the two examples in Figure 9.13.

The main feature distinguishing one case from the other is that the curva-

ture has the same algebraic sign for all » in (a) whereas the curve has points

of in°ection in (b). The dashed line in each case represents the dependence

of free energy on composition for a perfect solution, that is, one for which

the free energy of mixing is zero.

The rate of change of free energy of a homogeneous unit volume of

material, which is understood to include a ¯xed number of lattice sites, is

_'(») = 'I(») _» (9.88)

as composition » changes. The quantity _» is the rate of increase of the

volume of B within the unit volume, and it follows that the local slope

'I(») is the generalized force that is work conjugate to the volume of B with

respect to free energy, that is, it is the chemical potential of material B.

For the solution characterized by Figure 9.13(a), consider a case in
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Fig. 9.13. Sample diagrams of free energy density '(») versus fractional composition
» of constituent B for a disordered substitutional solid solution A1¡»B». The free
energy variation in the upper diagram has the property that '00(») > 0 over the full
range which implies unconditional stability of the solution, whereas the variation
illustrated in the lower diagram has points of in°ection which implies more complex
characteristics.

which the average composition is »1, but in which the volume is divided

into clusters each having either composition »2 or »3. The free energy of the

clustered volume lies somewhere on the straight line connecting the points

(»2; '2) and (»3; '3). The chemical potential of clusters with composition

»2 is less than that for clusters with composition »3. Consequently, there

is a driving force tending to remove volume of material B from the latter

clusters and to add it to the former clusters, and vice versa for material A.

This situation prevails until both types of clusters approach composition »1,

representing a spatially uniform solution. This behavior will be established

as a general result in the next subsection, that is, it will be shown that any

spatially uniform solution will tend to remain spatially uniform for the case

(a) in Figure 9.13.

Behavior is more complex for case (b) in Figure 9.13, which is distin-
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guished by reversals in the sign of curvature of the curve de¯ning '(») over

0 < » < 1. Compositions »5 and »6 locate the points of tangency of the

only line having multiple points of tangency with the particular free energy

curve illustrated. For compositions in the ranges 0 ∙ » < »5 and »6 < » ∙ 1,

the behavior is as described for case (a); in particular, the uniform com-

position in an isolated system will tend to remain uniform. On the other

hand, for a uniform composition in the range »5 < » < »6, say »4, there is a

tendency toward a nonuniform redistribution of material B in the solution.

If attention is limited to a combination of clusters with either of two compo-

sitions, it is evident that segregation into clusters will proceed by exchange

of materials A and B in equal amounts until each cluster has a composition

of either »5 or »6. In this con¯guration, the chemical potentials of the two

types of clusters are equal to each other and there is no longer a driving

force tending to reorganize the solution. For a solution characterized by the

free energy distribution in Figure 9.13(b), the compositions »5 and »6 are

commonly called the limits of solubility, and homogeneous solutions in the

range »5 < » < »6 are unstable.

The general issue of stability of composition of a solid solution is pur-

sued further in the next subsection. Two potentially important physical

e®ects are not taken into account in the discussion of energy variations with

composition above. One of these e®ects arises from the possibility of atomic

mis¯t of one species in the solution with respect to the other. The aver-

age unit cell dimension of a solid solution may depend on the composition,

so that there is a stress-free volume change (or a more complex stress-free

strain, perhaps) with change in concentration. For a spatially nonuniform

composition, the associated stress-free strain ¯eld will be incompatible, in

general, giving rise to a residual stress distribution.

The second e®ect to be incorporated arises from the observation that

steep spatial gradients in composition imply local energies higher than those

of homogeneous samples of the same average composition. This e®ect is most

evident at interfaces between homogeneous samples, which have an excess

free energy over and above that of the homogeneous constituent solutions

even with ideal epitaxial bonding. Cahn and Hilliard (1958) introduced

a way to account for the role of spatial gradients in composition in the

free energy of a solution, and their result is incorporated here. Thus, the

total free energy of a spatially nonuniform solid solution is the sum of three

energy densities: an energy of solution determined by the local composition

as discussed above, an additional energy of solution determined by the local

gradient of composition, and an elastic energy density arising from mis¯t.
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9.6.2 Stability of a uniform composition

Following the pioneering work of Cahn (1961), the Helmholtz free energy

at ¯xed temperature of a solid solution occupying region R is given as a

functional of composition »(x1; x2; x3; t) by

F(t) =

Z
R

h
'(») + ∙chij »;i »;j +

1
2cijkl²ij²kl

i
dR : (9.89)

The ¯rst term in the integrand is the free energy density based on a homo-

geneous solution with composition equal to the local density, as described

in the preceding subsection. The second term in the integrand is an adjust-

ment to the local free energy arising from the local gradient in composition

»;k as introduced by Cahn and Hilliard (1958), where the phenomenolog-

ical tensor-valued Cahn-Hilliard parameter ∙chij has physical dimensions of

energy/length. Only isotropic systems are considered here, in which case

∙chij = ∙ch±ij; the parameter ∙ch is a scaler quantity of order kTch=−
1/3

where k is the Boltzmann constant, Tch is the absolute temperature beyond

which a planar interface in the material system cannot be maintained, and

− is the atomic volume (Cahn 1961). The last term in the integrand of

(9.89) is the elastic energy density of the material. The strain ¯eld ²ij rep-

resents the elastic strain only, and it does not include any stress-free strain

associated with composition change. The inclusion of the elastic energy cor-

rects the oversight noted in the preceding subsection, where it was tacitly

assumed that composition change occurred without volume change. In the

present discussion, only isotropic elastic response which is independent of

composition is considered. The elastic strain is conveniently separated into

two contributions, one of which is the (possibly incompatible) contribution

that elastically restores the material to the mean lattice spacing at » = 0;

the second contribution is the additional (compatible) elastic strain ²rij rep-

resenting the extent of relaxation accommodated in achieving equilibrium

and satisfying the boundary conditions. If the e®ect of composition change

is to induce a pure volume change characterized by » and an extensional

mismatch strain ²1, then the stress-free volume change per unit volume is

¡3»²1. The subscript 1 is intended to re°ect the fact that ²1 is the mis-

match of A1−ξBξ with respect to material A when the fractional content of

material B in the alloy is unity, that is, when » = 1. For example, for the

alloy Si1−ξGeξ, the value of ²1 is approximately ¡0:04. In these cases, the

total elastic strain is expressed as

²ij = ²rij + »²1±ij : (9.90)
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In discussing epitaxial systems in preceding chapters, the quantity repre-

sented by »²1 was customarily denoted by ²m.

Next, the time rate of change of free energy of the material in R that

arises from time dependence of composition » at any point in R is examined.

Di®erentiation of (9.89) with respect to time for a ¯xed material volume R

with bounding surface S, followed by application of the divergence theorem

to the result, yields

_F(t) =

Z
R

£
'I ¡ 2(∙ch»;k );k+²1¾jj

¤ _» dR+

Z
S

h
∙ch _»»;k nk + _uri¾ijnj

i
dS ;

(9.91)

where the superposed dot denotes the material time derivative, ni is the

outward unit normal vector to S, and ¾ij is the elastic stress. The ¯rst term

in the integrand of the surface integral implies that either the gradient »;k
or the rate _» must be speci¯ed on the boundary S in order to analyze a

boundary value problem. The second term in the surface integral is the rate

of external mechanical work on the material in R. For the time being, it

is assumed that R can be chosen so that both surface contributions vanish,

perhaps due to symmetry, periodicity or remoteness of S.

The factor _» dR is the rate of change of volume of material B in dR. It

follows that the quantity in square brackets in the integral over R in (9.91)

is the generalized force that is work-conjugate to this local volume change.

This ¯eld thus represents the local chemical potential of material B in the

solution,

Â = 'I ¡ 2(∙ch»;k );k+²1¾jj : (9.92)

This generalizes (9.88) to include composition gradient e®ects and elastic

energy e®ects. Unless the material is intrinsically nonhomogeneous, each

term in this expression depends on spatial position and time only through

the dependence of composition on spatial position and time. Thus, the ¯rst

term on the right side of the equal sign in (9.91) provides a basis for directly

assessing the stability of a particular composition ¯eld » with a prescribed

rate of change of that ¯eld. The case of stability of a particular spatially uni-

form composition under small amplitude perturbations is considered next.

Consider an elastic material subjected to an equi-biaxial state of stress,

characteristic of a uniform epitaxial thin ¯lm coherently bonded to a sub-

strate in the presence of lattice mismatch. This is the state of stress that

develops in the ¯lm when the alloy A1−ξ∗Bξ∗ with spatially uniform compo-

sition »∗ is deposited onto the planar substrate surface of material A. The

mismatch of B with respect to A in the plane of the interface is ²1. With

reference to a xyz rectangular coordinate system with the y¡direction nor-
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mal to the interface, the stress in the ¯lm material is ¾xx = ¾zz = M²1»∗,
¾yy = 0 where M is the biaxial elastic modulus of the ¯lm; all shear stress

components are zero. If this state of stress prevails throughout an elastic

solid solution, is the composition is stable under small amplitude perturba-

tions in the spatial distribution of material B?

To answer this question, consider the change in system free energy

corresponding to the spatially nonuniform perturbed composition

» = »∗ + »λ cos
2¼x

¸
cos

2¼z

¸
; (9.93)

where ¸ is a ¯xed wavelength and the perturbation is small, that is, j»λj=»∗ ¿
1. Any two-dimensional perturbation of small amplitude can be represented

as a linear superposition of sinusoidal perturbations of the kind (9.93) by

means of Fourier methods. For compositions near to »∗, the quantity 'I(»)
in (9.91) can be approximated by the ¯rst two terms of a Taylor series

expansion about the value » = »∗, which yields the locally linear function

'I(») ¼ 'I(»∗) + 'II(»∗)(» ¡ »∗) : (9.94)

The perturbed stress ¯eld that arises as a result of the nonuniform compo-

sition can be found by straightforward application of the stress equilibrium

equations and Hooke's law of linear response for an isotropic elastic mater-

ial, subject to the constraints that the perturbation alters neither the mean

extensional strain in any direction in the xz¡plane nor the zero net force per

wavelength in the y¡direction. The mean normal stress implied by these

constraints is

¾kk = 2M²1»∗ + 2 ¹E²1 »λ cos
2¼x

¸
cos

2¼z

¸
; (9.95)

where ¹E is the plane strain modulus of the material.

The rate of change of free energy in a block of material occupying

0 ∙ x ∙ ¸, 0 ∙ y ∙ 1, 0 ∙ z ∙ ¸ is, according to (9.91),

_F(t) = 1
4¸
2

"
'II(»∗) + 2∙ch

µ
2¼

¸

¶2
+ 2 ¹E²21

#
»λ _»λ : (9.96)

If »λ > 0, then the system is unstable if it is possible for _»λ > 0 to proceed

spontaneously, that is, with _F < 0. This is possible only if the quantity

enclosed within the square brackets in (9.96) is negative. Alternatively,

stability requires that this quantity must be positive for all wavelengths ¸,

which will be so if

'II(»∗) + 2 ¹E²21 > 0 (9.97)
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for the composition »∗, assuming that all wavelengths in the range 0 < ¸ <

1 are possible. If the solid is of limited extent, then there is a corresponding

upper bound on the range of accessible wavelengths and a corresponding sta-

bilization; this e®ect is minor in all but the very smallest material systems.

The result (9.97) is essentially the condition established by Cahn (1961).

Several general observations on the stability of a spatially uniform

composition follow from (9.97):

¡ Without lattice mismatch, the quantity ²1 vanishes and stability of

composition is determined solely by the local curvature of '(») versus

». If 'II(»∗) > 0 then the composition is stable at ¯xed temperature

under small perturbations, whereas it is unstable if 'II(»∗) < 0. The

locus of points in the phase diagram of the alloy swept out by the

condition 'II(»∗) = 0 as temperature is varied is called the spinodal

or spinodal curve of the alloy; the historical origin of the terminology

is described by Cahn (1968).

¡ If material B is perfectly soluble in material A, but it alters the mean

lattice parameter, the energy of mixing is zero but ²1 is not zero.

Under these circumstances, a uniform composition is always stable.

This outcome is attributable to the positive de¯nite and super-linear

(that is, quadratic) dependence of strain energy on elastic strain.

¡ In the absence of a kinematic constraint, the ¯rst term on the right

side of the equal sign in (9.95) is absent but the contribution in the

second term arises nonetheless. It is the latter contribution that

contributes to the free energy change. In this sense, the kinematic

constraint is irrelevant in calculating free energy variations. Elastic-

ity e®ects arise through incompatible deformations associated with

nonuniform composition.

¡ If the dependence of free energy on composition illustrated in Fig-

ure 9.13 is concave downward at » = »∗, that is, if 'II(»∗) < 0, and

if elastic mismatch is present, the e®ect of elasticity is to stabilize

the composition. This stabilization is e®ective to the degree that lo-

cal concavity of '(») versus » can be accommodated without loss of

stability, which is the case as long as

'II(»∗) > ¡2 ¹E²21 : (9.98)

The question of stability of an alloy composition is examined for other partic-
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ular cases in the exercises, and the issue of elastic stabilization is considered

further in Section 9.6.3.

The discussion of elastic stabilization of a uniform composition that

led to the criterion (9.97) was based on the assumption of an unbounded

material, an idealization which overlooks any in°uence of boundaries. The

corresponding issue of a strained thin ¯lm deposited onto a relatively thick

substrate was considered by Glas (1987). The ¯lm was assumed to be a

solution and the substrate to be a pure substance representing one of the

extremes in composition of that solution. The change in free energy of the

system that results from a sinusoidal perturbation from the initially uni-

form composition of the ¯lm was considered. As might be expected in such

a situation, the stabilizing in°uence of elasticity was found to be weaker

than that for an unbounded solid. The reason for the di®erence is that the

incompatibility in deformation induced by the nonuniform composition in

the ¯lm can be accommodated by elastic deformation of both the ¯lm and

the substrate material, thus mitigating the elastic incompatibility that un-

derlies the stabilizing in°uence. Quantitative estimates of the magnitude of

the e®ect were obtained for a number of III-V semiconductor ¯lm-substrate

material systems.

9.6.3 Example: Elastic stabilization of a composition

Consider an In»Ga1¡»As solution with spatially uniform composition ». The elastic
modulus and Poisson ratio of the cubic alloy are E = 85:3(1¡ ») + 51:4»GPa and
º = 0:31(1¡ »)+0:35», respectively; these isotropic estimates are based on a linear
rule of mixtures and elastic constants for stressing along a cube edge. The stress-
free mean lattice parameters of GaAs and InAs at room temperature are 0.56532
nm and 0.60584 nm, respectively; these values are adopted at all temperatures,
thereby neglecting any in°uence of thermal expansion. The value of ²1 implied by
the di®erence in lattice parameters is ¡0:072 in this case. The free energy of mixing
per unit volume of a homogeneous alloy at composition » is assumed to be

'mix(») = (kT=−)
£
(1¡ ») ln(1¡ ») + » ln »

¤
+ Cmix»(1¡ ») (9.99)

where k is the Boltzmann constant, T is absolute temperature, − is the atomic
volume of the material, and Cmix is an empirically determined parameter with an
estimated value of 450 £ 106 J/m3. The atomic volume of the solution is approxi-
mated by that of GaAs throughout the calculation.

(a) At very high temperature T , the free energy of mixing has the property
that '00

mix(») > 0 throughout the range 0 < » < 1. Determine the critical
temperature Tcr in degrees K that de¯nes the lower limit of this range.

(b) Estimate the additional range of T below Tcr for which a uniform composition
is stabilized by elastic e®ects according to the criterion (9.97).
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Solution:

(a) The bound on the range of temperatures for which the uniform composition
is stable, neglecting elastic e®ects, is determined as the lowest temperature
for which '00

mix(») = 0 for any value of ». From (9.99), it is seen that

'00
mix(») =

kT

−

1

» ¡ »2
¡ 2Cmix : (9.100)

This quantity can ¯rst become zero at » = 1=2, and the temperature at
which this occurs is the critical temperature

Tcr = Cmix−=2k ¼ 755K : (9.101)

(b) If elastic energy e®ects are included, the stability criterion (9.97) takes the
form

2kT

−

1

» ¡ »2
¡ Cmix + ¹E²21 > 0 : (9.102)

The lower bound on the temperature range over which this condition is
satis¯ed is again reached at » = 1=2. The corresponding value of temperature
is given by

T =
¡
Cmix ¡ ¹E²21

¢
−=2k ¼ ¡132K ; (9.103)

a negative absolute temperature! The result implies that the in°uence of
elastic strain is to stabilize the uniform composition over the full temperature
range. This strong e®ect could be signi¯cantly mitigated by the presence of
geometrical boundaries of the solid, as well as by di®usion in cases in which
the uniform composition prevails only over a part of the solid.

9.6.4 Evolution of compositional variations

The study of stability of a spatially uniform composition in a solid solution

under periodic small-amplitude °uctuations pursued in Section 9.6.2 was

based on equilibrium considerations. A composition was considered to be

stable or unstable, depending on whether the system free energy tended to

increase or decrease as a result of small °uctuations. The approach leads to

no conclusion on the rate of increase in amplitude of an unstable °uctuation

or on the rate of decay of a stable °uctuation. The question of time evolution

of spatial °uctuations in composition is pursued here, following the ideas

introduced by Hillert (1961) and Cahn (1961).

The local chemical potential ¯eld corresponding to a spatial distri-

bution » of component B in an A1−ξBξ substitutional solid solution was

de¯ned in (9.92). Spatial variation of the chemical potential ¯eld implies

the existence of a driving force tending to reduce system free energy by re-

distributing component B. If it is assumed that the °ux j of component B is
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proportional to the gradient in chemical potential throughout the isotropic

material volume R, then the transport equation relating °ux to chemical

potential is

j = ¡mRrÂ (9.104)

in R, where mR is a positive mobility parameter. In general, mR depends

on the local composition. The inner product of the °ux vector j with a

unit vector at a point in the material is the volume of B material passing

through a plane normal to this unit vector at the material point per unit

area per unit time. The composition » is the fraction of lattice sites that

can possibly be occupied by B atoms that are in fact occupied by B, so local

mass conservation requires that

_» = ¡r ¢ j (9.105)

throughout the region of interest. It should be kept in mind that the number

of possible lattice sites per unit volume of the solution is determined by

the unstrained lattice of component A, although the consequences of this

distinction are usually minor. Equations (9.104) and (9.105) combine to

yield an evolution equation for the composition ¯eld in the form

_» = r ¢
³
mR(»)r

h
'I(»)¡ 2r ¢ (∙ch(»)r») + ²1¾kk(»)

i´
: (9.106)

This is a nonlinear partial di®erential equation for » as a function of time and

of position throughout the region R. Analytical solutions of the equation

are not available, in general.

For the particular situation in which » represents only a small de-

parture from the spatially uniform composition »∗, the equation (9.106)

can be linearized and solutions are readily obtained. In this situation,

mR(») ¼ mR(»∗) = m∗R, ∙ch(») ¼ ∙ch(»∗) = ∙∗ch and 'I(») is approximated

as in (9.94). The partial di®erential equation then reduces to

_» = m∗Rr2
h
'II∗(» ¡ »∗) + ²1¾kk(»)¡ 2∙∗chr2»

i
: (9.107)

Furthermore, if it is assumed that the composition varies periodically about

the mean value »∗ with spatial period ¸ as in (9.93), and that the correspond-

ing mean normal stress is given by (9.94), the partial di®erential equation

is reduced to the ordinary di®erential equation

_»λ = ¡m∗R
µ
2¼

¸

¶2 "
'II∗ + 2 ¹E²21 + 2∙∗ch

µ
2¼

¸

¶2#
»λ : (9.108)

Some general aspects of behavior of the solution of this equation are evident.

For example, if 'II∗ + 2 ¹E²21 > 0 then the amplitude »λ decays in magnitude
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from any nonzero initial value for all values of wavelength ¸. This obser-

vation is equivalent to the criterion of unconditional stability in (9.97). If

'II∗ + 2 ¹E²21 < 0, then the amplitude »λ increases inde¯nitely in time for all

wavelengths ¸ greater than the value

¸cr = 2¼

s
¡2∙∗ch

'II∗ + 2 ¹E²21
(9.109)

and decays to ever smaller amplitude for any smaller wavelength. Finally,

the value of wavelength for which the rate of growth of amplitude »λ is

largest is

¸gr =
p
2¸cr : (9.110)

These implications are based on the assumption of a one-dimensional per-

turbation of composition from its mean value »∗. Similar conclusions can be

drawn through consideration of perturbations in two or three dimensions;

details are left as an exercise.

9.6.5 Coupled deformation-composition evolution

There are a number of evolutionary processes involving very small material

structures in the course of which changes in composition induce stress ¯elds

and/or changes in shape. The latter e®ects, in turn, give rise to driving

forces for alteration of the composition distribution. A situation of prac-

tical interest is the stress-driven self-assembly of alloy nanostructures. For

example, consider the stress-driven formation of SiGe quantum dots during

epitaxial deposition of the alloy onto a Si (001) substrate. As was seen in

Section 8.8.3, the °at growth surface is unstable for fractional Ge concen-

tration greater than about 0.2. The deposit evolves into epitaxial islands

by means of surface di®usion; initially, the lateral faces of small islands

are vicinal surfaces with slopes up to about 11-12 degrees with respect to

the growth surface. As the island volume increases, the lateral faces can be-

come signi¯cantly steeper, as described in Section 8.9.5. It is tacitly assumed

in describing the process in this way that the Ge is uniformly distributed

throughout an island and that the composition is the same as the compo-

sition of the growth °ux. However, the state of stress in the island is such

that it is energetically preferable for Ge to be near the apex of the island

where mean normal compressive stress is smaller than it is near the island-

substrate interface, where the island is relatively unrelaxed and the mean

normal compressive stress is relatively large. It is also generally preferable

for the Ge to be in the substrate than in the island. These observations
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imply the existence of a thermodynamic driving force tending to redistrib-

ute the Ge toward the apex of the island and perhaps to drive it into the

substrate. If such a redistribution occurs by compositional evolution as de-

scribed in the preceding subsection, then the elastic energy due to mismatch

is e®ectively reduced. This implies that the driving force which caused the

island faces to become steeper in the ¯rst place has been diminished, and

the height-to-width aspect ratio of the island would also tend to undergo a

reversal and would tend to diminish.

This sequence of shape changes during SiGe island evolution has been

observed directly by Henstrom et al. (2000), who also reported evidence of

average mismatch strain reduction in the later stages of the process. Direct

observation of compositional variations is extraordinarily di±cult, but such

variations are the most likely cause of the shape reversals detected. Strong

support for this interpretation was provided subsequently in the experiments

of Rastelli et al. (2001). They deposited Ge onto Si (001), a situation in

which the °at growth surface is unstable. Islands formed in the early stages

of growth, as expected. The lateral faces of the islands steepened to the

f105g orientation and, as the island volumes increased further, the lateral

faces steepened and the islands assumed the so-called dome shape. At this

point in the experiments, the Ge growth °ux was stopped and the Ge islands

were then exposed to an incident Si growth °ux. The Si was apparently

absorbed into the islands and the e®ective mismatch strain was reduced

accordingly. As a result, the sequence of island shapes observed during

growth was reversed and the aspect ratios of the islands decreased.

These examples illustrate the interaction of composition distribution

and stress ¯eld in a deformed solid solution. The mathematical structure

exists for analysis of such phenomena, but the governing equations are in-

herently nonlinear; analysis is very di±cult if shape changes are taken into

account and systematic study has not yet been undertaken. The purpose

here is to formulate and analyze a physical situation involving coupled defor-

mation and composition evolution that serves as a reasonably transparent

vehicle for presenting the underlying ideas, but that avoids the complexity

of evolution of shape.

Consider an elastic layer occupying the region ¡1 < x; y < 1, ¡1
2h ∙

z ∙ 1
2h. Attention is limited to ¯elds that vary only through the thickness

of the layer. The slab material is a A1−ξBξ solid solution as described in

Section 9.6.1. The composition is assumed to vary through the thickness

according to

»(z; t) = »∗ + ¯(t) sin
¼z

h
; (9.111)
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where »∗ is the mean composition within the layer and ¯(t) is the time-

dependent amplitude of a sine-shaped perturbation; the perturbation mag-

nitude is not assumed to be small in this case. The °ux of material B in the

z¡direction corresponding to (9.111) is

j(z; t) =
h

¼
_̄ (t) cos

¼z

h
; (9.112)

which necessarily vanishes at z = §1
2h.

The layer is °at for any uniform composition and it remains so if

there is no lattice mismatch between constituents A and B. Assume that

constituent B has an isotropic extensional mismatch strain ²1 with respect

to constituent A. As a result, the midplane of the layer is curved, in general,

for a nonuniform distribution ». From (2.58), it is known that the state of

stress inducing this curvature is

¾xx(z; t) = ¾yy(z; t) = M [²1(»(z; t)¡ »∗)¡ ∙(z ¡ znp)] (9.113)

where M is the elastic bulk modulus, ∙ is the spherical curvature of the

midplane of the layer, and znp is the location of the neutral plane of the

layer. As indicated in (2.54), the in-plane stress components, which are

identical, must satisfyZ h/2

−h/2
¾xx(z; t) dz = 0 ;

Z h/2

−h/2
z¾xx(z; t) dz = 0 (9.114)

to ensure equilibrium; in writing (9.114), it has been presumed that the

remote edges of the layer are free of constraints. Enforcement of the equi-

librium conditions in this way yields expressions for ∙ and znp in terms of

»∗ and ¯. In the system under discussion, it is known a priori that znp = 0

as a result of symmetry.

The chemical potential representing the tendency for redistribution of

composition is de¯ned in (9.92). The mean normal stress ¾jj appearing in

this expression is ¾xx + ¾yy. The stress component ¾zz and all shear stress

components vanish throughout the layer in this case as a result of symmetry,

translational invariance and vanishing of traction on the faces z = §1
2h of

the layer. The parameter ∙ch in the chemical potential comes into play only

when spatial gradients in » are very steep, and its e®ect is neglected for the

distribution given in (9.111).

The ¯rst term in the expression (9.92) for chemical potential is essen-

tially the derivative of the free energy of mixing of the solution with respect

to composition. In the present example, this concentration dependent mea-
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Fig. 9.14. Illustration of the dependence of free energy of mixing of a solid solution
de¯ned in (9.115) for several values of the parameter c2.

sure of miscibility is assumed to be

'mix(») =
kT

−

h
»2(1¡ »)2 ¡ c2»(1¡ »)

i
; (9.115)

where c2 is a numerical constant. Plots of 'mix−=kT versus » for several

values of c2 are shown in Figure 9.14. If the results of enforcing equilibrium

are used to eliminate curvature ∙ and neutral plane location znp from the

equations, the consequence of enforcing conservation of mass (9.105) is the

ordinary di®erential equation

_̄(t) = ¡kTmR

−h2
¼2
∙
2

µ
1¡ 96

¼4

¶
²21
M−

kT

+2
¡
1 + c2 ¡ 6»∗ + 6»2∗

¢
+ 3¯(t)2

¸
¯(t) (9.116)

governing ¯(t), where the transport mobility mR has been assumed to be

independent of concentration.

Several general observations follow directly from the form of the dif-

ferential equation (9.116). In the absence of an elasticity e®ect (¯rst term

in square brackets) and a nonlinear e®ect (third term in square brackets),

the stability of the con¯guration is determined solely by the second term
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in square brackets on the right side. This term is negative for all values of

»∗ if c2 > 1
2 and is non-negative for some values of »∗ otherwise. Thus, a

uniform composition »∗ of any magnitude is stable under these conditions

if c2 >
1
2 , consistent with the general observations of Section 9.6.1. For any

value of c2 < 1
2 , the limits of solubility of the composition are established

by the condition

1 + c2 ¡ 6»∗(1¡ »∗) = 0 ; (9.117)

which is also consistent with the observations in Section 9.6.1.

A novel aspect of the behavior of this simple system is that the sta-

bilizing in°uence of elasticity on composition is almost completely negated

by the coupling to deformation. In other words, if curvature of the layer is

suppressed (by constraining the layer between smooth rigid platens, say),

then the coe±cient of the strain energy term in the square brackets on the

right side of (9.116) would be 2. As a result of the coupling, however, the

coe±cient is reduced to the value 0.029, which is essentially negligible by

comparison. The origin of this coupling e®ect is readily identi¯ed in the

present situation. To see this, suppose for the moment that ²1 > 0 and that

the composition begins to redistribute with » > »∗ above the midplane and

» < »∗ below. Without bending, this change induces a tensile mean nor-

mal stress above the midplane and a compressive stress below; this state of

stress would retard further migration of B and is the origin of the stabilizing

in°uence of elasticity. If unconstrained, the layer takes on a positive spher-

ical curvature in response to this stress, with a resulting decrease in mean

normal stress above the midplane and an increase below. Consequently, the

in°uence of deformation is to directly counteract the stabilizing in°uence of

stress, a behavior that becomes evident by solving the governing equation

(9.116) for this simple example.

For the initial condition ¯(0) = ¯0, the solution of the ordinary di®er-

ential equation (9.116) for t > 0 is

¯(t) = ¯0

"
C∗

3¼2¯20 + (C∗ ¡ 3¼2¯20)e
−2C∗t/t∗

#1/2
; (9.118)

where

C∗ ´ ¡2¼2
∙µ

1¡ 96

¼4

¶
²21
M−

kT
+ (1 + c2 ¡ 6»∗ + 6»2∗)

¸
(9.119)

and the characteristic time for the relaxation process is

t∗ = −h2=kTmR : (9.120)
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Fig. 9.15. Representative plots of the solution (9.118) for ¯(t) introduced in (9.111)
versus t for several combinations of c2 and »¤. The other system parameters are
¯xed at the values ¯0 = 0:05 and ²21M−=kT = 0:1 in all three plots.

It is readily veri¯ed that the limiting behavior of the solution as t ! 1 is

¯(t) !

8><>:
p
C∗=3¼2 ; if C∗ > 0

0 ; if C∗ < 0:

(9.121)

On physical grounds, the value of ¯(t) is restricted to the range j¯(t)j ∙ »∗
for all t. The behavior of the solution is illustrated for several combinations

of c2 and »∗ with ¯0 = 0:05 and ²21M−=kT = 0:1 in Figure 9.15.

The class of possible composition ¯elds has been limited to the simple

form (9.111) for purposes of illustration in the present discussion. There is

no fundamental limitation of this kind, and more general forms, such as

»(z; t) = »∗ +
NβX
i=1

¯i(t) sin
(2i¡ 1)¼z

h
; (9.122)

could be adopted with Nβ large enough to provide accurate representations

of the evolving composition pro¯le. The ordinary di®erential equations for

the coe±cients ¯i(t) in (9.122) are most readily established through a minor

generalization of the variational principle introduced in Section 9.3. The

details are left as an exercise.
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9.7 Stress assisted diffusion: electromigration

Metallic interconnect lines, such as those made of Al or Cu in an integrated

circuit, are conduits for high electric current densities that are more than

four orders of magnitude greater than the current density of 100 A/cm2

carried by typical residential or industrial wiring. Bulk metal wires typically

reach their melting points as a consequence of Joule heating when subjected

to current densities of approximately 104 A/cm2. The ability of the thin

metal lines to carry much higher current densities without melting is mainly

a consequence of the role of the surrounding dielectric materials which serve

as an e®ective heat sink for removal of heat from the interconnect lines.

Figure 9.16 shows an example of the metal interconnect structure in a CMOS

circuit of a computer chip microprocessor manufactured by the International

Business Machines Corporation.

Fig. 9.16. A CMOS circuit with six levels of metallization where the dielectric sur-
rounding the metal interconnects is removed in order to image the embedded line
features. Reproduced with permission from IBM Corporation, New York.

In the course of transporting high current densities through the metal

interconnects during operation of an integrated circuit, signi¯cant momen-

tum transfer from moving electrons to nominally stationary metal atoms

takes place. This momentum transfer has the potential for inducing the dif-

fusion of metal atoms in the direction of electron transport, which is counter

to the direction of the conventional applied electric ¯eld. Electromigration
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in the interconnect lines is the current-driven, biased self-di®usion of metal

atoms. Loss of current carrying capability and the possible occurrence of

electrical short-circuits due to electromigration are major concerns of prac-

tical interest which can limit the reliability of integrated circuits (D'Heurle

(1971), Blech (1976), Suo (2003)). All metallic components of integrated cir-

cuits that carry electric current are potentially susceptible to damage and

failure by electromigration. These components include interconnect lines,

as already noted, but powered electrical contacts and vias as well. Damage

induced at contacts by atomic di®usion can be exacerbated by electromigra-

tion in essentially any device. The interfaces between vias and interconnects

are also potential sites of atomic °ux divergence and void growth.

9.7.1 Atom transport during electromigration

During transport of electrons through a metal conducting line in response

to an applied electric ¯eld, which is the physical equivalent of electric cur-

rent in the direction opposite to electron °ow, metal ions are subjected to

several forces having the potential for dislodging them from their structural

equilibrium positions. Among these is the electrostatic force due to the ap-

plied ¯eld which tends to move the positively charged ions in a direction

opposite to the direction of °ow of the electrons. In addition, trajectories

of moving electrons are de°ected by the ions due to electrostatic interac-

tion forces between the ions and electrons. Momentum is conserved in such

encounters, and as a result, some momentum is invariably transferred from

the electrons to the ions. If the density of °owing electrons is high and they

have su±ciently high speed, then there is a potential for forcing the metal

ions out of their structural equilibrium positions. The force acting on each

metal ion is similar in nature to the pressure exerted by a gas on the walls

of its container, in the sense that it is a consequence of momentum trans-

fer and that it represents a time average over many individual encounters.

In any case, the result is a net drift of metal ions along the conductor in

the direction of the electron °ow. It follows that, because ions reside in

shallower energy minima at grain boundaries, defects, free surfaces and in-

terfaces, ion transport is more likely to occur along such paths than through

well ordered regions. However, the di®erence is only one of degree and ion

transport is possible in single crystals as well. Electromigration behavior is

described here in a macroscopic or phenomenological way, in large part to

indicate the role of stress in mass transport, and the discussion is restricted

to one-dimensional behavior.

The electromigration force Q acting on each metal ion is usually ex-
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pressed with respect to some ¯xed direction in the material as

Q = z∗eE ; (9.123)

where E is the electric ¯eld strength in that direction, e is the electron

charge and z∗ is the e®ective valence of the ions. The electric potential can

be expressed in terms of the electric current i and the electrical resistance

½ as E = ½i. The parameter z∗ is the nominal valence of the metal ions in

the absence of current °ow, reduced by the in°uence of dynamic coupling

between the ions and moving electrons which induces a force in the direction

opposite to the direction of the electric ¯eld. Experimentally, it is found that

z∗ is typically negative and large in magnitude compared to the nominal

valence, implying that the indirect dependence on E through the dynamic

coupling dominates the direct e®ect of force on this ion due to its own charge.

The quantity Q has physical dimensions of force per ion.

The °ux of metal ions in response to the force Q induced on each is

customarily written as

ja =
msQ
−

(9.124)

where ja is volume °ow rate in the direction of the electric ¯eld per unit area

of a planar material surface transverse to the °ow, − is an atomic volume,

and ms is a transport mobility parameter for self-di®usion under the pre-

vailing conditions. The physical dimensions of ja are volume/(area£time)

= length/time and the mobility parameter ms has physical dimensions of

length4/(time£force). The mobility is commonly expressed as a di®usiv-

ity divided by kT where k is the Boltzmann constant and T is absolute

temperature.

Consider an initially homogeneous metal conducting line that is con-

¯ned to occupy a cylindrical volume of ¯xed length and ¯xed cross-sectional

area. If the line is uniform along its length, any material °ux due to current

will result in an accumulation of material at one end of the line and a deple-

tion of material toward the other and. In a con¯ned line, a compressive stress

is induced in regions of material accumulation and a tensile stress in regions

of depletion. The compressive stress has the potential for driving cracks into

the material surrounding the conductor and/or for inducing plastic defor-

mation, while the tensile stress has the potential for nucleating voids within

the conducting line or at its interface with the surrounding material. Both

crack formation and void formation are nucleation-controlled processes, and

the stress levels required to activate these processes can be estimated. In

addition to these potential material failure modes, the induced gradient in
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stress also tends to drive di®usive mass transport in the opposite direction,

that is, from the region of compressive stress toward the region of tensile

stress. If a su±ciently large stress gradient can be sustained, mass trans-

port due to electromigration can be completely negated by its e®ect. This

possibility is discussed more quantitatively later in this section. Note that,

if electric current is driven through an uncon¯ned cylindrical conductor, the

conducting line will tend to move steadily in the direction of the electron

°ow by drawing material from one end and depositing it on the surface at

the other end.

Microscopically, electromigration is assumed to be the hopping of

metal atoms from one equilibrium position to another in a certain direc-

tion determined by the °ow of electrons through the material. The change

in system energy associated with the microscopic redistribution of mass was

discussed in some detail in Section 9.6.2. In particular, it was observed

through the expression (9.91) that the rate of increase of free energy of an

element of material held at ¯xed volume per unit volume of excess mater-

ial added per unit time is ¡1
3¾kk, the negative mean normal stress in the

material. Recall that ²1 > 0 in that discussion implied tensile mis¯t or,

in the present context, material removal, an observation that accounts for

the negative sign here. In that case, the mismatch was uniquely de¯ned by

the di®erence in stress-free volume of the two homogeneous materials at the

extremes of the range of a substitutional solid solution. In the case of elec-

tromigration, which involves self-di®usion by interstitial migration within

grains or by excess atom °ow along grain boundaries, the measure of mis-

match is not nearly so well de¯ned. Customarily, the measure of excess

material ¡²1 is assumed to have the value unity, even though the distrib-

ution is tacitly assumed to be dilute, so the chemical potential for stress

driven transport is

Âσ = ¡¾kk (9.125)

or three times the negative of the mean stress. In one-dimensional con¯gu-

rations involving only a single component of stress, say ¾(x; t), and a single

spatial coordinate x, the chemical potential is Âσ = ¡¾. The associated °ux

jσ of excess material due to a gradient in the stress is assumed to be

jσ = ¡ms
@Âσ
@x

= ms
@¾

@x
; (9.126)

where ms is again the a mobility parameter for self-di®usion. Note that

the °ux given in (9.126) represents mass °ow from regions of material ac-

cumulation toward regions of material depletion, or mass °ow in a direction
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opposite to the °ux ja introduced in (9.124). The total °ux of metal atoms

accounting for electromigration and stress driven di®usion together is then

j = ja + jσ.

As was noted in the study of evolution of compositional variations

in Section 9.6.4, the local rate of mass accumulation due to a mass °ux

vector is the negative of the °ux divergence. The local addition of material

is represented in continuum modeling as a stress-free volumetric strain. At

¯xed overall strain, the rate of material addition induces a proportional

rate of increase in mean normal compressive stress. In the present one-

dimensional con¯guration, this connection is expressed as

¡ @j

@x
= ¡ 1

B

@¾

@t
(9.127)

at each section along the line, where B is a relevant elastic constant. For

uniaxial stress in an isotropic material, the value of B is essentially the

elastic modulus E. If the expressions for mass °ux due to electromigration

(9.124) and due to stress gradient (9.126) are incorporated, it follows that

@¾

@t
= B

@

@x

∙
ms

µ
@¾

@x
+

z∗e½i
−

¶¸
: (9.128)

If the self-di®usion mobility is assumed to be constant, then the equation

reduces to the standard form of the di®usion equation in one dimension for

stress, that is,

@¾

@t
= Bms

@2¾

@x2
: (9.129)

In spite of the fact that they do not appear in this partial di®erential equa-

tion, the electrical parameters are still central to the description of the

process because the boundary conditions commonly are expressed in terms

of mass °ux.

There are two particular con¯gurations in which (9.128) or (9.129) can

be applied that have provided simple analytical results which have proven

useful in correlating experimental observations. One of these con¯gurations

is a very long one-dimensional conducting line occupying the region 0 < x <

1. The electric ¯eld vector of magnitude E acts in the direction of decreasing

x and the electromigration mass °ux is in the direction of increasing x, or

vice versa. At its end x = 0, the line is con¯ned in such a way that electric

current °ows freely but that there is no net mass °ux, that is,

@¾

@x
(0; t) +

z∗e½i
−

= 0 (9.130)
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for all t > 0. In the remote region,

@¾

@x
(x; t) ! 0 as x ! 1 : (9.131)

The stress is initially constant over the full length of the line, and this

constant value is taken to be zero for present purposes; therefore, the initial

condition is

¾(x; 0) = 0 ; 0 < x < 1 : (9.132)

The boundary value problem consisting of the partial di®erential equa-

tion (9.129), along with its initial and boundary conditions, has a well-known

solution that includes the time-dependence of stress at the con¯ned end of

the line given by

¾(0; t) =
2z∗½i
−

s
msBt

¼
: (9.133)

Note that z∗ is negative in this case and that i has the same sign as E .
Consequently, the stress at the end of the line is tensile or compressive, de-

pending on whether nominal current i °ows in the direction of increasing

x or decreasing x, respectively. Suppose it is postulated that failure in the

line occurs when j¾(0; t)j has increased to the value ¾cr, the smallest stress

magnitude that is required to activate any of the possible line failure mech-

anisms. The time required for the stress to reach this level is determined

from (9.133) to be

tfail =
¼

4msB

µ
−¾cr
z∗e½

¶2 1

i2
: (9.134)

Analysis of this one-dimensional model leads to the conclusion that the

time to failure under the circumstances assumed is inversely proportional to

the electric current density squared. Experiments have shown time to failure

to be proportional to i−n, as a rule, where the exponent has been found to

fall within the range 1:3 ∙ n ∙ 3:0 (Thompson and Lloyd 1993). The self-

di®usion process of electromigration is believed to be thermally activated,

and consequently the mobility has an exponential dependence on an activa-

tion energy and on absolute temperature as expressed in the familiar Arrhe-

nius form. This feature accounts for the principal temperature-dependence

of the time-to-failure in interconnect lines.

A second one-dimensional con¯guration that leads to results which

have been useful in interpretation of observations is that of a conducting

line of moderately small length, occupying the interval 0 ∙ x ∙ L say. It

is again presumed that a steady electric current i °ows along the line and
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both ends of the line are impermeable to mass °ux, so that j(0; t) = 0 and

j(L; t) = 0. When the current ¯rst begins to °ow, there is some period of

transient response during which mass is redistributed along the line. After

some time has passed, however, the governing equations admit a steady state

solution with @¾(x; t)=@t = 0, implying a ¯xed or time-independent stress

pro¯le. From (9.128), it follows that j(x; t) = 0 throughout the length of the

line, once steady-state is achieved, and that the steady state stress pro¯le is

a uniform gradient with value

@¾

@x
(x; t) = ¡z∗e½i

−
: (9.135)

In e®ect, (9.135) implies that the stress gradient is in equilibrium with a dis-

tribution of body force along the line generated in the course of momentum

transfer from the °owing electrons to the metal ions.

If it is assumed that this stress distribution is antisymmetric with

respect to the midpoint of the line, which is the distribution implied by

a linear theory in the absence of an initial stress, then the largest gradient

that can be sustained without electromigration damage occurring in the line

is 2¾cr=L. Because the value of the steady-state stress gradient is ¯xed by

other parameters in this case, it follows that there is a threshold length given

by

Lth = j2−¾cr
z∗e½i

j (9.136)

below which electromigration damage cannot arise. The existence of this

threshold length for onset of electromigration damage was ¯rst recognized

by Blech (1976), and evidence for its existence is noted in the discussion of

the drift test in Section 9.7.2.

Fig. 9.17. An extruded hillock in an Al interconnect line undergoing electromigration
damage causing a short. Reproduced with permission from Devaney (1989).
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An illustration of damage due to electromigration is shown in Fig-

ure 9.17. This is a scanning electron microscope (SEM) image of a hillock

formed in an Al metal interconnect which has forced an opening through

a silicon oxide passivation layer; interconnect material has been extruded

through the opening. Cracks emanating from the opening can be observed

in the image. The extruded metal has extended far enough to make con-

tact with an adjacent aluminum line, thereby resulting in an electric short

circuit.
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Fig. 9.18. The evolution of electromigration-induced voids in the wake of electron
transport and the formation of hillocks at the opposite end in pure Al strips sub-
jected to a current density, i = 6.5£105 A/cm2 at 340 ±C. The numbers beneath
each micrograph indicate the time, in minutes, after the commencement of the elec-
tromigration experiment. (Photographs courtesy of I. A. Blech. Reproduced with
permission.)
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9.7.2 The drift test

A particularly signi¯cant development in the study of electromigration in

thin ¯lms was the introduction by Blech (1976) of an experimental con¯g-

uration commonly known as the `drift test'. In this experiment, a stripe

of a metal with relatively low electrical resistance, Al for example, whose

electromigration response is to be investigated, is patterned over a length L

on a metal ¯lm such as TiN which has a relatively high melting point and

which is not susceptible to electromigration under the experimental condi-

tions, as shown schematically in Figure 9.19. The ¯lm, in turn, is deposited

on a relatively thick non-conducting substrate. As an electric bias voltage

is imposed across the length of the ¯lm, the resulting electric current shunts

through the lower-resistance stripe over its entire length. When the current

density is large enough to induce electromigration in the metal stripe, atoms

of the metal drift from the cathode to the anode. As a consequence, the en-

tire stripe is displaced over time in the direction of electron motion, as seen

in Figure 9.18. The leading edge of the stripe is populated with `hillocks'

(see Figure 7.25, for example) as a result of the spatially nonuniform accu-

mulation of metal atoms. The average drift velocity vdr is equal to the mass

°ux j across any cross-section of the stripe (Huntington and Grone 1961).

A representative sequence of micrographs shown in Figure 9.18 illustrates

the evolution of voids and hillocks over the course of time in an Al stripe

subjected to electric current in the drift test con¯guration.
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Fig. 9.19. Schematic of a typical `drift test'. A low-resistance metal stripe is pat-
terned, over a length L, on top of a higher-resistance stripe through which an elec-
tric current is applied. As the current shunts through the lower-electrical-resistance
metal, current-induced atomic drift leads to the formation of a depleted zone in the
wake of electron transport at one end of the stripe and hillocks and extrusions at
the other end.



9.7 Stress assisted diffusion: electromigration 767

Blech (1976) measured the average drift velocity vdr as a function of

current density for electromigration in a 115-¹m long and 460-nm thick Al

stripe on a 260-nm thick TiN layer which was sputtered on an oxidized

Si substrate. Over the current range 0:5 £ 105 A/cm2 ∙ i ∙ 4:0 £ 105

A/cm2 at 350 ◦C, he observed a linear relationship between vdr and i.

However, there was a threshold current density of approximately 1.1£105

A/cm2 below which no drift was detected. The threshold current density

was also found to be inversely proportional to the stripe length over the

range 30¹m∙ L ∙ 150¹m. The threshold value of i was observed to in-

crease with decreasing temperature. Enclosing the Al line in a silicon nitride

passivation layer was also found to increase the value of threshold current

for onset of electromigration damage. Figure 9.20 shows the results of an

electromigration experiment conducted on thin Al stripes of di®erent lengths

deposited on a TiN layer, where the increase in the stripe length is seen to

promote an increase in atom drift. The shortest stripe in this micrograph

has a subcritical length and hence does not undergo any electromigration

damage.

Fig. 9.20. Electromigration experiment conducted at room temperature on four
aluminum stripes of di®erent lengths in series with j = 3.7£105 A/cm2. The
aluminum stripes were heat treated at 350 ±C for 20 h prior to the experiment.
Note that the shortest stripe on the left does not show any drift, whereas the
increase in length of the other three stripes shows an increase in drift. Reproduced
with permission from Blech (1976).

9.7.3 Effects of microstructure on electromigration damage

In most polycrystalline thin ¯lms, columnar grains typically span the thick-

ness of the ¯lm. When a metal stripe or line is patterned from a thin ¯lm,

there is a continuous network of grain boundaries along the direction of

current-induced atomic °ux, if the width of the lines is larger than the grain
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size. These boundaries provide a relatively easy path for atomic di®usion

because the mobility for self-di®usion is larger within a grain boundary than

in the interior of grains. However, when the line thickness becomes compara-

ble to or smaller than the average grain size, there are no longer continuous

grain boundary paths from one end of the line to the other. Consequently,

alternative di®usion paths along the metal{oxide interface through the bulk

of the grains become more prominent in electromigration processes.

With the miniaturization of integrated circuits and the attendant re-

duction in feature dimensions, along with cleaner and higher temperature

deposition processes which promote larger grains, there is a greater propen-

sity for the predominant evolution of so-called bamboo structures. Con¯gu-

rations in which nearly all grain boundaries extend across the full width of

the line, are more or less perpendicular to the line and are spaced at more

or less regular intervals along the line are called bamboo grain structures

because, in planview, images of such lines have the general appearance of

stalks of bamboo. The bamboo structure signi¯cantly impedes atomic °ux

which leads, in turn, to a marked increase in electromigration time to failure

in interconnect lines. Post-pattern annealing of Al interconnect lines, which

promotes the evolution of bamboo grains, has also been shown to provide a

substantial rise in the time to electromigration failure. The bamboo grain

structures, however, can be prone to transgranular failure processes which

develop during electromigration. These cracking patterns and the associated

stress voiding are known to be strongly in°uenced by the crystallographic

texture of the interconnect lines (Sanchez et al. (1990), Joo and Thompson

(1997)).

The e®ect of crystallographic texture on the evolution of slit-like cracks

during electromigration of unpassivated (110)-textured Al single crystal lines

is shown in the micrographs of Figure 9.21. These observations were made

from wafer-level accelerated testing for electromigration, where the tests

were carried out at constant voltage while the current was being measured.

The experiments were carried out at a temperature within the range 350{

400 ◦C with current densities in the range 1.5{2.7£105 A/cm2. The migro-

graph in Figure 9.21(a) corresponds to the most commonly observed voids,

which are bounded by f111g planes in < 112 > directions; Figure 9.21(b)

shows a slit-like void in the < 111 > direction, bounded by f011g planes.

Stresses induced by electromigration, in conjunction with those pro-

duced by thermal °uctuations, collectively lead to di®usion of vacancies and

inelastic deformation processes which cause stress-voiding and slit crack-

ing in metal interconnects (Sanchez et al. (1992) and Joo and Thompson

(1997)). Such failure processes are also strongly in°uenced by the crystallo-
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(a) (b)

1 µm

[001]

1 µm

Fig. 9.21. Formation of slit-like voids whose geometry is determined by crystallo-
graphic texture during the electromigration of unpassivated, single crystalline Al
lines of (110) texture. (a) Voids bound by f111g planes in < 112 > directions,
and (b) void in the < 111 > direction, bound by f011g planes. Reproduced with
permission from Joo and Thompson (1997).

graphic texture of the current-carrying interconnect lines. Figure 9.22 shows

examples of stress-induced voids and cracks that form in single crystal alu-

minum lines subjected to thermal loading. Note the pronounced e®ect of

crystallographic texture on the geometry of these voids.

Several approaches for enhancing the resistance to electromigration

failure through microstructural control and design have been proposed.

¡ It is known that the addition of Cu to Al signi¯cantly increases the

resistance to electromigration and the interconnect life by raising the

activation energy for Al atomic °ux. As a result, Al{Cu alloys have

been commonly used as interconnect metals in integrated circuits.

¡ The use of high temperature materials, which have lower mobilities

for self di®usion at service temperatures, is also expected to enhance

resistance to electromigration. For example, the use of Cu instead of
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(a) (b)

(c) (d)

[001]
1 µm 1 µm

1 µm 1 µm

Fig. 9.22. SEM images of stress-voiding and slit cracking in Al single crystals of dif-
ferent crystallographic orientations. (a){(c) Voids in slowly-cooled, (110)-textured
Al lines. The voids are bounded by (111) planes. (d) Voids in air-cooled (110)-
textured lines. Reproduced with permission from Joo and Thompson (1997).

Al provides this bene¯cial e®ect. Other materials with high melting

points, such as W, Ti, and Ta, have lower electrical resistivity.

¡ Narrow lines which promote bamboo-like grain structures are likely to

provide enhanced electromigration life. In addition, post-patterning

anneal treatments which have been shown to increase lifetimes of

Al interconnect lines could also o®er the possibility of extending

the lifetime of Cu and other metals subjected to electromigration

(Thompson and Lloyd 1993).

¡ The use of refractory metal shunt layers of materials such as TiN

between an interconnect line and its surrounding dielectric material

provides a mechanism for the current in an interconnect interrupted

by a void to bypass the void once the electrical resistance reaches

unacceptably large levels. Likewise, liners introduced between Cu
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lines and the surrounding dielectric materials could be used to protect

the functionality of circuits with Cu interconnect lines.

9.7.4 Assessment of interconnect reliability

On the basis of experimental observations of electromigration failure in Al

interconnect lines, Black (1969) postulated a simple relationship for failure

time tfail in terms of current density, i, and temperature, T in the form

tfail = Aem ¢ i−nem ¢ exp
µ
Qem
kT

¶
; (9.137)

where Aem, Qem and nem are empirically determined constants. For pure

aluminum, wide lines (for which the line width is greater than the grain

size), Black found that nem = 2 and Qem = 0.5 eV. The constants in the

Black equation are a®ected by a number of factors including the properties of

the interconnect metal, line geometry, grain structure and crystallographic

texture. For example, the value of Qem is typically about 0.7 eV for wide

Al-Cu lines, 0.9 eV for narrow or bamboo-like Al-Cu lines, and 1.0 eV for

wide or bamboo-like pure Cu lines (Srikar and Thompson 1999). Likewise,

the geometry of the lines can in°uence the value of nem: it varies from about

2 for wide pad-to-pad lines, to a value in the range 1{2 for narrow via-to-via

lines, and to a value widely ranging above 1 for short, narrow via-to-via

lines. Nevertheless, (9.137) has remained a basis for most electromigration

reliability analyses during the past several decades.

A key challenge in the assessment of the mechanical and electrical re-

liability of interconnect lines prone to electromigration damage is to derive

the long-term failure times for complex circuits on the basis of accelerated,

simple laboratory or wafer-level tests. In addition, the small population of

samples tested in the simulated environment should provide a realistic repre-

sentation of a substantially larger population encountered in service. There

are several di®erent types of electromigration tests that are commonly used

to assess the lifetime of interconnects (Ohring 1998). One type of test entails

raising the temperature in steps in a packaged metal stripe while an electric

current is simultaneously imposed. The resulting temperature-dependence

of resistance increase due to electromigration is empirically determined for

analysis. In another type of test, the electric current is raised in steps to

very high values, the electrical resistance is monitored at each current step

level and the temperature is calculated. In many standard test structures

that have been used, a test line containing four contact pads is employed,

with the two outer pads imposing an electric current and the two inner pads
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monitoring the voltage of the lines. Failure is often de¯ned as an open cir-

cuit failure due to a through-thickness void, a short-circuit failure due to an

extrusion, or a percent change in electrical resistance.

Once a test structure and type of test are chosen, an acceleration factor

for the simulated test is selected. For example, let tdesign be the minimum

acceptable failure time for a particular design characterized by a current i

and temperature T in service. If the duration of the accelerated simulation

test is chosen as tfail, the current itest corresponding to a temperature Ttest
is chosen from the acceleration factor AF which is derived from Black's

equation to be

AF =
tdesign
tfail

=

½
itest
i

¾2
¢ exp

µ
¡Qemnem

kT

∙
1

Ttest
¡ 1

T

¸¾
: (9.138)

If a wafer-level test leads to the result that tfail > tdesign=AF, then the

wafer could be accepted as having a su±ciently long life expectancy for

electromigration.

Such simulated tests are carried out to record electromigration life-

times for a large population of lines. The statistical characteristics of these

sample tests are then analyzed, and appropriate scaling laws, such as (9.134),

(9.137) and (9.138), are applied to develop models for circuit-level reliability.

Although electromigration tests on straight line segments have traditionally

been the standard for fundamental research, there is growing interest in

the study of electromigration reliability of interconnect tree test structures

comprising, for example, L-shaped and T-shaped line segments (Srikar and

Thompson (1999), Hau-Riege and Thompson (2000), Suo (2003)). Typi-

cally, the median time to failure, usually denoted by t50 to represent the

time below which 50% of the lines fail, is used in reliability analyses. The

standard unit of measure to characterize interconnect reliability is the FIT,

where one FIT equals one failure in 109 device hours.

9.8 Exercises

1. The growth or decay of the amplitude of a sinusoidal surface pro¯le on
a uniformly stressed solid as a result of surface di®usion is considered in
Section9.2.1 for the case of isotropic surface energy. Consider the case in
which the change in surface pro¯le occurs by the evaporation-condensation,
rather than by surface di®usion. Express the characteristic time for the
surface evolution process in terms of system parameters, and show that the
wavelength with the highest rate of growth is again given by (9.22).

2. Derive the expression for the perturbed mean normal stress given in (9.95);
the constraints on the material sample which provides boundary conditions
are described in Section 9.6.2.
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3. The compositional stability of an In»Ga1¡»As solid solution was considered
in Section 9.6.3 for the form of free energy of mixing given by (9.99). In
particular, the temperatures at which a composition would become unstable
for any value of » was determined with elastic energy e®ects neglected, and
then the change in this estimate implied by the elastic energy e®ect was
determined. For the case with composition » = 0:2, determine the lower
bound on the range of temperatures for which the composition is stable if
the e®ect of elastic energy is ignored, and then estimate how this bound
changes if the e®ect of elastic energy is incorporated.

4. The coupling between deformation and driving force for change in composi-
tional distribution was considered for the case of a layer with through-the-
thickness variation in composition in Section 9.6.5. For the case of compo-
sition evolution represented by the solution in (9.118), determine the corre-
sponding dependence of curvature of the layer on time.
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